Transportation

Kentucky Transportation Center Research Report

University of Kentucky

Year 1972

A Pavement Design Schema

James H. Havens* Robert C. Deen†
Herbert F. Southgate‡

*Kentucky Department of Highways
†Kentucky Department of Highways
‡Kentucky Department of Highways
This paper is posted at UKnowledge.
https://uknowledge.uky.edu/ktc_researchreports/906
A PAVEMENT DESIGN SCHEMA

by

James H. Havens
Director of Research

Robert C. Deen
Assistant Director of Research

Herbert F. Southgate
Research Engineer Principal
Kentucky Department of Highways
Commonwealth of Kentucky

Prepared for presentation at
the Annual Meeting of the
Highway Research Board
January 22-26, 1973

December 1972
ABSTRACT

A PAVEMENT DESIGN SCHEMA

by

J. H. Havens, Director

R. C. Deen, Assistant Director

H. F. Southgate, Research Engineer Principal

Division of Research
Kentucky Department of Highways

Elastic theory and 40 years of empirical flexible pavement design in Kentucky have been joined into the design system presented herein. A brief discussion is presented of the coupling mechanisms relating experience to theoretical analyses. An annotated design procedure is presented as a guide for pavement designers. Design nomographs account for a wide range of input parameters and permit the designer a wide choice of alternative thickness designs.
The approach to a structural engineering problem is to resolve an equation of equilibrium and an equation of failure. The simplest equilibrium equations are found in elastic theory. The simplest failure equations are statements of phenomenological strengths. A rational design criterion for pavements must be compatible with all past experience and performance histories. In fact, collectively, these experiences are the best available equations of failure. Empirical design systems qualify abundantly in this way.

Many logic statements may be needed to transform empirical parameters into classical units and to bring experiences into conformity with strict mechanistic disciplines. When so transformed and anomalies resolved, the predictive capabilities of the mechanistic theory stand confirmed; and the schema is claimed to be rational. Indeed, an enabling element in this venture was the Chevron computer program (1) to solve N-layered, elastic
theory problems. The empirical resources were contained in a well-developed, experience-tested, EWL-CBR-thickness design criterion or system (2, 3, 4).

From the mechanistic point of view, load-deflection relationships outwardly portray the composite stiffness or rigidity of pavement systems. Contrary to general impressions, surface deflection is not a discrete, limiting parameter. Stresses and strains in the subgrade soil and in the extreme fibers of bituminous concrete layers constitute overriding, fundamental limits. Therefore, thickness design criteria cannot be based directly upon deflection spectra.

It is historically evident that many pavements fail through fatigue and creep. In the fatigue domain, the state of strain and(or) stress is computable from elastic theory. Obviously, it is necessary to resolve a suitable fatigue diagram. Customarily, fatigue diagrams are in terms of either controlled strains or controlled stresses. Creep alludes to the mechanism of rutting and is most easily handled in a separate analysis. In this instance, creep, or rutting, is handled empirically.

DEVELOPMENT OF DESIGN PROCEDURE

The controlling, empirical model in this instance was the 1958 Kentucky design curves shown in Figure 1 (4). It involved three parameters and three layers. By convention, the total thickness has been proportioned to be approximately 1/3 asphaltic concrete and 2/3 crushed rock base. Control points were selected for matching and balancing the elastic theory and fatigue analyses. Analysis of computer (Chevron program) results prevailed in the rightward portion of Figure 1; that is, to correct earlier errors in judgement in placing the design curves. Of course, the objective was to reconstitute these curves through theory (5, 6). Layer moduli and thicknesses were arrayed, and many solutions were obtained; numerous influence graphs were plotted. The necessary input assumptions were:

1. \(E_1 \) (modulus of elasticity of Layer 1) ranged from 150,000 to 1,800,000 psi.

 The effective moduli of asphalt-bound layers depend upon the pavement temperature and time of loading. Subgrade strains are critical when the asphaltic layer is warm and its modulus of elasticity is relatively low. On the other hand, strains in the asphaltic layer are critical at lower temperatures when its modulus is relatively high.

2. Poisson's ratio of Layer 1 = 0.40.

 Dorman and Edwards (7) have reported that Poisson's ratio of such materials varies from 0.35 to 0.45.

