Earthquake Hazard Mitigation of Transportation Facilities for Trigg County

Bobby W. Meade* \hspace{1cm} David L. Allen†
Vincent P. Drnevich‡

*University of Kentucky, bobby.meade@uky.edu
†University of Kentucky, dallen@engr.uky.edu
‡University of Kentucky
This paper is posted at UKnowledge.
https://uknowledge.uky.edu/ktc_researchreports/643
EARTHQUAKE HAZARD MITIGATION OF TRANSPORTATION FACILITIES FOR TRIGG COUNTY

by

Bobby W. Meade
Research Investigator

David L. Allen
Chief Research Engineer

and

Vincent P. Drnevich
Professor of Civil Engineering

Kentucky Transportation Center
College of Engineering
University of Kentucky
Lexington, Kentucky

in cooperation with
Transportation Cabinet
Commonwealth of Kentucky

and

Federal Highway Administration
U.S. Department of Transportation

The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Kentucky, the Kentucky Transportation Cabinet, nor the Federal Highway Administration. This report does not constitute a standard, specification, or regulation. The inclusion of manufacturer names and tradenames are for identification purposes and are not to be considered as endorsements.

June 1989
<table>
<thead>
<tr>
<th>7. Author(s)</th>
<th>B. W. Meade, David L. Allen, Vince P. Drnevich</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Performing Organization Name and Address</td>
<td>Kentucky Transportation Center</td>
</tr>
<tr>
<td></td>
<td>College of Engineering</td>
</tr>
<tr>
<td></td>
<td>University of Kentucky</td>
</tr>
<tr>
<td></td>
<td>Lexington, KY 40506-0043</td>
</tr>
<tr>
<td>10. Work Unit No. (TRAIS)</td>
<td>Kpsilon-89-22</td>
</tr>
<tr>
<td>11. Contract or Grant No.</td>
<td>KYHEPR-87-116</td>
</tr>
<tr>
<td>12. Sponsoring Agency Name and Address</td>
<td>Kentucky Transportation Cabinet</td>
</tr>
<tr>
<td></td>
<td>State Office Building</td>
</tr>
<tr>
<td></td>
<td>Frankfort, KY 40622</td>
</tr>
<tr>
<td>13. Type of Report and Period Covered</td>
<td>Earthquake Hazard Mitigation of Transportation Facilities for Trigg County</td>
</tr>
<tr>
<td>14. Sponsoring Agency Code</td>
<td>Kentucky Transportation Cabinet</td>
</tr>
<tr>
<td></td>
<td>State Office Building</td>
</tr>
<tr>
<td></td>
<td>Frankfort, KY 40622</td>
</tr>
<tr>
<td>16. Abstract</td>
<td>Concern has grown in recent years over the seismic activity of the New Madrid seismic zone in Western Kentucky. Trigg County, Kentucky is located in this region. To permit emergency medical, supply, and equipment traffic into this area after an earthquake has occurred, the Kentucky Transportation Cabinet is interested in the possibility of keeping selected routes passable. This report lists the routes that have been investigated and recommended as being the routes in Trigg County that should be maintained in a passable condition. The recommended routes, US 68/KY 80 and the Trace have been visually surveyed and all seismically significant features cataloged. These features are logged by their location on strip maps contained in Appendix A and a detailed listing of all the potentially critical features is given in Appendix B.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Key Words</th>
<th>Earthquake, Earthquake Mitigation, Alluvium, Seismic Analyses, Modified Mercalli Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Distribution Statement</td>
<td>Publicly Available</td>
</tr>
<tr>
<td>19. Security Classif. (of this report)</td>
<td>Unclassified</td>
</tr>
<tr>
<td>20. Security Classif. (of this page)</td>
<td>Unclassified</td>
</tr>
<tr>
<td>21. No. of Pages</td>
<td>28</td>
</tr>
<tr>
<td>22. Price</td>
<td>$0</td>
</tr>
</tbody>
</table>
INTRODUCTION

An awareness of earthquakes and their possible effects upon the nation's infrastructure is critically important to the public, and in particular, to public officials. The nation's highway system is one of the most important components of the infrastructure. After the occurrence of an earthquake, the highway system is the primary mode of transporting emergency supplies and services into an affected area. Thus, it is important to catalog the important components of the highway system and attempt to anticipate the possible damage to these components from an earthquake.

Western Kentucky in general and Trigg County in particular are in a high risk earthquake zone. In 1811-1812, three of the most severe earthquakes in American history shook the country. The location of these quakes was not on the infamous San Andreas fault nor anywhere along the well-known fault laden Pacific coast but was near a small town on the Mississippi River where the states of Kentucky and Missouri share a border (Figure 1). It is this river town, New Madrid, Missouri, that is the namesake of a region now regarded by seismologists and disaster response planners as the most hazardous earthquake zone east of the Rocky Mountains -- the New Madrid seismic zone.

