Year of Publication


Degree Name

Doctor of Philosophy (PhD)

Document Type

Doctoral Dissertation


Arts and Sciences


Physics and Astronomy

First Advisor

Dr. Renee Fatemi


Polarized deep inelastic scattering experiments play a vital role in the exploration of the spin structure of the proton. The polarized proton-proton collider at RHIC provides direct access to the gluon spin distribution through longitudinal double spin asymmetry measurements of inclusive jets, pions, and dijets. This thesis presents the measurement of the dijet double differential cross-section in proton-proton collisions at center of mass energies of √s = 500 GeV. The data represent an integrated luminosity of 8.7 pb-1 recorded by the STAR detector during the 2009 RHIC run. A comprehensive jet analysis was performed to determine the ideal jet algorithm and jet parameters used in √s = 500 GeV collisions at the STAR detector. The cross-section is measured as a function of the dijet invariant mass (30 ≤ Mij ≤ 152 GeV) in the mid rapidity region with a maximum rapidity range of |ymax| ≤ 0.8. This result shows agreement with theoretical next-to-leading order pQCD calculations, motivating the use of dijet asymmetries at STAR to further constrain the shape of Δg(x).