Kentucky Pavement (Bituminous) Performance Evaluations and Design Studies

James H. Havens
Kentucky Department of Highways
KENTUCKY PAVEMENT (BITUMINOUS) PERFORMANCE EVALUATIONS AND DESIGN STUDIES

by

Jas. H. Havens
Director

Division of Research
DEPARTMENT OF HIGHWAYS
Commonwealth of Kentucky

December 1971
Prior to 1942: Presumably pavements were designed by experience -- or possibly by the Massachusetts rule.

1942 - 1948: Kentucky adopted California's CBR method -- including design curves.

1948 - 1958: In 1947, Kentucky began an extensive field and laboratory study for the purpose of developing design curves applicable to its own region. The study included 435 miles of road; test pits were excavated at 185 sites. The resulting design chart is shown in Fig. 1.

The WASHO Road Test was built in 1952; the ensuing developments there were compared with the 1948, Kentucky design charts; no changes were considered necessary. However, the Benkelman beam method of measuring deflections of a pavement under a loaded wheel, which evolved there, was regarded with much interest.

Some other significant developments during this period were:

1. Development of dense-graded aggregate base courses.

 Drake, W. B.; "Dense Graded Aggregate Base Development," Reports of the HMRL, Vol XIV, April 1959; prepared for presentation at the 16th Annual Meeting of Kentucky Crushed Stone Association.

2. Discovery of subgrade soil intrusions into waterbound bases.

3. Development of a method of evaluating pavement roughness -- i. e. serviceability.

4. Skid tests (1954) with Tennessee trailer disclosed slipperiness of bituminous surfaces containing limestones.

6. Pavement design considerations for the Kentucky Turnpike (1954).
Fig. 1: Kentucky Flexible Pavement Design Curves. Curves I through V proposed in 1948; IA and VI through X added by extrapolation, 1954.
7. Preliminary design considerations for pavements on interstate system. Curve X (extrapolated into 1948
design chart, 256 million EWL's, adopted).

1958-1968: In order to further substantiate the extrapolations of the 1948 charts into higher traffic
domains and in recognition of pending interstate design needs, a re-evaluation of the design charts was begun
in 1957. Approximately 75 construction projects which had been designed since 1948 were evaluated in terms
of roughness, patching, Benkelman beam deflections, selected test-pit sites, and traffic histories (EWL's). The
design chart shown in Fig. 2 evolved.

Drake, W. B. and Havens, J. H., "Re-Evaluation of Kentucky Flexible Pavement Design Criterion,"
Bulletin No. 233, Highway Research Board, 1959; and "Kentucky Flexible Pavement Design Studies,"
Bulletin No. 52, Engineering Experiment Station, University of Kentucky, June 1959.

This re-evaluation predated the AASHO Test Road (final report, 1962). Then too, much attention was
given to the AASHO Interim Guides which evolved therefrom. Fortunately, with the 1958 revision, Kentucky
began to design on the basis of 20-year EWL (formerly 10-year EWL). Formulas were developed to transform
equivalent 5-kip wheel loads (EWL's) into 9-kip wheel loads or 18-kip axieloads. By using respective structural
coefficients, SN values for Kentucky pavements could be computed; and direct comparisons could be made
between the two design criteria. Even so, no revisions appeared to be needed. The Department elected to continue
to use the 1958 design chart.

Some intuitivism was involved in shaping the 1958 design curves. As before, most of the control data
was within the range of CBR's from 5 to 10. It was reasoned then that the curves should tail downward severely
as the CBR decreased below 3. At the high end of the CBR scale, it seemed on the one hand that the scale
should terminate at 100 (by definition) and that the design curves should merge upward to the point where
a great thickness of 100 - CBR foundation material would require only minimum bituminous concrete surfacing
to sustain immense EWL's. On the other hand, an alternative considered but abandoned was that the CBR
could exceed 100 and equal upper layers (Boussinesq solid) -- in which case the curves would have continued
somewhat diagonally rightward rather than merely warped upward. The control data also indicated that Curve
X should have passed through 23 inches at CBR 7.1. Conservatism was somewhat overpowering, and the curve
was drawn through 21 inches (Note: This fault was corrected in a succeeding evaluation.) The 1958 design
chart was based largely upon analysis of spring deflections -- without regard to pavement temperatures. Perchance
the pavements were cool. Some afterthoughts relating to the significance of deflections were expressed in 1962,
as follows:

"...the empirical significance of deflections in relationship to pavement performance is inherently that
of establishing critical magnitudes, whereas the theoretical significance is that of relating deflections
to critical stresses (sic, and strains)."*

At that time, it was difficult to calculate stresses and strains (and deflections) in layered pavement structures.
It was not until the Chevron computer program was developed (1963) that these computations could be done
routinely. Nevertheless, deflection continued to be the most measurable property of a pavement structure.
Even so, there were definite trends among theorists toward mechanistic approaches to pavement design.

Satellite studies envisioned by others following the AASHO Test Road did not materialize. The state of
the art during this period is reflected in the Proceedings of the First (1962) and Second (1967) International
Conferences on the Structural Design of Asphalt Pavements, University of Michigan.

All bituminous sections of interstate, toll roads, and other state roads designed and built in Kentucky

3
since 1958 were designed according to the chart shown in Fig. 2. Indeed, methods of monitoring performance of these pavements -- from the standpoint of serviceability (roughness and slipperiness) -- were needed. Fortunately, developmental studies were already well advanced. Selected bibliographical citations follow:

Pavement Roughness, Riding Quality, Serviceability

Skid Resistance

Fig. 2: Revised Flexible Pavement Design Curves.

