The seven-transmembrane protein, Smoothened (SMO), has shown to be critical for the hedgehog (HH) signal transduction on the cell membrane (and the cilium in vertebrates). SMO is subjected to multiple types of post-translational regulations, including phosphorylation, ubiquitination, and sumoylation, which alter SMO intracellular trafficking and cell surface accumulation. Recently, SMO is also shown to be regulated by small molecules, such as oxysterol, cholesterol, and phospholipid. The activity of SMO must be very well balanced by these different mechanisms in vivo because the malfunction of SMO will not only cause developmental defects in early stages, but also induce cancers in late stages. Here, we discuss the activation and inactivation of SMO by different mechanisms to better understand how SMO is regulated by the graded HH signaling activity that eventually governs distinct development outcomes.

Document Type


Publication Date


Notes/Citation Information

Published in Cells 2021, v. 10, issue 8, 2138.

© 2021 by the authors. Licensee MDPI, Basel, Switzerland.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Digital Object Identifier (DOI)


Funding Information

This study was supported by the National Institutes of Health (R35GM131807) and was also supported by the Shared Resource Facilities of the University of Kentucky Markey Cancer Center (P30CA177558), and the Imaging Core of the COBRE (P20GM121327).