3. \(E_2 \) (modulus of elasticity of Layer 2) = \(F \times CBR \times 1500 \), where \(F \) is found from Figure 2
(5, 6, 8); note that $F = 1$ when $E_1 = E_2 = E_3$.

Heukelom and Klomp (9) have shown that the effective elastic moduli of granular base courses (E_2) tend to be related to the modulus of the underlying subgrade soil. The ratio of the base modulus to the subgrade modulus is a function of the thickness of the granular base, and in situ test results show that the range of this ratio is generally between 1.5 and 4.0 - a value of 2.8 was selected in this study as being typical at a CBR of 7 (see Figure 2). Comparison of the 1958 Kentucky design curves and field data (4) indicated this assumption was reasonable. It was further assumed that the ratio of E_2 to E_3 would be equal to one when $E_1 = E_2 = E_3$. The curves in Figure 2 were then obtained by assuming a straight-line relationship on a log-log plot. A review of the literature (10, 11) indicated that Figure 2 gives reasonable values for good quality granular bases within a range of practical design situations (CBR < 20); and, therefore, this graph was used throughout the analysis herein to relate the modulus of the granular base to the subgrade support values. It is noted that E_2 values are a function of E_1 and E_3 only.

4. Poisson's ratio of Layer 2 = 0.40.

Again, Dorman and Edwards (7) have reported Poisson's ratio of 0.35 to 0.45.

5. E_3 (modulus of elasticity of Layer 3) = CBR x 1500.

Conversion from laboratory soil strength values to theoretical moduli of subgrades was aided by Heukelom and Foster (12) who developed a relationship suggesting the subgrade modulus (in psi) is approximately equal to the product of the California Bearing Ratio (CBR) and 1500. Heukelom and Klomp (9) also indicated this relationship is an acceptable approximation for evaluating subgrade moduli and provides a simple and practical approach to this estimation, at least for CBR's up to about 20.

6. Poisson's ratio of Layer 3 = 0.45.

Dorman and Edwards (7) indicated Poisson's ratio for subgrade materials on this order.

7. Tire pressure = 80 psi.

Many firms in Kentucky indicated they operated their trucks using a tire pressure of 80 psi.

A summary of the derivation of the fatigue criterion follows:

a. Kentucky EWL's (equivalent 5,000-pound wheel loads) were transformed into EAL's (equivalent 18-kip axleloads) (5, 6) by

$$EAL's = \text{Two-Directional Kentucky EWL's}/32.$$
b. The criterion concerning limiting strains in the asphaltic concrete was based on interpretative analyses of other work (cf. 13). Van der Poel (14, 15) indicated that a safe limit for asphalt was in the order of 1×10^{-3} at 30°F. Since asphaltic concrete consists of approximately 10 percent binder by volume, this fixes the safe strain level of asphaltic concrete at 30°F in the order of magnitude of 1×10^{-4}.

Others (7, 13, 16, 17) have established (by interpretative analyses of pavements and fatigue test data) that the magnitude of asphalt strain (ε_A) assuring 1×10^6 repetitions at 50°F was 1.45×10^{-4}. Limiting values of strain (all at 50°F) as a function of number of repetitions (N) of the base load (18-kip axleload in EAL computations) as given by Dorman and Metcalf (17) can be represented by the equation

$$\log \varepsilon_A = -3.84 - 0.199 (\log N - 6.0).$$

Other fatigue curves representing other temperatures, i.e. other values for E_1, were derived from Figures 3 and 4. Kallas' relationships (18) between temperature and E_1 provided guidance at this stage.

Some investigators suggest a fatigue diagram of the load-log N type. Fatigue theorists (19, 20, 21) have suggested and shown in certain instances a log load-log N plot is more realistic. Pell (20) suggested an equation of the form $N = K' (1/\varepsilon_A)^n$, where n is the slope of the log ε_A-log N plot and K' is a constant. Pell (20), Deacon (19), and others have suggested that the value of n lies between 5.5 and 6.5 and is a function of the modulus of the asphaltic concrete. Pell's work further suggested that the family of curves relating log ε_A to log N for different E_1 values are parallel. The use of such a relationship in this study produced such irrational results (as E_1 decreased, the total pavement thickness decreased) that an alternative relationship was sought.

