Li-Ting Hsu, Max-Planck-Institut für extraterrestrische Physik, Germany
Mara Salvato, Max-Planck-Institut für extraterrestrische Physik, Germany
Kirpal Nandra, Max-Planck-Institut für extraterrestrische Physik, Germany
Marcella Brusa, Max-Planck-Institut für extraterrestrische Physik, Germany
Ralf Bender, Max-Planck-Institut für extraterrestrische Physik, Germany
Johannes Buchner, Max-Planck-Institut für extraterrestrische Physik, Germany
Jennifer L. Dooley, Los Alamos National Laboratory
Dale D. Kocevski, University of KentuckyFollow
Yicheng Guo, University of California - Santa Cruz
Nimish P. Hathi, Aix Marseille Université, France
Cyprian Rangel, Imperial College London, UK
S. P. Willner, Harvard-Smithsonian Center for Astrophysics
Murray Brightman, Max-Planck-Institut für extraterrestrische Physik, Germany
Antonis Georgakakis, Max-Planck-Institut für extraterrestrische Physik, Germany
Tamás Budavári, Johns Hopkins University
Alexander S. Szalay, Johns Hopkins University
Matthew L.N. Ashby, Harvard-Smithsonian Center for Astrophysics
Guillermo Barro, University of California - Santa Cruz
Tomas Dahlen, Space Telescope Science Institute
Sandra M. Faber, University of California - Santa Cruz
Henry C. Ferguson, Space Telescope Science Institute
Audrey Galametz, INAF-Osservatorio di Roma, Italy
Andrea Grazian, INAF-Osservatorio di Roma, Italy
Norman A. Grogin, Space Telescope Science Institute
Kuang-Han Huang, University of California - Davis
Anton M. Koekemoer, Space Telescope Science Institute
Ray A. Lucas, Space Telescope Science Institute
Elizabeth McGrath, Colby College
Bahram Mobasher, University of California - Riverside
Michael Peth, Johns Hopkins University
David J. Rosario, Max-Planck-Institut für extraterrestrische Physik, Germany
Jonathan R. Trump, University of California - Santa Cruz


We present photometric redshifts and associated probability distributions for all detected sources in the Extended Chandra Deep Field South (ECDFS). This work makes use of the most up-to-date data from the Cosmic Assembly Near-IR Deep Legacy Survey (CANDELS) and the Taiwan ECDFS Near-Infrared Survey (TENIS) in addition to other data. We also revisit multi-wavelength counterparts for published X-ray sources from the 4 Ms CDFS and 250 ks ECDFS surveys, finding reliable counterparts for 1207 out of 1259 sources (~96%). Data used for photometric redshifts include intermediate-band photometry deblended using the TFIT method, which is used for the first time in this work. Photometric redshifts for X-ray source counterparts are based on a new library of active galactic nuclei/galaxy hybrid templates appropriate for the faint X-ray population in the CDFS. Photometric redshift accuracy for normal galaxies is 0.010 and for X-ray sources is 0.014 and outlier fractions are 4% and 5.2%, respectively. The results within the CANDELS coverage area are even better, as demonstrated both by spectroscopic comparison and by galaxy-pair statistics. Intermediate-band photometry, even if shallow, is valuable when combined with deep broadband photometry. For best accuracy, templates must include emission lines.

Document Type


Publication Date


Notes/Citation Information

Published in The Astrophysical Journal, v. 796, no. 1, article 60, p. 1-22.

© 2014. The American Astronomical Society. All rights reserved.

Reproduced by permission of the AAS.

Digital Object Identifier (DOI)

Funding Information

This work was supported by program number HST GO-12060 provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. . . . This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. M. Brusa acknowledges support from the FP7 Career Integration Grant "eEASy" (CIG 321913).

