Author ORCID Identifier

Year of Publication


Degree Name

Master of Science in Mechanical Engineering (MSME)

Document Type

Master's Thesis




Mechanical Engineering

First Advisor

Dr. Sean C. Bailey


Vortices are present in many fluid flows and depending on the context they may be either beneficial or harmful for different systems or processes. Planar particle image velocimetry was used to examine the vortex evolution and its decay under different turbulence intensities and vortex circulation. The vortex decayed faster in the presence of high turbulence intensity. Vortex trajectories were impacted by turbulence intensity and vortex strength. Trajectories with no turbulence intensity had less variation. The vortex wandering amplitude decreased with growth of vortex strength. The vortex decay was confined to the core of the vortex, with the tangential velocity at large radial distances from the vortex center being relatively constant in time. The vortex core radius had a greater rate of growth with the low turbulence intensity and lower angle of attack. The amplitude of fluctuation of the core circulation increased for the higher turbulence intensity and weaker vortex.

Digital Object Identifier (DOI)