In addition to these three great earthquakes, there are several other well documented factors demonstrating the susceptibility of the New Madrid region to the recurrence of major earthquakes. Through a decade of extensive research, an ancient crustal rift has been found to underlie the relatively shallow sediments comprising the region's surface. This type of geologic structure is prone to seismic activity. The New Madrid rift has been identified as being of sufficient size to generate major earthquakes. Further evidence of the area's seismicity is the record of over 2,000 earthquakes detected in the zone since 1974. Though most have been of a magnitude below the threshold of human perception, their existence clearly indicates the high level of seismic activity occurring in the zone.

Seismologists have calculated the probabilities of recurrence of sizeable earthquakes in the New Madrid rift zone. The probability of a magnitude 6.3 earthquake (Richter scale) within 50 years is from 86 to 97 percent. The probability (1) of that same earthquake occurring within the next 15 years is from 40 to 63 percent. For comparison, the 1971 San Fernando earthquake (magnitude 6.6) killed 58 people and caused $480 million worth of damage. The 1988 Armenian earthquake of similar magnitude killed approximately 25,000 to 30,000 people.

The probability of a magnitude 7.6 earthquake occurring within 50 years is from 19 to 29 percent. The probability for this size earthquake occurring within 15 years drops to a range of 5.4 to 8.7 percent. On February 4, 1975, the Haicheng earthquake in China had a magnitude of 7.3 and destroyed or damaged about 90 percent of the structures in a city of 90,000 people.

When comparing historical earthquakes of similar magnitude, one must take into consideration that death totals and damage estimates will vary greatly due to the geology, population density, types of building, and quality of construction.
For a given earthquake, effects at a
given location are described by the
Modified Mercalli Intensity (MMI)
scale (2) which ranges from I (no
damage and felt only by instruments)
to XII (total destruction). Details of
the MMI scale are given in Table 1.
Values of MMI associated with the
1811-1812 earthquakes are shown in
Figure 1. The potential for damage
and destruction from earthquakes in
the region is significant.

In 1982, the Governor's Task Force on
Earthquake Hazards and Safety was
created to evaluate Kentucky's
earthquake risk and to make
recommendations for responding to
those risks. This task force
recommended increased public
awareness and education programs,
improved emergency response
planning and training, improved
building codes and seismic restraint
designs, evaluation of other mitigation
measures, and participation in
national and regional earthquake
forums and funding programs.

In 1984, Governor Collins created the
Governor's Earthquake Hazards and
Safety Technical Advisory Panel
(GEHSTAP) to analyze scientific and
engineering data regarding seismic
risks in Kentucky and to make
specific recommendations on
mitigation, public awareness, response
planning, and policy development for
public health and safety. The States
are dependent on their highway
systems for the movement of goods
and services. Due to the possible
adverse effects a major earthquake
could have on this system, the
Earthquake Stability and
Transportation Subcommittee (ESTS)
of GEHSTAP was formed.

ESTS has encouraged the Kentucky
Transportation Cabinet to secure
funding for generating and
implementing an earthquake hazard
mitigation plan in an attempt to
safeguard the highway system against
catastrophic earthquake failure. As a
result, the Cabinet commissioned the
Kentucky Transportation Center at
the University of Kentucky to analyze
and assess the possible effects of an
earthquake on highway facilities. The
study area includes the 26 western-
most counties in Kentucky that are
adjacent to the New Madrid seismic
zone (Figure 1). To date, one of the
results of that study has been the
recommendation that over 1,000 miles
of highways in the study area be
utilized as emergency or "priority"
routes. These would be the primary
routes used for transporting
emergency supplies and personnel
after an earthquake. Also, it is
anticipated that these would be the
first routes repaired after an
earthquake.

The initial task in identifying these
priority routes was to decide where
they should begin; that is, in the
event of a major earthquake, the point
at which the transport of goods and
services would originate. Ideally, the
city chosen should possess the
following attributes:

1. Sufficient size to contain all
necessary personnel, supplies,
and facilities to respond
quickly to a major emergency;

2. Proximity to the high hazard
area to speed the relief effort
but not so close as to suffer the
same high risk potential;

3. Easy access from other major
cities in the State; and

4. Sufficient routes to provide
relatively direct access to all 26
The city best fitting these criteria is Bowling Green. Located at the eastern edge of the earthquake zone in Warren County, Bowling Green meets both the size criterion (population 40,450) and the accessibility criterion (Louisville and Nashville via I-65 and Lexington via the Bluegrass Parkway). Bowling Green provides access to the 26-county area via US 68/KY 80; this road was chosen as the main east-west artery because it crosses Lake Barkley and Kentucky Lake upstream from the dams impounding those bodies of water.

