Background: Neuroinflammation and microglial activation have been implicated in both alcohol use disorders (AUD) and fetal alcohol spectrum disorders (FASD). Chemokine monocyte chemoattractant protein 1 (MCP-1) and its receptor C-C chemokine receptor type 2 (CCR2) are critical mediators of neuroinflammation and microglial activation. FASD is the leading cause of mental retardation, and one of the most devastating outcomes of FASD is the loss of neurons in the central nervous system (CNS). The underlying molecular mechanisms, however, remain unclear. We hypothesize that MCP-1/CCR2 signaling mediates ethanol-induced neuroinflammation and microglial activation, which exacerbates neurodegeneration in the developing brain.

Methods: C57BL/6 mice and mice deficient of MCP-1 (MCP-1−/−) and CCR2 (CCR2−/−) were exposed to ethanol on postnatal day 4 (PD4). Neuroinflammation, and microglial activation, and neurodegeneration in the brain were evaluated by immunohistochemistry and immunoblotting. A neuronal and microglial co-culture system was used to evaluate the role of microglia and MCP-1/CCR2 signaling in ethanol-induced neurodegeneration. Specific inhibitors were employed to delineate the involved signaling pathways.

Results: Ethanol-induced microglial activation, neuroinflammation, and a drastic increase in the mRNA and protein levels of MCP-1. Treatment of Bindarit (MCP-1 synthesis inhibitor) and RS504393 (CCR2 antagonist) significantly reduced ethanol-induced microglia activation/neuroinflammation, and neuroapoptosis in the developing brain. MCP-1−/− and CCR2−/− mice were more resistant to ethanol-induced neuroapoptosis. Moreover, ethanol plus MCP-1 caused more neuronal death in a neuron/microglia co-culture system than neuronal culture alone, and Bindarit and RS504393 attenuated ethanol-induced neuronal death in the co-culture system. Ethanol activated TLR4 and GSK3β, two key mediators of microglial activation in the brain and cultured microglial cells (SIM-A9). Blocking MCP-1/CCR2 signaling attenuated ethanol-induced activation of TLR4 and GSK3β.

Conclusion: MCP-1/CCR2 signaling played an important role in ethanol-induced microglial activation/neuroinflammation and neurodegeneration in the developing brain. The effects may be mediated by the interaction among MCP-1/CCR2 signaling, TLR4, and GSK3β.

Document Type


Publication Date


Notes/Citation Information

Published in Journal of Neuroinflammation, v. 15, 197, p. 1-14.

© The Author(s). 2018

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Digital Object Identifier (DOI)


Funding Information

This research is supported by grants from the National Institutes of Health (NIH) (AA017226 and AA015407). It is also supported in part by the Department of Veterans Affairs, Veterans Health Administration, Office of Research and Development [Biomedical Laboratory Research and Development: Merit Review (BX001721)].

Related Content

The authors agree to share all data generated from this study.