Year of Publication


Degree Name

Doctor of Philosophy (PhD)

Document Type

Doctoral Dissertation


Arts and Sciences



First Advisor

Dr. Chi-Sing Man


Material properties of polycrystalline aggregates should manifest the influence of crystallographic texture as defined by the orientation distribution function (ODF). A representation theorem on material tensors of weakly-textured polycrystals was established by Man and Huang (2012), by which a given material tensor can be expressed as a linear combination of an orthonormal set of irreducible basis tensors, with the components given explicitly in terms of texture coefficients and a number of undetermined material parameters. Man and Huang's theorem is based on the classical assumption in texture analysis that ODFs are defined on the rotation group SO(3), which strictly speaking makes it applicable only to polycrystals with (single) crystal symmetry defined by a proper point group. In the present study we consider ODFs defined on the orthogonal group O(3) and extend the representation theorem of Man and Huang to cover pseudotensors and polycrystals with crystal symmetry defined by any improper point group. This extension is important because many materials, including common metals such as aluminum, copper, iron, have their group of crystal symmetry being an improper point group. We present the restrictions on texture coefficients imposed by crystal symmetry for all the 21 improper point groups and we illustrate the extended representation theorem by its application to elasticity.