Related Content

This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.

apj502748f1_lr.gif (152 kB)
Fig. 1 Standard

apj502748f1_hr.gif (194 kB)
Fig. 1 High-Resolution

apj502748f1.ppt (361 kB)
Fig. 1 Powerpoint

apj502748f2_lr.jpg (220 kB)
Fig. 2 Standard

apj502748f2_hr.jpg (271 kB)
Fig. 2 High-Resolution

apj502748f2.ppt (286 kB)
Fig. 2 Powerpoint

apj502748f3_lr.jpg (67 kB)
Fig. 3 Standard

apj502748f3_hr.jpg (67 kB)
Fig. 3 High-Resolution

apj502748f3.ppt (96 kB)
Fig. 3 Powerpoint

apj502748f4_lr.jpg (66 kB)
Fig. 4 Standard

apj502748f4_hr.jpg (66 kB)
Fig. 4 High-Resolution

apj502748f4.ppt (93 kB)
Fig. 4 Powerpoint

apj502748f5_lr.jpg (47 kB)
Fig. 5 Standard

apj502748f5_hr.jpg (48 kB)
Fig. 5 High-Resolution

apj502748f5.ppt (71 kB)
Fig. 5 Powerpoint

apj502748f6_lr.jpg (99 kB)
Fig. 6 Standard

apj502748f6_hr.jpg (124 kB)
Fig. 6 High-Resolution

apj502748f6.ppt (117 kB)
Fig. 6 Powerpoint

apj502748f7_lr.jpg (189 kB)
Fig. 7 Standard

apj502748f7_hr.jpg (235 kB)
Fig. 7 High-Resolution

apj502748f7.ppt (233 kB)
Fig. 7 Powerpoint

apj502748f8_lr.jpg (317 kB)
Fig. 8 Standard

apj502748f8_hr.jpg (394 kB)
Fig. 8 High-Resolution

apj502748f8.ppt (355 kB)
Fig. 8 Powerpoint

apj502748f9_lr.jpg (59 kB)
Fig. 9 Standard

apj502748f9_hr.jpg (70 kB)
Fig. 9 High-Resolution

apj502748f9.ppt (77 kB)
Fig. 9 Powerpoint

apj502748f10_lr.jpg (116 kB)
Fig. 10 Standard

apj502748f10_hr.jpg (119 kB)
Fig. 10 High-Resolution

apj502748f10.ppt (152 kB)
Fig. 10 Powerpoint

apj502748f11_lr.jpg (112 kB)
Fig. 11 Standard

apj502748f11_hr.jpg (115 kB)
Fig. 11 High-Resolution

apj502748f11.ppt (146 kB)
Fig. 11 Powerpoint

apj502748f12_lr.jpg (136 kB)
Fig. 12 Standard

apj502748f12_hr.jpg (138 kB)
Fig. 12 High-Resolution

apj502748f12.ppt (174 kB)
Fig. 12 Powerpoint

apj502748f13_lr.jpg (207 kB)
Fig. 13 Standard

apj502748f13_hr.jpg (256 kB)
Fig. 13 High-Resolution

apj502748f13.ppt (259 kB)
Fig. 13 Powerpoint

apj502748f14_lr.jpg (60 kB)
Fig. 14 Standard

apj502748f14_hr.jpg (174 kB)
Fig. 14 High-Resolution

apj502748f14.ppt (84 kB)
Fig. 14 Powerpoint

apj502748f15_lr.jpg (89 kB)
Fig. 15 Standard

apj502748f15_hr.jpg (109 kB)
Fig. 15 High-Resolution

apj502748f15.ppt (122 kB)
Fig. 15 Powerpoint

apj502748f16_lr.jpg (124 kB)
Fig. 16 Standard

apj502748f16_hr.jpg (147 kB)
Fig. 16 High-Resolution

apj502748f16.ppt (158 kB)
Fig. 16 Powerpoint

apj502748f17_lr.jpg (69 kB)
Fig. 17 Standard

apj502748f17_hr.jpg (85 kB)
Fig. 17 High-Resolution

apj502748f17.ppt (102 kB)
Fig. 17 Powerpoint

apj502748f18_lr.jpg (104 kB)
Fig. 18 Standard

apj502748f18_hr.jpg (324 kB)
Fig. 18 High-Resolution

apj502748f18.ppt (139 kB)
