Year of Publication


Document Type



Arts and Sciences



First Advisor

William A. Thomas


The Alleghanian orogeny was a collision between the Gondwanan and Laurentian continents that produced the Pangean supercontinent. Mechanical and kinematic models of collisional orogens are believed to follow a critical taper geometry, where the tectonic imbrication of continental crust begins nearest to the edge of continental plate and advances toward the craton in a break- forward sequence. Studies of shear zones within the Alleghanian collisional orogen, however, suggest that most of the early deformation was translational. Propagation of craton-directed thrusts into the foreland did not occur until the latest Pennsylvanian in the southern Appalachians, and the middle-late Permian in the central Appalachians. Radiometric sedimentary provenance proxies have been applied to the late Mississippian-early Permian strata within the Appalachian foreland basin to determine the crustal composition and structural evolution of the orogen during the continental collision. U-Pb ages of detrital zircons from the early to middle Pennsylvanian sandstones suggest that most of the detritus within the Appalachian basin was recycled from Mesoproterozoic basement and Paleozoic strata of the Laurentian margin. The presence of Archean and late Paleoproterozoic age detrital zircons is cited as evidence of recycling of the Laurentian syn-rift and passive-margin sandstones. Detrital zircon ages from early-middle Permian-age sandstones of the Dunkard Group do not contain any Archean or Paleoproterozoic detrital-zircon ages, implying a source of sediment with a much more restricted age population, possibly the igneous and metamorphic internides or middle Paleozoic sandstones from the Appalachian basin. The persistance of 360-400 Ma K/Ar ages of detrital white mica suggest that the sediment was supplied from a source that was exhumed during the Devonian Acadian orogeny. Detrital-zircon and detrital-white-mica ages from Pennsylvanian-age sandstones indicate that the late Paleozoic orogen did not incorporate any significant synorogenic juvenile crust. The 87Sr/86Sr ratios of middle Pennsylvanian-early Permian lacustrine limestones within the Appalachian basin show a slight enrichment through time, suggesting that labile 87Sr-rich minerals in the Alleghanian hinterland are being exposed. Stable isotopic data from the lacustrine limestones also corroborates that the Appalachian basin became much more arid through time.