By plotting (to a log-log scale) the 18-kip tensile strain versus the tensile stress at the bottom of the asphaltic layer, it was noted that for a given E_1 the curves depicting structural influences appeared to converge to a single point near a strain of 2×10^{-3} (see Figure 3). By extrapolating Dorman and Metcalf's data (17), represented by the equation given above, to a value of $N = 1$, the asphaltic tensile strain was found to be 2.24×10^{-3}. This strain was thus taken to be the limiting or critical asphaltic tensile strain for a single application of a nine-kip wheel load. By constructing lines tangent to the strain versus stress curves at a strain of 2.24×10^{-3}, modulus lines representing the limiting relationships for asphaltic strain versus stress -- independent of structural influences -- were obtained. The stress-strain ratios read in Figure 3 are in terms of bulk moduli ($E_1 = 0.6K_4$ where K_4 is the bulk modulus).

For a total pavement thickness consisting of 33 percent of asphaltic concrete thickness (with a modulus of 480 ksi, typical of pavements in Kentucky), it was observed that the tensile strain at the bottom of the bound layer for a CBR of 7 and total thickness of 23 inches (control pavement) was 1.490×10^{-4}. The traffic associated with this control point was 8×10^6 EAL's. In Figure 3,
a line drawn perpendicular to the line for an asphaltic concrete modulus of 480 ksi, as determined above, at a strain of 1.490×10^4 intersected the other asphaltic moduli lines at strains which were assumed to be critical strains at 8×10^6 EAL's. Assuming a straight-line variation between $\log e_A$ and $\log N$, the curves in Figure 4 were obtained as representing the critical asphaltic concrete strains.

The limiting asphaltic stress-strain curves shown in Figure 3 are again illustrated in Figure 5. For any given modulus of asphaltic concrete, the limiting strain for a single application of a catastrophic load ($EAL = N(1.25)^{P-18}$, where P is the axleload in kips (5, 6)) is taken to be 2.24×10^{-3}. As illustrated in Figure 4, another known point of limiting strain falls on the line perpendicular to the stress-strain curves for 8×10^6 repetitions. Assuming a logarithmic scale between these two points, the lines of equal numbers of repetitions illustrated in Figure 5 are obtained. The limiting asphaltic concrete tensile strain for any combination of number of repetitions and modulus of the asphaltic concrete can be read from Figure 5 and are the same as those in Figure 4. Note that the curves in Figure 5 converge to a common strain value at $N = 1$. This is a unique feature in the development of the schema. The convergence allows stress to proportionalize according to modulus when a limiting catastrophic strain is respected, regardless of modulus.

c. It was observed from computations and analysis (5) that the vertical strain at the top of the subgrade (e_S) for the control pavement (CBR 7, 23-inch total pavement thickness, i.e. 7.7 inches of asphaltic concrete and 15.3 inches of crushed stone base) was 2.400×10^{-4}. A review of other work (10, 17) also indicated that an e_S of 2.400×10^{-4} for 8×10^6 18-kip axles would provide a high degree of assurance against rutting; this value was thus assigned to e_S at 8×10^6 repetitions and a wheel load of nine kips. Analysis of elastic theory computations throughout a spectrum of pavement structures resulted in Figure 6 (5, 6). Figure 7 was then prepared and can be used to determine the limiting vertical strains at the top of the subgrade for various equivalent single wheel loads and thus for various values of accumulative EAL's.

d. To complete the fatigue analysis, it was necessary to plot results in terms of modulus values, layer thicknesses, etc., from influence graphs, satisfying limiting strains. This was done for the following proportions of T_1 and T_2:

$T_1 = 1/3 \ T$ and $T_2 = 2/3 \ T$,

$T_1 = 1/2 \ T$ and $T_2 = 1/2 \ T$,

$T_1 = 3/4 \ T$ and $T_2 = 1/4 \ T$, and

$T_1 = \ T$ and $T_2 = 0$,

where $T_1 = \text{thickness of Layer 1}$,
\[T_2 = \text{thickness of Layer 2, and} \]
\[T = \text{total pavement thickness.} \]

Coaxial graphs, shown in Figures 8 through 10, were drawn to permit continuous interpolations.

