Year of Publication

2015

Degree Name

Master of Science in Biomedical Engineering

Document Type

Master's Thesis

College

Engineering

Department

Biomedical Engineering

First Advisor

Dr. Hainsworth Y. Shin

Abstract

Hypercholesterolemia is a risk factor for osteoporosis but the underlying mechanism is unknown. Previous evidence suggests that osteoporosis results from an impaired regulation of osteoblasts by fluid pressure fluctuations in the bone matrix. Recently, our laboratory showed that enhanced cholesterol in the cell membrane, due to hypercholesterolemia, alters leukocyte mechanosensitivity. We predict a similar link between osteoblasts and hypercholesterolemia leading to osteoporosis. Specifically, we hypothesize that extracellular cholesterol modifies the osteoblast sensitivity to pressure. MC3T3-E1 cells were exposed to hydrodynamic pressures regimes (mean=40mmHg, amplitude=0-20mmHg, frequency=1Hz) for 1-12 hours. To assess the impact of membrane cholesterol enrichment, cells were pre-treated with 0-50 µg/mL cyclodextran:cholesterol conjugates. We assessed the pressure effects on mitosis and F-actin stress fiber formation (SFF) of cells. Exposure of cells to 50/30 mmHg pressure transiently increased the number of cells in the S- and G2M-phases of mitosis after 6 and 12 hours, respectively. Relative to controls, osteoblast-like cells exposed to all pressures exhibited significantly (p

Share

COinS