Date Available

12-13-2013

Year of Publication

2013

Degree Name

Master of Science in Electrical Engineering (MSEE)

Document Type

Master's Thesis

College

Engineering

Department/School/Program

Electrical Engineering

First Advisor

Dr. Aaron M. Cramer

Abstract

The output power variability of intermittent renewable sources can cause significant fluctuations in distribution system voltages. A local linear controller that exploits the capability of a photovoltaic inverter to provide both real and reactive power is described. This controller substitutes reactive power for real power when fluctuations in the output of the photovoltaic source are experienced. In this way, the inverter can help mitigate distribution system voltage fluctuations. In order to provide real and reactive to the grid, a three-phase grid-connected single-stage photovoltaic system with maximum power point tracking and power control is described. A method of reducing the current harmonic caused by resonance of the LC filter and transformer is presented. The local linear controller is examined using an example distribution system, and it is found that the controller is effective at mitigating voltage violations. The photovoltaic control system is examined using three-phase single-stage PV inverter system. The power control and damping system show good performance and stability under rapid change of irradiance.

Share

COinS