Date Available
5-16-2012
Year of Publication
2012
Degree Name
Doctor of Philosophy (PhD)
Document Type
Doctoral Dissertation
College
Arts and Sciences
Department/School/Program
Mathematics
First Advisor
Dr. Heide Gluesing-Luerssen
Abstract
Codes can be represented by edge-labeled directed graphs called trellises, which are used in decoding with the Viterbi algorithm. We will first examine the well-known product construction for trellises and present an algorithm for recovering the factors of a given trellis. To maximize efficiency, trellises that are minimal in a certain sense are desired. It was shown by Koetter and Vardy that one can produce all minimal tail-biting trellises for a code by looking at a special set of generators for a code. These generators along with a set of spans comprise what is called a characteristic pair, and we will discuss how to determine the number of these pairs for a given code. Finally, we will look at trellis dualization, in which a trellis for a code is used to produce a trellis representing the dual code. The first method we discuss comes naturally with the known BCJR construction. The second, introduced by Forney, is a very general procedure that works for many different types of graphs and is based on dualizing the edge set in a natural way. We call this construction the local dual, and we show the necessary conditions needed for these two different procedures to result in the same dual trellis.
Recommended Citation
Weaver, Elizabeth A., "MINIMALITY AND DUALITY OF TAIL-BITING TRELLISES FOR LINEAR CODES" (2012). Theses and Dissertations--Mathematics. 1.
https://uknowledge.uky.edu/math_etds/1