Year of Publication


Degree Name

Master of Science (MS)

Document Type





Mechanical Engineering

First Advisor

Dr. Jamey D. Jacob


The effect of rotation on flow in a gas turbine blade cooling duct model is investigated experimentally. The present work consists of velocity measurements at different locations in a test section with a 180° bend with ribs on one wall. Three geometric rib parameters are considered; rib-rib spacing, rib orientation angle and rib blockage ratio. PIV is used for flow visualization and analysis. Along with the clean duct measurements, ribs with blockage ratios, b/h, of 0.25 and 0.125 were considered. The b/h = 0.25 cases have been comprehensively analyzed while the b/h = 0.125 cases have been studied at the post-bend region of the duct only. Reynolds number considered is in the range of approximately 5000-40,000 and the rotation speed is varied for a rotation number from 0 to 7. It is observed that rotation has a significant effect on secondary flows within the rotating duct. For blockage ratio, b/h = 0.25, at a constant Re and Ro, the RMS of fluctuations of velocity do not show large spatial variations with ribs or rib orientations. At higher Re, the value decreases in comparison to the low Re cases. The kinetic energy of fluctuations increases due to the presence of ribs, indicating better heat transfer for the ribbed duct, but do not show large variations with rib orientation angle. The fluctuations and kinetic energy show maximum values at the post-bend regions of the duct. The velocity fields and PDFs show a possible cause for e°cient heat transfer for the 45° rib arrangement as compared with the 90° rib cases. At high Ro, the absolute value of circulation has a large increase at the post-bend and thereafter there is a gradual decay at the exit for all cases. The ribs with blockage ratio of b/h = 0.125 showed no marked changes in circulation with changes in rib orientation angle, thus implying that the rib blockage plays a role in the generation of secondary flows, particularly in conjunction with rotation.

Rotaduct.avi (11214 kB)