Year of Publication

2009

Degree Name

Master of Science (MS)

Document Type

Thesis

College

Engineering

Department

Electrical Engineering

First Advisor

Dr. Kevin D. Donohue

Abstract

The Generalized Sidelobe Canceller is an adaptive algorithm for optimally estimating the parameters for beamforming, the signal processing technique of combining data from an array of sensors to improve SNR at a point in space. This work focuses on the algorithm’s application to widely-separated microphone arrays with irregular distributions used for human voice capture. Methods are presented for improving the performance of the algorithm’s blocking matrix, a stage that creates a noise reference for elimination, by proposing a stochastic model for amplitude correction and enhanced use of cross correlation for phase correction and time-difference of arrival estimation via a correlation coefficient threshold. This correlation technique is also applied to a multilateration algorithm for an efficient method of explicit target tracking. In addition, the underlying microphone array geometry is studied with parameters and guidelines for evaluation proposed. Finally, an analysis of the stability of the system is performed with respect to its adaptation parameters.

Share

COinS