Date Available
12-14-2011
Year of Publication
2006
Document Type
Dissertation
College
Arts and Sciences
Department
Geology
First Advisor
Alan E. Fryar
Abstract
Natural attenuation of trichloroethene (TCE) and technetium (99Tc) was studied for five consecutive seasons (from January 2002 to January 2003) in Little Bayou Creek. The stream receives ground water discharge from an aquifer contaminated by past waste disposal activities at the Paducah Gaseous Diffusion Plant (PGDP), a uranium enrichment facility near Paducah, Kentucky. Results from stream gaging, contaminant monitoring, tracer tests (with bromide, nitrate, rhodamine WT and propane) and simulation modeling indicate the TCE is naturally attenuated by volatilization and dilution, with volatilization rates related to the ambient temperature and surface discharge rate. The only apparent mechanism of 99Tc attenuation is dilution. Travel times of non-gaseous tracers were found to be similar and have highest values in October and lowest in June. It was also estimated from modeling that the transport of the solutes in the stream was mostly one-dimensional with insignificant secondary storage.
Recommended Citation
Mukherjee, Abhijit, "DEEPER GROUNDWATER FLOW AND CHEMISTRY IN THE ARSENIC AFFECTED WESTERN BENGAL BASIN, WEST BENGAL, INDIA" (2006). University of Kentucky Doctoral Dissertations. 368.
https://uknowledge.uky.edu/gradschool_diss/368