DESIGN PROCEDURE

DESIGN PERIOD (AND DESIGN LIFE)

The design life is the time period of useful performance and is normally considered to be 20 years. Pavements may be designed for an ultimate 20-year life but "stage" constructed. Low class roads may be stage designed or merely designed for a proportionately shorter life. Usually it will not be practical to design pavements for low class roads to last 20 years. Economic analysis or limitations of funds may dictate the design period.

TRAFFIC VOLUME INFORMATION

Normally, traffic volumes are forecast in connection with needs studies and in the planning stages for all new routes and for major improvements of existing routes. Whereas anticipated traffic volume is an important consideration in geometric design, the composition of the traffic in terms of axle weights, classifications, and lane distributions is essential to the structural design of the pavement. Traffic volumes used for EAL computations should therefore be reconciled with other planning forecasts of traffic. Historically, actual growths of traffic have exceeded the forecasts in the majority of cases. Overriding predictions of traffic volumes may be admissible for purposes of EAL estimates when properly substantiated. Moreover, the design life of the pavement may differ from the geometric design period.

If only the beginning and 20th-year AADT's are furnished, it may become necessary to request a listing of AADT's estimated for each calendar year -- otherwise a normal growth curve must be assumed. In the absence of specific guiding information, a constant yearly increase factor may suffice -- typified by the compound interest equation

\[A = P(1 + i)^n, \]

where \(A = \) AADT in the \(n \)th year,
\(P = \) the beginning AADT,
\(i = \) yearly growth factor, and
\(n = \) the number of years from the beginning.
Thus the AADT for each year may be calculated and then summed through n years; or an "effective" AADT may be calculated as \((P + A)/2\) – which, when multiplied by the number of years, yields a cursory estimate of the total design-life traffic.

DESIGN EAL'S

Heretofore, the Kentucky design system was based on EWL's. The present system is based on EAL's. This transformation was made for the sake of unifying design practices and standardizing definition of design terms. EAL's are defined here as the number of equivalent 18-kip axleloads (22).

Basically, the computation of EAL's involves first, a forecast of the total number of vehicles expected on the road during its design life; and second, multiplying by factors to convert total traffic to EAL's (23). Of course, this is obviously an extreme simplification. More ideally, the yearly increments of EAL's could be calculated and summed; this approach would permit consideration of anticipated changes in legal weight limits, changes in style of cargo haulers, and changes in routing. If a design life of less than 20 years is to be considered or "staged" design and construction is foreseen, the EAL value for the respective design period is determined.

The EAL's so determined are gross, two-directional values; this must be reduced to a one-direction basis. When more than two lanes in each direction are involved, additional factors appropriating EAL's amongst the lanes will be necessary. No guiding values may be cited, but such values should be available from the planning study report. The necessity of these factors is apparent: it is customary to design all lanes like the most critical one – adjacent lanes of different thicknesses might result in complicating construction procedures. The validity of such a line of argument, however, may be subject to question in the future (24).

DESIGN CBR

CBR test values (3) reflect the supporting strength of the subgrade. Moreover, the test procedure intentionally conditions the soil – by soaking – to reflect its least or minimum supporting strength; this is presumed to be representative of the soil strength during sustained wet seasons when the ground is saturated or nearly so. At other times, the soil may be much stronger; and pavements thereon would be capable then of withstanding heavier loads. If pavements were not designed for the minimum capabilities of the foundation soil, it might be necessary to impose further restrictions seasonally with respect to single axleloads in order to prevent premature and catastrophic failures. However, a pavement should be designed so that it will perform adequately throughout the design period when seasonal variations are considered. To the extent that such performance is represented, the empirical curves of Figure 1 (and thus the corresponding empirical expressions of failure criterion) represent such designs.

