Year of Publication

2004

Document Type

Thesis

College

Engineering

Department

Mechanical Engineering

First Advisor

Keith Rouch

Abstract

The analysis of bearing systems involves the prediction of their static and dynamic characteristics. The capability to compute the dynamic characteristics for hydrodynamic bearings has been added to Bearing Design System (BRGDS), a finite element program developed by Dr. R.W. Stephenson, and the results obtained were validated. In this software, a standard finite element implementation of the Reynolds equation is used to model the land region of the bearing with pressure degrees of freedom. The assumptions of incompressible flow, constant viscosity, and no fluid inertia terms are made. The pressure solution is integrated to give the bearing load, and the stiffness and damping characteristics were calculated by a perturbation method. The static and dynamic characteristics of 60, 120 and 180 partial bearings were verified and compared for a length to diameter (L/D) ratio of 0.5. A comparison has also been obtained for the 120 bearing with L/D ratios of 0.5, 0.75 and 1.0. A 360-journal bearing was verified for an L/D ratio of 0.5 and also compared to an L/D ratio of 1.0. The results are in good agreement with other verified results. The effect of providing lubricant to the recesses has been shown for a 120 hybrid hydrostatic bearing with a single and double recess.

Share

COinS