Year of Publication


Degree Name

Doctor of Engineering (DEng)

Document Type

Doctoral Dissertation


Arts and Sciences


Earth and Environmental Sciences (Geology)

First Advisor

Dr. Edward Woolery


Multiple geophysical and geological data sets were compiled, reprocessed, and interpreted using state-of-the-art signal processing and modeling algorithms to characterize the complex post-Paleozoic geology that overlies the southwestern projection of the Fluorspar Area Fault Complex (FAFC) in western Kentucky. Specific data included 21.5 km of SH-wave seismic reflection, 1.5 km of P-wave seismic reflection, 2 km of electrical resistivity, vertical seismic profiles, Vp and Vs sonic-suspension logs, and 930 lithologic borehole logs. The resultant model indicates three general northeast–southwest-oriented fault zones pass through the study area as southwestern extensions of parts of the FAFC. These fault zones form two significant subparallel grabens with ancillary substructures. The geometry of the interpreted fault zones indicates that they have undergone episodic tectonic deformation since their first formation. Evidence of thickening and steeply dipping reflectors within Tertiary and Quaternary sediment in the downthrown blocks indicate syndepositional movement. Subtle thickening and lack of steeply dipping intraformational reflectors in the Cretaceous suggest a more quiescent period, with sediment deposition unconformably draping and filling the earlier Paleozoic structural surface. There is also evidence that the Tertiary and early Quaternary reactivation was associated with an extensional to compressional regional stress reversal, as manifested by the antiformal folds seen in the hanging wall reflectors and the potential small-amplitude force folds in the Quaternary alluvium, as well as a clear displacement inversion along the Metropolis-loess seismic horizon in two high-resolution reflection images.

A surface shear-wave splitting experiment proved to be an efficient and effective tool for characterizing shallow subsurface azimuthally anisotropic geologic inclusions in low-impedance water-saturated sediment environments. The measured azimuthal anisotropy across a well-constrained N60ºE-striking fault exhibited a natural coordinate system that had a fast direction coincident with the fault strike and an orthogonal slow direction. This is also one indicator that faults inactive during significant geologic intervals (i.e., Holocene) do not "heal". Integrated shear-wave velocity models and electrical resistivity tomography profiles across the fault zones exhibit lower shear-wave velocities and resistivities within the deformation zones compared with values outside the boundaries. This is additional evidence that the deformed sediment does not reconsolidate or heal, but that the sediment particle configuration remains more loosely packed, providing an increase in the overall porosity (i.e., hydraulic conductivity). This can wholly or in large part explain the anomalous contaminant plume migration path that is coincident with the deformed zones of the regional gravel groundwater aquifer.