Year of Publication

2018

Degree Name

Doctor of Philosophy (PhD)

Document Type

Doctoral Dissertation

College

Arts and Sciences

Department

Physics and Astronomy

First Advisor

Dr. Ambrose Seo

Second Advisor

Dr. Lance DeLong

Abstract

Complex-oxides have seen an enormous amount of attention in the realm of Condensed Matter Physics and Materials Science/Engineering over the last several decades. Their ability to host a wide variety of novel physical properties has even caused them to be exploited commercially as dielectric, metallic and magnetic materials. Indeed, since the discovery of high temperature superconductivity in the “Cuprates” in the late 1980’s there has been an explosion of activity involving complex-oxides. Further, as the experimental techniques and equipment for fabricating thin films and heterostructures of these materials has improved over the last several decades, the search for new and more exotic properties has intensified. These properties stem from the interfaces formed by depositing these materials onto one another. Whether it be interfacial strain induced by the mismatch between the crystal structures, modified exchange interactions, or some combination of these and other interactions, thin films and heterostuctures provide an invaluable tool the modern condensed matter community.

Simply put, a “complex-oxide” is any compound that contains Oxygen and at least two other elements; or one atom in two different oxidation states. Transition Metal Oxides (TMO’s) are a subset of complex-oxides which are of particular interest because of their strong competition between their charge, spin and orbit degrees of freedom. As we progress down the periodic table from 3d to 4d to 5d transition metals, the crystal field, electron correlation and spin-orbit energies become more and more comparable. Therefore, TMO thin films and heterostructures are indispensable to the search for novel physical properties.

KTaO3 (KTO) is a polar 5d TMO which has been investigated for its high-k dielectric properties. It is a band insulator with a cubic perovskite crystal structure which is isomorphic to SrTiO3 (STO). This is important because non-polar STO is famous for forming a highly mobile, 2-Dimensional Electron Gas (2DEG) at the hetero-interface with polar LaAlO3 (LAO) as a result of the so-called “polar catastrophe”. Here, I use this concept of polarity to ask an important question: “What happens at hetero-interfaces where two different polar complex oxides meet?” From this question we propose that a hetero-interface between two polar complex-oxides with opposite polarity (I-V/III-III) should be impossible because of the strong Coulomb repulsion between the adjacent layers. However, we find that despite this proposed conflict we are able to synthesize KTO thin films on (110) oriented GdScO3 (GSO) substrates and the conflict is avoided through atomic reconfiguration at the hetero-interface.

SrRuO3 (SRO) is a 4d TMO, and an itinerant ferromagnet that is used extensively as an electrode material in capacitor and transistor geometries and proof-of-concept devices. However, in the thin film limit the ferromagnetic transition temperature, TC, and conductivity drop significantly and even become insulating and lose their ferromagnetic properties. Therefore, we ask “Are the transport properties of SRO thin films inherently inferior to single crystals, or is there a way to maintain and/or enhance the metallic properties in the thin film limit?” We have fabricated SRO thin films of various thickness on GSO substrates (tensile strain) and find that all of our samples have enhanced metallic properties and even match those of single crystals.

Finally, we ask “Can these enhanced metallic properties in SRO thin films allow us to observe evidence of a topological phase without the complexity of off-stoichiometry and/or additional hetero-structural layers?” Recent reports of oxygen deficient EuO films as well as hetero-structures and superlattices of SRO mixed with SrIrO3 or La0.7Sr0.3MnO3 have suggested that a magnetic skyrmion phase may exist in these systems. By measuring the Hall resistivity, we are able to observer a topological Hall effect which is likely a result of a magnetic skyrmion. We find that of the THE exists in a narrow temperature range and the proposed magnetic skyrmions range in size from 20-120 nm. Therefore, the SRO/GSO system can provide a more viable means for investigating magnetic skyrmions and their fundamental interactions.

Digital Object Identifier (DOI)

https://doi.org/10.13023/ETD.2018.012

Share

COinS