Pavement Slipperiness Studies; Progress Report; KYHPR-64-24, HPR-1(7), Part II; Pending.

Skid Resistant Surfaces

Sandstone

Kentucky Rock Asphalt

Sand-Asphalts

Strunk, L. H.; "Bridge Resurfacing with Silica Sand-Asphalt Mixture," Reports of the HMRL, Vol

Traffic Studies

Bituminous Concrete

In 1966, it seemed timely again (on the basis of a 10-year cycle) to begin a new evaluation of the design criterion (1958) -- giving due attention to thicker structures built in the interim. Again, principal reliance was given to Benkelman beam deflection measurements. Many deflection measurements were made; but, unfortunately, they were made in the late spring and summer -- without regard to pavement temperatures. The data could not be analyzed. This information was shelved while a method of estimating pavement temperatures and
deflection-adjustment factors were developed (Southgate, 1968). Further attempts to analyze deflections involved computations of stresses and strains as well (Chevron, elastic theory, computer program). These explorations became so challenging that an all-out effort was made to associate fatigue theory (load repetitions) with elastic theory (states of stresses and strains) and to compare them to the 1958 design curves (representing equations of failure). Fortunately, the pavements designed by the 1958 criterion consisted of approximately one-third asphaltic concrete and two-thirds unbound base. The coupling of logic proved rewarding. A report (cited below) was issued in 1968.

The report was reviewed critically and subjectively; implementation of the proposed design criterion was deferred. Confirming analyses and purification of some weak points of logic were desired. Re-analyses were undertaken and a sequel report emerged in May 1971.

The above report is presently undergoing review, and implementation remains pending.

Current Research:

KYP-69-8: Roadway Design Review and Performance Analysis by Photographic Methods (Photologging)

Related to but not solely for the purpose of recording pavement performances (being implemented by the Division of Photogrammetry).

KYP-60-10: Development of a Highway Inventory System

Study has a phase relationship with KYHPR-64-11. Note: Pilot study of Hardin County reported by TRW -- Highway Inventory, 1971.

KYHPR-64-11: Pavement-Type Selection Basis

Involves initial costs plus maintenance costs -- long-term basis.

KYP-69-17: Analysis of Pavement Temperature Distributions

Sequel to phase of study in KYHPR-64-20 (reported by Southgate, April 1968).

KYP-70-30: Influence of Recreational Areas on the Functional Service of Highways

A continuation involving analysis of additional data (reported by Pigman, August 1971).

KYP-71-32: Lane Distribution of Traffic

A continuation of study reported by Lynch and Hamby, June 1969. ATR loops installed in inner and outer lanes at five stations (Pending).

KYP-56: Analysis of Surface Cracking; I 64, Fayette-Clark County Line to Ewington.
KYHPR-64-24: Pavement Slipperiness Studies
In addition to fundamental study of factors affecting friction, high accident sites are being surveyed for remedial treatments. All types of surfaces are being monitored (periodic testing) to establish trends with respect to time and traffic. Accident data and rates are being analyzed with respect to prevailing skid numbers. Warrants pertaining to degree of skid resistance needed are expected to be forthcoming. Also, it appears likely that warrants regarding types of surfaces will evolve. Several reports issuing from this study have been cited (progress report pending).

KYHPR-64-25: Road Roughness and Serviceability Investigation
In addition to the basic study, extensive survey data has been accumulated — in some instances dating from 1957. Several progress reports have been cited. A more analytical report relative to pavement performance ("Pavement Roughness: Measurement and Evaluation") is scheduled for issuance during January 1972.

KYHPR-64-20: Flexible Pavement Study Using Viscoelastic Principles
Report pending on Phase I on viscoelastic properties of asphaltic binders. This phase involves eventual estimates of creep characteristics and absolute value of the complex modulus of elasticity of bituminous concrete (not final in this phase).

KYHPR-71-66: Aggregate Shape and Skid Resistance
Interim reports previously cited. Awaiting field trials and evaluation of in-service performance.

KYHPR-72-67: Pavement Properties and Performance Study
FHWA, R and D, direct research contract with Corp of Engineers (Vicksburg) involved Kentucky participation in opening test pits on Newtown Road and KY 4 (to be reported by others).

Experimental Pavements (Current):

KYP-68-15: Hot-mix Coal-tar Concrete Pavement
Six-mile section of KY 15; Junction KY 7 to Sassafras; APD 102(64) and APD 102(65). Construction and interim performance report by D. C. Newberry and J. G. Rose issued June 1971.

KYHPR-70-69: Full-Depth Asphalitic Concrete Pavements
F 1(10); Ashland-Cannonsburg Road, US 60. Construction completed November 1971. Research Features:
1. Road Rater and deflection measurements.
2. Pavement temperature monitoring.
3. Roughness and slipperiness measurements.
4. Traffic and loading surveys.

I 65, Upton Interchange (Deep-strength section).
US 62, Princeton to Eddyville (Deep-strength section).

Needed Research:

Rutting: Surveys of rut depths were made in connection with the 1958 and the 1968 re-evaluations of pavement performance. A quick method of rut measurement is needed to enable accumulation of historical data concurrently with roughness surveys. A study proposal relative to rutting mechanism is currently in draft form.

Adapting Traffic Statistics: In connection with Deacon and Lynch’s study of 1968, all available classification traffic and loadmeter data were stored on magnetic tape. Annual updating would enable more frequent adjustments of estimating factors and retrieval of service histories. Tapes might be expanded to include ADT’s and origin-destination information.

Road Rater Surveys: In addition to monitoring the Ashland-Cannonsburg Road project, various interstate, toll, and other system roads should be tested seasonally and at other intervals to establish ecological variability and irreversible damage trends.