The CBR value does not assure immunity against frost heave even though it may have a compensating
effect in the design of the pavement structure. Greater pavement depths are required for low-CBR soils than for high-CBR soils; and it is usually the low-CBR soils that are more sensitive to frost. High-type pavements are normally of sufficient thickness that the supporting soil lies below the freezing line (in Kentucky). However, because of the thermal properties of the constituent materials of the pavement, frost penetration in the pavement may be greater than in the adjacent soil mass. For thinner pavements, the supporting soil is well within the frost zone; therefore, the pavement structure providing the greatest template depth is preferred. Pavements less than six inches in thickness or having less than four inches of asphaltic concrete should be regarded dubiously from this point of view. It is recommended that soils having CBR's of less than two be considered ineligible and unsuitable for use as pavement foundations.

Soil surveys may indicate wide variations in CBR's along the length of a specific route. It is presumed and premised that adequate pavement thicknesses will be provided throughout the project. The designer must, therefore, consider the contiguity of the soils and perhaps sectionalize the project according to minimum CBR's. The designer must respect all minimums or else some sections of pavement will be "under designed," "over designs" must be admitted as a natural consequence therefrom. The designer is privileged to decide whether to require an intervening low-CBR section to be "upgraded" to the same quality as abutting high-CBR sections or make a separate design for the low-CBR section. Of course, the designer should consider the relative economics of the two alternatives, but he may also consider continuity and uniformity of pavement section and construction control as pertinent factors. Usually it will be found impractical to vary the design thickness within short distances.

Asphaltic Concrete Modulus of Elasticity

Generally, design systems do not account for the possible range of values of the modulus of elasticity of bituminous concrete. This has generally proved to be more than adequate since such design systems have been applied to rather limited situations in which the stiffness characterization of bituminous mixtures actually used in practice falls within a very limited range. The effective moduli of asphalt-bound layers depend upon the pavement temperature and time of loading. As design systems begin to take into account to greater degrees the range of pavement temperatures and times of loading, the modulus of the bituminous concrete mixture becomes more and more significant.

Initial and preliminary analysis of the performance of Kentucky flexible pavements (1/3 of thickness being asphaltic concrete and 2/3 being crushed stone base) in comparison with theoretical computations indicate empirically that the bituminous concretes used in Kentucky typically have an apparent modulus of elasticity of about 480,000 psi; this corresponds to the modulus at 64°F (the mean annual pavement temperature) obtained from an independent correlation between modulus and average pavement temperature. Weighting pavement temperature distributions in excess of 64°F for various thicknesses of asphaltic concrete suggests that 76°F might
be considered an equivalent "design" temperature for full-depth asphaltic concrete pavements.

Designs with lesser proportions of the total thickness being asphaltic concrete might be expected to be less sensitive to rutting of the asphaltic concrete than full-depth designs. This reduced susceptibility might be considered as an increase in the effective modulus of elasticity of the asphaltic conctete. Correlating the mean pavement temperature with the modulus of elasticity of the asphaltic concrete according to Southgate and Deen (25), the moduli corresponding to 64°F (1/3 of thickness being asphaltic concrete) and 76°F (full-depth asphaltic concrete) can be determined and plotted on Figure 11. Assuming a straight-line relationship, Figure 11 then describes the change in asphaltic concrete modulus as the temperature sensitivity to rutting varies. Designs obtained using modulus values from Figure 11 would surely perform at least equal to current designs (employing usual proportions of dense graded aggregate base and asphaltic concrete surface courses). Other more refined weightings should be regarded as admissible.

ALTERNATIVE PAVEMENT THICKNESSES

1. Knowing the design EAL, the limiting subgrade strain can be determined from Figure 7. Likewise Figure 5 gives the limiting asphalt tensile strain values. If a design is desired for an asphaltic concrete with a modulus other than the four specifically displayed in Figures 8 through 10, it will be necessary to know the limiting asphaltic concrete strain for each of the four modulus values so that interpolations can be made later.

2. Enter the top portion (for asphaltic strain control) of Figure 8 at the design CBR. Draw a line vertically to limiting strain values (from Figure 5) for each E_1; mark each point (Figure 12).

3. Draw horizontal lines from each of the points obtained above to the respective E_1 modulus quadrants and mark the point at the appropriate strain values.

4. From those points, draw lines vertically and mark points on the turning lines.

5. From those points, draw lines horizontally and read T_A values for each E_1 modulus on the thickness scale.

6. Repeat Step 2 using the lower portion (for subgrade strain control) of Figure 8. Only one value of limiting subgrade strain is given for a fixed value of repetitions and is independent of E_1 moduli.