As a first step towards establishing an overall policy for earthquake hazard mitigation in the highway system, these priority routes have been visually surveyed and all natural and man-made features along these routes that are considered seismically significant were cataloged. With this information, a realistic and cost-effective plan for "hardening" these routes against earthquakes can be established. Such efforts are currently under way.

PRIORITY ROUTES IN TRIGG COUNTY

Trigg County is located approximately 85 miles east northeast of the center of the New Madrid Seismic Zone. Figure 1 indicates that Trigg County is in the IX band of the MMI scale. This indicates considerable damage could occur in Trigg County in the event of a major earthquake.

US 68/KY 80 and The Trace have been designated as the priority routes in Trigg County. US 68/KY 80 begins at the Marshall County line and continues east across Trigg County 28.20 miles to the Christian County line. The Trace begins at the Tennessee State line and continues north 9.10 miles to a junction with US 68/KY 80.

A number of features along priority routes could potentially hamper rescue and relief efforts. These features included bridges, soil fills, cut slopes, gas pipelines, power lines, water towers, geologic faults, large trees, mines, water impoundments, and swamps. These features are logged by their location on strip maps contained in Appendix A and a detailed listing of all potentially critical features is given in Appendix B.

THE TRACE

The Trace (old KY 453) is a connector route between US 79 in Tennessee and US 68/KY 80 in Trigg County. This route follows the contour of the terrain and thus has small cuts and fills. In addition there are no structures near the route in Trigg county and there is a wide clear zone along both shoulders. As a result, there are no logged features on this route.

BRIDGES

Bridges are the most significant and important features on the priority route. With few exceptions, existing highway bridges in the study area have not been designed to resist motions and forces that may be generated by earthquakes. Bridges located within the seismic zone could possibly be damaged, thus reducing their load-carrying ability. In some cases, damage could be sufficiently great to cause complete collapse. Several types of damage could occur:

1. A bridge could fail at the
bearing which supports the main spans, causing the spans to fall from the bearings and possibly from the piers or abutments.

2. Failure could occur in the columns, piers, or footings which would reduce the load-carrying capacity of the bridge, if the bridge was still in place.

3. An abutment could tilt allowing the entire span to fail.

4. Soil movement or slumping could affect the bridge approach fills, damaging the abutments or piers, or making the bridge inaccessible.

There are five bridges on US 68/KY 80. The bridges are located at:

US 68/KY 80
1. The Trace,
2. Cumberland River,
3. Hopson Creek,
4. Little River, and
5. Interstate 24.

Current research is studying the effects that an earthquake could have on these bridges and their approach fills.

FILLS

Highway fills are particularly important because of their tendency to fail from seismically induced motions. Fills fail in one of two major modes. The first is a generalized circular or wedge-shaped failure resulting in one or both traffic lanes moving down and out. If both lanes failed, this would certainly render the route impassable and immediate repairs would be necessary. The second mode of failure is a general slumping or settling of the embankment. The roadway would probably remain passable if settlement or slumping were not severe but reduced speed limits would be required for safety.

Large fills on the priority routes in Trigg County are located as follows:

US 68/KY 80
1. 0.60, 2.00, and 2.10 miles east of the Marshall County line,
2. Approach fills for the Trace bridge,
3. 1.17 and 0.47 miles west of and the approach fills for the Cumberland River bridge,
4. 0.89 mile west of and the approach fills for the Hopson Creek bridge,
5. Approach fills for the Little River bridge, and
6. Approach fills for the Interstate 24 bridge.

CUT SLOPE

Several cut slopes were cataloged during surveys of the priority routes in Trigg County. Should a cut slope fail, both lanes of the roadway could be closed. Cut slopes that have a history of failure and those that have steep slopes should be considered as problem areas. The cut slopes are located at:
US 68/KY 80

1. 3.77, 2.27, and 0.87 miles west of the Cumberland River bridge,

2. 1.60 miles east of the KY 1489 junction, and

3. 0.19 mile west of the Little River bridge.

POWER LINES

High voltage power lines also were cataloged during the route surveys. The height of the lines above the roadway were estimated visually. Power company officials speculated that a number of breaks along each power line would occur during a major earthquake. In most cases, fallen lines would not be transmitting power because power would be automatically cut off within a few seconds in the event of a break.

