Theme 04: Soil Fertility and Plant Nutrition

Description

The effects of 12 years of grazing management strategies on carbon (C) distribution and sequestration were assessed on a semi-arid mixed-grass prairie in Wyoming, USA. Five grazing treatments were evaluated: non-grazed exclosures; continuous, season-long grazing at a light (22 steer-days ha-1) stocking rate; and, rotationally-deferred, short-duration rotation, and continuous, season-long grazing, all three at a heavy stocking rate (59 steer-days ha-1). Non-grazed exclosures exhibited a large buildup of dead plant material (72% of total aboveground plant matter) and forb biomass represented a large component (35%) of the plant community. Stocking rate, but not grazing strategy, changed plant community composition and decreased surface litter. Light grazing decreased forbs and increased cool-season mid-grasses, resulting in a highly diversified plant community and the highest total production of grasses. Heavy grazing increased warm-season grasses at the expense of the cool-season grasses, which decreased total forage production and opportunity for early season grazing. Compared to the exclosures, all grazing treatments resulted in significantly higher levels of C (6000-9000 kg ha-1) in the surface 15 cm of the soil. Higher levels of soil C with grazing are likely the result of faster litter decomposition and recycling, and redistribution of C within the 0-60 cm plant-soil system. Grazing at an appropriate stocking rate had beneficial effects on plant composition, forage production, and soil C sequestration. Without grazing, deterioration of the plant-soil system is indicated.

Share

COinS
 

Impact of Grazing Management Strategies on Carbon Sequestration in a Semi-Arid Rangeland, USA

The effects of 12 years of grazing management strategies on carbon (C) distribution and sequestration were assessed on a semi-arid mixed-grass prairie in Wyoming, USA. Five grazing treatments were evaluated: non-grazed exclosures; continuous, season-long grazing at a light (22 steer-days ha-1) stocking rate; and, rotationally-deferred, short-duration rotation, and continuous, season-long grazing, all three at a heavy stocking rate (59 steer-days ha-1). Non-grazed exclosures exhibited a large buildup of dead plant material (72% of total aboveground plant matter) and forb biomass represented a large component (35%) of the plant community. Stocking rate, but not grazing strategy, changed plant community composition and decreased surface litter. Light grazing decreased forbs and increased cool-season mid-grasses, resulting in a highly diversified plant community and the highest total production of grasses. Heavy grazing increased warm-season grasses at the expense of the cool-season grasses, which decreased total forage production and opportunity for early season grazing. Compared to the exclosures, all grazing treatments resulted in significantly higher levels of C (6000-9000 kg ha-1) in the surface 15 cm of the soil. Higher levels of soil C with grazing are likely the result of faster litter decomposition and recycling, and redistribution of C within the 0-60 cm plant-soil system. Grazing at an appropriate stocking rate had beneficial effects on plant composition, forage production, and soil C sequestration. Without grazing, deterioration of the plant-soil system is indicated.