L. Adamczyk, AGH University of Science and Technology, Poland
James K. Adkins, University of KentuckyFollow
G. Agakishiev, Joint Institute for Nuclear Research, Russia
M. M. Aggarwal, Panjab University, India
Z. Ahammed, Variable Energy Cyclotron Centre, India
I. Alekseev, Alikhanov Institute for Theoretical and Experimental Physics, Russia
A. Aparin, Joint Institute for Nuclear Research, Russia
D. Arkhipkin, Brookhaven National Laboratory
E. C. Aschenauer, Brookhaven National Laboratory
G. S. Averichev, Joint Institute for Nuclear Research, Russia
X. Bai, University of Illinois at Chicago
V. Bairathi, National Institute of Science Education and Research, India
A. Banerjee, Variable Energy Cyclotron Centre, India
R. Bellwied, University of Houston
A. Bhasin, University of Jammu, India
A. K. Bhati, Panjab University, India
P. Bhattarai, University of Texas at Austin
J. Bielcik, Czech Technical University in Prague, Czech Republic
J. Bielcikova, Nuclear Physics Institute AS CR, Czech Republic
L. C. Bland, Brookhaven National Laboratory
I. G. Bordyuzhin, Alikhanov Institute for Theoretical and Experimental Physics, Russia
J. Bouchet, Kent State University
J. D. Brandenburg, Rice University
A. V. Brandin, Moscow Engineering Physics Institute, Russia
I. Bunzarov, Joint Institute for Nuclear Research, Russia
J. Butterworth, Rice University
H. Caines, Yale University
M. Calderón de la Barca Sánchez, University of California - Davis
J. M. Campbell, Ohio State University
D. Cebra, University of California - Davis
Renee H. Fatemi, University of KentuckyFollow
Suvarna Ramachandran, University of KentuckyFollow


Elliptic flow (υ2) values for identified particles at midrapidity in Au + Au collisions measured by the STAR experiment in the Beam Energy Scan at the Relativistic Heavy Ion Collider at √sNN = 7.7– 62.4 GeV are presented for three centrality classes. The centrality dependence and the data at √sNN = 14.5 GeV are new. Except at the lowest beam energies, we observe a similar relative υ2 baryon-meson splitting for all centrality classes which is in agreement within 15% with the number-of-constituent quark scaling. The larger υ2 for most particles relative to antiparticles, already observed for minimum bias collisions, shows a clear centrality dependence, with the largest difference for the most central collisions. Also, the results are compared with a multiphase transport (AMPT) model and fit with a blast wave model.

Document Type


Publication Date


Notes/Citation Information

Published in Physical Review C, v. 93, issue 1, 014907, p. 1-13.

©2016 American Physical Society

The copyright holder has granted permission for posting the article here.

Due to the large number of authors, only the first 30 and the authors affiliated with the University of Kentucky are listed in the author section above. For the complete list of authors, please download this article.

The authors of this article are collectively known as STAR Collaboration.

Digital Object Identifier (DOI)

Funding Information

We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL, the KISTI Center in Korea, and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Office of Nuclear Physics within the U.S. DOE Office of Science, the U.S. NSF, the Ministry of Education and Science of the Russian Federation, NNSFC, CAS, MoST and MoE of China, the National Research Foundation of Korea, GA and MSMT of the Czech Republic, FIAS of Germany, DAE, DST, and UGC of India, the National Science Centre of Poland, National Research Foundation, the Ministry of Science, Education and Sports of the Republic of Croatia, and RosAtom of Russia.

Included in

Nuclear Commons