In addition to the potential problem of live power lines, power line support towers could fall across and block a priority route. Power lines cross the priority routes at the following locations:

US 68/KY 80

1. 1.50 miles east of the Trace,

2. 0.50 mile east of the KY 1489 junction, and

3. In the City of Cadiz.

GEOLOGIC FAULTS

There are numerous geologic faults (breaks in the bedrock where movement has occurred in the past) in the study area. The faults are seismically significant since a large earthquake could trigger additional movement along one or more old slip planes. There are no precautionary measures that can be taken to reduce hazards from faults except that construction of bridges and other facilities over or near such faults requires special consideration. The faults are included for informational purposes only. Faults which cross under priority routes in Trigg County are listed below:

US 68/KY 80

1. 1.60, 1.32, 0.98 and 0.83 miles west of the Cumberland River bridge, and

2. 0.03 mile west of the KY 1489 junction.

WATER

US 68/KY 80 in Trigg County crosses several streams and travels along lake backwater areas. As a result of this there are some instances where the highway fills impound water on one or both sides. The saturated soils, both foundation and fill material, would likely fail during an earthquake. Failures would probably result in significant displacement, vertical and horizontal, and closure of the priority route. These impoundments are located at:

US 68/KY 80

1. 1.17 miles west of the Cumberland River, and

2. Approaches for the Cumberland River.

MINES

There is a gravel quarry 1.86 miles east of the Trace and an abandoned quarry on the east side of the Little
River. A large earthquake could collapse portions of quarry walls and temporarily block or destroy a section of the priority route. Further inspection should be conducted to determine if these mines constitute a probable threat to the priority routes.

TREES
The behavior of trees during an earthquake depends upon many factors including their condition, type, height, and size. Local soil conditions, geometry of the ground surface, and characteristics of the earthquake can also be important. Violent ground motions accompanied by surface rupture and perhaps permanent displacement of the soil surface produce sudden surface accelerations of the ground which can snap and uproot large trees (3).

Trees are so numerous that, if many of them fell, the priority routes could effectively be blocked for several hours or days before emergency crews could clear the debris. Groups of large trees are located near the road at the following sites:

US 68/KY 80
1. 1.07 and 1.60 miles east of the Marshall County line,
2. 1.34 miles east of the Trace bridge,
3. 0.12, 1.36, 2.30, and 3.46 miles east of the Hopson Creek bridge,
4. 0.01, 0.60, 0.80, 1.60, 1.78, and 1.90 miles east of the KY 1489 junction,
5. 0.31 mile east of the Little River bridge, and
6. 2.21 and 1.40 miles west of the KY 276 junction.

SINKHOLES
Trigg County is located in a karst topographic region. In this region there are numerous sinkholes, caverns, and underground streams. A major earthquake could cause additional and/or rapid subsidence along the priority routes. Sinkholes located under the priority routes in Trigg County are located at;

US 68/KY 80
1. 0.11 mile west of the KY 274 (northwest) junction, and
2. 3.08, 2.70, and 1.96 miles west and 2.37 mile east of the Interstate 24 bridges.

ALLUVIUM
Soil maps for Trigg County indicate that there are large amounts of alluvium present throughout the county. Alluvium is a loose, fine-grain soil which is deposited by flowing water such as creeks and rivers. Due to the nature of the alluvium, ground motions at the surface of the soil can be many times greater than those within the underlying bedrock and temporary liquefaction can occur (Figure 2). An alluvium map for Trigg County is shown in Figure 3.

CONCLUSIONS
In 1984, ESTS developed a fivefold plan of action for formulating and implementing a seismic mitigation policy for the western Kentucky seismic zone. To date, the Kentucky
Transportation Center has established priority routes for all 26 counties in the western Kentucky seismic zone and developed seismic risk maps of all natural and man-made features that are susceptible to earthquake damage that could jeopardize the priority routes.

Current work is being conducted to analyze these features and make recommendations for hardening them against earthquake damage.

Future work involves training key personnel in the Transportation Cabinet in hazard mitigation and seismic safety; which includes bridge inspectors, district engineers, construction inspectors, designers, and maintenance personnel.

Following the education of key personnel, the mitigation plan proposed by the Kentucky Transportation Center will be reviewed by the Kentucky Transportation Cabinet and a program will be established for implementation. The final step involves the use of relevant seismic codes for all new construction, repair, and maintenance.

REFERENCES

Additional Information

The Commonwealth of Kentucky has prepared a State Emergency Operations Procedures (State EOP) manual that is produced by the Division of Disaster and Emergency Services (DES), Department of Military Affairs, Frankfort, 40601. Annexes H. on Transportation and DD on Earthquakes give additional information on disaster preparedness and response.

