Talin interacts with β-integrin tails and actin to control integrin activation, thus regulating focal adhesion dynamics and cell migration. There are two talin genes, Tln1 and Tln2, which encode talin1 and talin2, and it is generally believed that talin2 functions redundantly with talin1. However, we show here that talin2 has a higher affinity to β1-integrin tails than talin1. Mutation of talin2 S339 to leucine, which can cause Fifth Finger Camptodactyly, a human genetic disease, completely disrupted its binding to β–integrin tails. Also, substitution of talin1 C336 with Ser enhanced the affinity of talin1, whereas substitution of talin2 S339 with Cys diminished that of talin2. Further computational modeling analysis shows that talin2 S339 formed a hydrogen bond with E353, which is critical for inducing key hydrogen bonds between talin2 N326 and β1-integrin R760, and between talin2 K327 and β1-integrin D759. Mutation at any of these residues significantly diminished the interaction of talin2 with β1- integrin tails. These hydrogen bonds were not observed in talin1/β1-integrin, but did exist in talin1C336S/β1-integrin complex. These results suggest that talin2 S339 forms a hydrogen bond with E353 to mediate its high affinity to β1-integrin.

Document Type


Publication Date


Notes/Citation Information

Published in Scientific Reports, v. 7, article no. 41989, p. 1-12.

© The Author(s) 2017

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Digital Object Identifier (DOI)


Funding Information

This work was supported by start-up funds from Markey Cancer Center, University of Kentucky and American Cancer Society Research Scholar Grant RSG-13-184-01CSM (to CH).

Related Content

Supplementary information accompanies this paper at http://www.nature.com/srep

srep41989-s1.pdf (574 kB)
Supplementary Information