7. Draw a horizontal line to the right through all four quadrants and locate the strain value in each quadrant.

8. Repeat Steps 4 and 5 to obtain values of T_S for each E_1 modulus.

9. Plot each design total thickness from Steps 5 and 8 (arithmetic scale) versus log E_1 modulus and fit a smooth curve to the points as shown in Figure 13.

10. Repeat Steps 1 through 8 using Figures 9 and 10.

11. From Figure 13, read the total thickness (T_A) for each ratio of thickness of asphaltic concrete to total
thickness and plot the resulting total thickness values (arithmetic scale) versus log of percentage asphaltic concrete thickness as shown in Figure 14. Repeat this step using T_S from Figure 13.

12. Select from Figure 14 the final design total thickness values for T_A and T_S for the desired ratio of asphaltic concrete thickness to total thickness.

13. If the design EAL is 4×10^6 or greater, the design total thickness for each E_1 modulus is the greater of T_A and T_S. If the design EAL is 7.81×10^3 or less, the total thickness design is T_A.

RUTTING OF SUBGRADE

Whereas the respective design curves provide equal assurances against rutting throughout all ranges of EAL's, greater rutting is tacitly and progressively admissible in some inverse relationship to EAL's. It has been presupposed that no additional rutting should be allowed in pavements having design EAL's equal to or greater than 4×10^6. On the other hand, it seemed that a pavement having a design EAL equal to or less than 7.81×10^3 might be allowed to rut in a completely uncontrolled manner. Weighting the intervening curves in relationship to EAL's permitted construction of a nomograph (Figure 15) for those designs where rutting criteria control. It is suggested that this weighting be respected in an advisory way. It may be violated permissively in either direction -- provided the fatigue limit of the asphaltic concrete layer is respected.

Figure 15 is used to adjust for rutting when the design EAL is greater than 7.81×10^3 and less than 4×10^6. The final design thickness adjusted for rutting is obtained from the following procedure:

14. For the desired ratio of asphaltic concrete thickness to total thickness in Figure 14, read the total thickness (T_A for asphaltic concrete strain control) and mark on Scale 1 in Figure 16. Draw a straight line from T_A on Scale 1 through the design EAL value on Scale 2 and mark the intersection point on Line 3.

15. For the desired ratio of asphaltic concrete thickness to total thickness in Figure 14, read the total thickness (T_S for subgrade strain control) and mark on Scale 1. Draw a straight line from T_S on Scale 1 through the design EAL value on Scale 4 and mark the intersection point on Line 5.

16. Connect the intersection points on Lines 3 and 5 by a straight line and read the final adjusted design thickness on Scale 6.

CONCLUDING REMARKS

To determine pavement thicknesses from the nomographs similar to Figures 8 through 10, it is necessary to know design EAL's, the CBR of the subgrade soil, and modulus of elasticity of the asphaltic concrete. Such
a set of nomographs permit selection of pavement structures employing alternative proportions of bituminous concrete and crushed stone base. Total thickness varies according to the proportion chosen. However, the choice may not be made arbitrarily or trivially. It is implicitly intended that the final selection also be based on additional engineering considerations such as:

1. Estimates of comparative construction costs,
2. Compatibility of cross-section template and shoulder designs,
3. Uniformity of design practices,
4. Highway system classifications,
5. Engineering precedence, and
6. Utilization of indigenous resources.

Designs based on 33 percent and 67 percent proportions of bituminous concrete (asphaltic concrete modulus of 480 ksi) and crushed rock base, respectively, conform with the department's current design chart, representing current, conventional, or precedential design. The nomographs (Figures 8 through 10) represent theoretical extensions of conventional designs and, from a theoretical standpoint, provide equally competent structures.

LIST OF REFERENCES

Asphalt Pavements, University of Michigan, 1968.

23. Deacon, J. A. and Deen, R. C., Equivalent Axleloads for Pavement Design, Record 291, Highway Research

Figure 1. 1958 Kentucky Flexible Pavement Design Curves.
Figure 2. Relationship between the Moduli of the Subgrade and the Moduli of the Granular Base.

