Year of Publication


Degree Name

Doctor of Philosophy (PhD)

Document Type

Doctoral Dissertation




Pharmaceutical Sciences

First Advisor

Ester P. Black Ph.D.


Deregulated activation of phosphatidylinositol 3-kinase (PI3K) pathway is central to many human malignancies. The functions of this pathway are critical for normal cell metabolism, proliferation, and survival. In lung cancers, the PI3K pathway activity is often aberrantly driven by multiple mutations, including EGFR, KRAS, and PIK3CA. Molecules targeting the PI3K pathway are intensely investigated as potential anti-cancer agents. Although inhibitors of the pathway are currently in clinical trials, rational and targeted use of these compounds, alone or in combination, requires an understanding of isoform-specific activity in context. We sought to identify class IA PI3K enzyme (p110a/PIK3CA, p110b/PIK3CB, p110d/PIK3CD) activities using isoform-specific inhibitors in a lung cancer model system. Treatment of non-small cell lung cancer (NSCLC) cell lines with PIK3CA, PIK3CB, PIK3CD or PIK3CB/D inhibitors resulted in pharmacokinetic and pharmacodynamic responses that frequently tracked with a specific mutation status. Activation of PIK3CA dictated response to the PIK3CA-specific inhibitor while deletion of PTEN phosphatase indicated response to the PIK3CB inhibitor. The PIK3CD isoform-specific inhibitors lacked efficacy in all NSCLC cell lines tested, however treatment at increased concentrations likely provide concurrent inhibition of both PIK3CB/D isoforms improving activity of either agent alone but did not track with a single biomarker. The observed pharmacodynamic and proliferation responses to isoform-specific inhibitors suggested that PI3K isoforms may functionally compensate for loss of another in certain genetic backgrounds. These studies demonstrate unanticipated cellular responses to PI3K isoform inhibition in NSCLC, suggesting that patient populations with specific mutations can benefit from certain isoform-selective inhibitors, or combinations, allowing for rational and targeted clinical use of these agents.