Fig. 18 Powerpoint

apj502748f19_lr.jpg (50 kB)
Fig. 19 Standard

apj502748f19_hr.jpg (55 kB)
Fig. 19 High-Resolution

apj502748f19.ppt (75 kB)
Fig. 19 Powerpoint

apj502748f20_lr.jpg (54 kB)
Fig. 20 Standard

apj502748f20_hr.jpg (157 kB)
Fig. 20 High-Resolution

apj502748f20.ppt (81 kB)
Fig. 20 Powerpoint

apj502748f21_lr.jpg (88 kB)
Fig. 21 Standard

apj502748f21_hr.jpg (247 kB)
Fig. 21 High-Resolution

apj502748f21.ppt (119 kB)
Fig. 21 Powerpoint

apj502748f22_lr.jpg (110 kB)
Fig. 22 Standard

apj502748f22_hr.jpg (132 kB)
Fig. 22 High-Resolution

apj502748f22.ppt (145 kB)
Fig. 22 Powerpoint

apj502748f23_lr.jpg (119 kB)
Fig. 23 Standard

apj502748f23_hr.jpg (144 kB)
Fig. 23 High-Resolution

apj502748f23.ppt (154 kB)
Fig. 23 Powerpoint

apj502748f24_lr.jpg (171 kB)
Fig. 24 Standard

apj502748f24_hr.jpg (215 kB)
Fig. 24 High-Resolution

apj502748f24.ppt (208 kB)
Fig. 24 Powerpoint

apj502748f25_lr.jpg (31 kB)
Fig. 25 Standard

apj502748f25_hr.jpg (100 kB)
Fig. 25 High-Resolution

apj502748f25.ppt (49 kB)
Fig. 25 Powerpoint

apj502748f26_lr.jpg (53 kB)
Fig. 26 Standard

apj502748f26_hr.jpg (169 kB)
Fig. 26 High-Resolution

apj502748f26.ppt (74 kB)
Fig. 26 Powerpoint

apj502748f27_lr.jpg (143 kB)
Fig. 27 Standard

apj502748f27_hr.jpg (451 kB)
Fig. 27 High-Resolution

apj502748f27.ppt (154 kB)
Fig. 27 Powerpoint

apj502748f28_lr.jpg (95 kB)
Fig. 28 Standard

apj502748f28_hr.jpg (297 kB)
Fig. 28 High-Resolution

apj502748f28.ppt (107 kB)
Fig. 28 Powerpoint

apj502748t1_ascii.txt (2 kB)
Table 1 ASCII

apj502748t1_lr.gif (68 kB)
Table 1 Typeset Image

apj502748t2_ascii.txt (1 kB)
Table 2 ASCII

apj502748t2_lr.gif (18 kB)
Table 2 Typeset Image

apj502748t3_ascii.txt (1 kB)
Table 3 ASCII

apj502748t3_lr.gif (13 kB)
Table 3 Typeset Image

apj502748t4_ascii.txt (1 kB)
Table 4 ASCII

apj502748t4_lr.gif (14 kB)
Table 4 Typeset Image

apj502748t5_ascii.txt (1 kB)
Table 5 ASCII

apj502748t5_lr.gif (16 kB)
Table 5 Typeset Image

apj502748t6_ascii.txt (1 kB)
Table 6 ASCII

apj502748t6_lr.gif (16 kB)
Table 6 Typeset Image

apj502748t7_ascii.txt (1 kB)
Table 7 ASCII

apj502748t7_lr.gif (6 kB)
Table 7 Typeset Image

apj502748t8_ascii.txt (1 kB)
Table 8 ASCII

apj502748t8_lr.gif (31 kB)
Table 8 Typeset Image

apj502748t9_ascii.txt (1 kB)
Table 9 ASCII

apj502748t9_lr.gif (12 kB)
Table 9 Typeset Image

apj502748t10_ascii.txt (1 kB)
Table 10 ASCII

apj502748t10_lr.gif (10 kB)
Table 10 Typeset Image

apj502748t11_ascii.txt (1 kB)
Table 11 ASCII

apj502748t11_lr.gif (16 kB)
Table 11 Typeset Image

apj502748t12_ascii.txt (1 kB)
Table 12 ASCII

apj502748t12_lr.gif (33 kB)
Table 12 Typeset Image