E₂ = F × CBR × 1500

F = 2.8

CBR = 7.
Figure 3. Asphaltic Tensile Strains-Stresses for Various Structures, CBR's, and Asphaltic Concrete Moduli of Elasticity.
Figure 4. Asphaltic Stress-Strain Curves Showing the Application of Strain-Control Criterion.
Figure 5. Limiting Asphalitic Concrete Tensile Strain as a Function of Number of Repetitions and Asphalitic Concrete Moduli of Elasticity.
Figure 6. Ratio of Subgrade Strain to Strain under a Nine-kip Wheel Load as a Function of Equivalent, Hypothetical Wheel Load.
Figure 7. Limiting Subgrade Vertical Compressive Strain as a Function of Number of Repetitions and Equivalent Single Axleload.
Figure 8. Nomograph for Analysis of Vertical Compressive Strains at the Top of the Subgrade and Tensile Strains at the Bottom of the Asphaltic Concrete Layer Comprising 33 Percent of the Total Pavement Thickness.
Figure 9. Nomograph for Analysis of Vertical Compressive Strains at the Top of the Subgrade and Tensile Strains at the Bottom of the Asphaltic Concrete Layer Comprising 50 Percent of the Total Pavement Thickness.
Figure 10. Nomograph for Analysis of Vertical Compressive Strains at the Top of the Subgrade and Tensile Strains at the Bottom of the Asphaltic Concrete Layer Comprising 100 Percent of the Total Pavement Thickness.
Figure 11. Weighting of Asphaltic Concrete Modulus for Ratio of Thickness of Asphaltic Concrete to Total Pavement Thickness.
Havens, Deen, and Southgate

<table>
<thead>
<tr>
<th>$E_1 = 1800\text{ KSI}$</th>
<th>$E_1 = 600\text{ KSI}$</th>
<th>$E_1 = 270\text{ KSI}$</th>
<th>$E_1 = 150\text{ KSI}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC TENSILE STRAIN</td>
<td>AC TENSILE STRAIN</td>
<td>AC TENSILE STRAIN</td>
<td>AC TENSILE STRAIN</td>
</tr>
<tr>
<td>2×10^4</td>
<td>150 KSI</td>
<td>270 KSI</td>
<td>1800 KSI</td>
</tr>
<tr>
<td>1×10^4</td>
<td>600 KSI</td>
<td>150 KSI</td>
<td>270 KSI</td>
</tr>
<tr>
<td>CBR</td>
<td>CBR</td>
<td>CBR</td>
<td>CBR</td>
</tr>
<tr>
<td>10</td>
<td>10^3</td>
<td>10^3</td>
<td>10^3</td>
</tr>
<tr>
<td>10^2</td>
<td>10^5</td>
<td>10^5</td>
<td>10^5</td>
</tr>
<tr>
<td>10^1</td>
<td>10^6</td>
<td>10^6</td>
<td>10^6</td>
</tr>
<tr>
<td>VERTICAL STRAIN</td>
<td>VERTICAL STRAIN</td>
<td>VERTICAL STRAIN</td>
<td>VERTICAL STRAIN</td>
</tr>
<tr>
<td>2×10^4</td>
<td>2×10^4</td>
<td>2×10^4</td>
<td>2×10^4</td>
</tr>
<tr>
<td>1×10^4</td>
<td>1×10^4</td>
<td>1×10^4</td>
<td>1×10^4</td>
</tr>
<tr>
<td>5×10^3</td>
<td>5×10^3</td>
<td>5×10^3</td>
<td>5×10^3</td>
</tr>
</tbody>
</table>

Figure 12. Illustration of Use of Figure 8.
Figure 12. Illustration of Use of Figure 8.
ASPHALTIC CONCRETE MODULUS (PSI × 10^{-5})

Figure 13. Total Pavement Thickness (T_A and T_S) as a Function of Asphaltic Concrete Modulus.
Figure 14. Total Pavement Thickness (T_A and T_S) as a Function of Ratio of Thickness of Asphaltic Concrete to Total Thickness.
Figure 15. Nomograph to Adjust Design Thicknesses for Rutting.
Figure 16. Illustration of Use of Figure 15.