Year of Publication


Degree Name

Doctor of Philosophy (PhD)

Document Type

Doctoral Dissertation




Chemical and Materials Engineering

First Advisor

Dr. Matthew J. Beck

Second Advisor

Dr. Yang-Tse Cheng


Cerium dioxide (ceria) is an excellent catalytic material due to its ability to both facilitate oxidation/reduction reactions as well as store/release oxygen as an oxygen buffer. The traditional approach to assess and improve ceria's catalytic behavior focuses on how efficiently O-vacancies can be generated and/or annihilated within the material, and how to extend established understandings of "bulk" ceria to further explain the greatly enhanced catalytic behavior of ultra-small ceria nanoparticles (uCNPs) with sizes less than 10 nm. Here, using density functional theory (DFT) calculations, we reexamine the atomic and electronic structures of uCNPs, especially their surface configurations. A unique picture dissimilar to the traditional point of view emerges from these calculations for the surface structure of uCNPs. uCNPs similar to those obtained by experimental synthesis and applied in catalytic environments exhibit core-shell like structures overall, with under-stoichiometric, reduced CNP "cores" and over-stoichiometric, oxidized surface "shell" constituted by various surface functional groups, e.g.,-Ox and/or -OH surface groups. Therefore, their catalytic behavior is dominated by surface chemistry rather than O-vacancies. Based on this finding, reaction pathways of two prevalent catalytic reactions, namely CO oxidation and the water-gas shift reaction over uCNPs are systematically investigated. Combined, these results demonstrate an alternative understanding of the surface structure of uCNPs, and provide new avenues to explore and enhance their catalytic behavior, which is likely applicable to other transition metal oxide nanoparticles with multivalent ions and very small sizes.