Date Available

12-14-2011

Year of Publication

2008

Degree Name

Doctor of Philosophy (PhD)

Document Type

Dissertation

College

Arts and Sciences

Department

Statistics

First Advisor

Dr. Constance L. Wood

Second Advisor

Dr. Arne C. Bathke

Abstract

The Receiver Operating Characteristic (ROC) curve is the plot of Sensitivity vs. 1- Specificity of a quantitative diagnostic test, for a wide range of cut-off points c. The empirical ROC curve is probably the most used nonparametric estimator of the ROC curve. The asymptotic properties of this estimator were first developed by Hsieh and Turnbull (1996) based on strong approximations for quantile processes. Jensen et al. (2000) provided a general method to obtain regional confidence bands for the empirical ROC curve, based on its asymptotic distribution.

Since most biomarkers do not have high enough sensitivity and specificity to qualify for good diagnostic test, a combination of biomarkers may result in a better diagnostic test than each one taken alone. Su and Liu (1993) proved that, if the panel of biomarkers is multivariate normally distributed for both diseased and non-diseased populations, then the linear combination, using Fisher's linear discriminant coefficients, maximizes the area under the ROC curve of the newly formed diagnostic test, called the generalized ROC curve. In this dissertation, we will derive the asymptotic properties of the generalized empirical ROC curve, the nonparametric estimator of the generalized ROC curve, by using the empirical processes theory as in van der Vaart (1998). The pivotal result used in finding the asymptotic behavior of the proposed nonparametric is the result on random functions which incorporate estimators as developed by van der Vaart (1998). By using this powerful lemma we will be able to decompose an equivalent process into a sum of two other processes, usually called the brownian bridge and the drift term, via Donsker classes of functions. Using a uniform convergence rate result given by Pollard (1984), we derive the limiting process of the drift term. Due to the independence of the random samples, the asymptotic distribution of the generalized empirical ROC process will be the sum of the asymptotic distributions of the decomposed processes. For completeness, we will first re-derive the asymptotic properties of the empirical ROC curve in the univariate case, using the same technique described before. The methodology is used to combine biomarkers in order to discriminate lung cancer patients from normals.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.