Kentucky Geological Survey Report of Investigations


The effects of longwall coal mining on hydrology in the Eastern Kentucky Coal Field have been investigated since 1991. The study area is in the Edd Fork watershed in southern Leslie County, over Shamrock Coal Company's Beech Fork Mine. Longwall panels approximately 700 ft wide are separated by three-entry gateways that are approximately 200 ft wide. The mine is operated in the Fire Clay (Hazard No. 4) coal; overburden thickness ranges from 300 to 800 ft. Mining began in panel 1 in September 1991 and concluded with panel 8 in September 1994. Long-term monitoring consisting of a network of piezometers and time-domain reflectometry (TDR) cables previously installed over panel 7, in conjunction with a continuously recording rain gage and flume, began after the completion of mining.

Two new core holes were drilled over panel 7 approximately 1 year after mining ceased in panel 8 to determine depth of collapse and hydraulic conductivity of strata. Water levels were measured in two new monitoring wells installed after mining to complement the 11 piezometers installed prior to mining that were still functioning. Precipitation was measured through July 1996, and streamflow was measured in Edd Fork on a monthly basis using a cross-section gaging method.

Physical failure of piezometers, core drilling, and the movement of air into deeper piezometers after mining indicate that extensive fracturing occurred to a height of 450 ft above the mine, which is approximately 60 times the extracted coal-seam thickness. Hydraulic conductivity values determined from pressure-injection tests were 10 to 100 times greater after mining than before mining; many values were in the range of 10-2 to 10-4 ft/min for all lithologies. At a minimum, a zone of rock approximately 200 ft above the mined coal was dewatered beneath Edd Fork. Ground-water levels in ridgetop piezometers fluctuated slightly more after mining than they did before, which indicates that the upper part of the ridge is more hydraulically connected to surface recharge from precipitation since mining took place. The existence of ground water in the shallow ridgetop piezometers suggests that an underlying aquitard zone developed during mine collapse, which retards the downward movement of shallow ground water to the mined-out area. Water level declined in a sandstone unit approximately 300 ft above the mine after mining, but recovered within a year. This indicates that the underlying regional aquitard still retards downward ground-water movement, despite the hydraulic conductivity of the unit increasing 100 times after mining. Edd Fork, approximately 375 ft above the mine in panel 7, resumed surface flow 2 months after completion of mining; however, flow diminishes downstream at about the centerline of panel 8. Mining is still active in other areas of the mine, and mechanical dewatering activities will most likely keep water levels in the deep zones artificially depressed in the study area until mining is completed and dewatering activities cease.

Publication Date



Series XII

Report Number

Report of Investigations 6

Digital Object Identifier (DOI)

Notes/Citation Information

© 2000 University of Kentucky