A copy of the State EOP and information on local hazard mitigation activities and response preparedness are available from the AREA 2 Office of DES which is located in Hopkinsville. The phone numbers at this office are (502) 564-8602 and (502) 885-7100.

Additional information about the study discussed in this report should be directed to David L. Allen, Project Director, at the Kentucky Transportation Center, (606) 257-4513. Requests to be placed on the mailing list for updated information should be submitted on your company or agency letterhead to the Kentucky Transportation Center at the University of Kentucky, Lexington Kentucky 40506-0043.
Figure I: The twenty-six counties included in this study area.
Table 1: MODIFIED MERCALLI INTENSITY SCALE

Modified Mercalli Intensity Scale, 1956 Version

The following comments by Dr. Richter precede the published statement of the intensity scale:

Each effect is named at the level of intensity at which it first appears frequently and characteristically. Each effect may be found less strongly, or in fewer instances, at the next lower grade of intensity; more strongly or more often at the next higher grade. A few effects are named at two successive levels to indicate a more gradual increase.

Masonry A, B, C, D. To avoid ambiguity of language, the quality of masonry, brick or otherwise, is specified by the following lettering:

Masonry A. Good workmanship, mortar, and design; reinforced, especially laterally, and bound together by using steel, concrete, etc.; designed to resist lateral forces.

Masonry B. Good workmanship and mortar, reinforced by not designed in detail to resist lateral forces.

Masonry C. Ordinary workmanship and mortar; no extreme weakness like failing to tie corners, but neither reinforced nor designed against horizontal forces.

Masonry D. Weak materials, such as adobe; poor mortar; low standards of workmanship; weak horizontally.

The following list represents the twelve grades of the scale.

I. Not felt. Marginal and long-period effects of large earthquakes.

II. Felt by persons at rest, on upper floors, or favorable placed.

V. Felt outdoors; direction estimated. Sleepers awakened. Liquids disturbed, some spilled. Small unstable objects displaced or upset. Doors swing, close, open. Shutters, pictures move. Pendulum clocks stop, start, change rate.

VIII. Steeri bility of motor cars affected. Damage to masonry C; partial collapse. Some damage to masonry B; none to masonry A. Fall of stucco and some masonry walls. Twisting, fall of chimneys, sagging stacks, monuments, towers, elevated tanks. Frame houses moved on foundation if not bolted down; loose panel walls thrown out. Decayed piling broken off. Branches broken from trees. Changes in flow or temperature of springs and wells. Cracks in wet ground and on steep slopes.

IX. General panic. Masonry D destroyed; masonry C heavily damaged, sometimes with complete collapse; masonry B seriously damaged. Frame structures, if not bolted, shifted off foundations. Frames cracked. Serious damage to reservoirs. Underground pipes broken. Conspicuous cracks in ground. In alluviated areas sand and mud ejected, earthquake fountains, sand crater.

X. Most masonry and frame structure destroyed with their foundations. Some well-built wooden structures and bridges destroyed. Serious damage to dams, dike, embankments. Large land slides. Water thrown on banks of canals, river, lakes, etc. Sand and mud shifted horizontally on beaches and flat lands. Rails bent slightly.

XI. Rails bent greatly. Underground pipelines completely out of service.

XII. Damage nearly total. Large rock masses displaced. Lines of sight and level distorted. Objects thrown in the air.
AMPLIFICATION OF SHAKING AND DAMAGE DUE TO SHAKING

Figure 2: Amplification of shaking in softer rock & soil during an earthquake.
Figure 3. Alluvium map for Trigg County.
APPENDIX A

STRIP MAP FOR TRIGG COUNTY

US 62, KY 109, US 41, KY 1751, and US 41A
US68KY80 TRIGG

LEGEND OF FEATURES

© Tree
(2) Cut edge
I Pipe line
□ Pipe
□ Storm
□ Fall
□ Burn

CONTINUED
APPENDIX B
SEISMICALLY SIGNIFICANT FEATURES
<table>
<thead>
<tr>
<th>Milepoint</th>
<th>Feature</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.50</td>
<td>Other</td>
<td>Junction US 68 and KY 80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>Milepoint</td>
<td>Feature</td>
<td>Data</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>0.00</td>
<td>Other</td>
<td>Trigg Co - Marshall Co Boundary Road Surface Type - Flexible</td>
</tr>
<tr>
<td>0.60</td>
<td>Fill</td>
<td>Material Type - Soil Height 30 feet Side slope 2:1 Length 1,000 feet Crest 40 feet Type Fill - Other Road Surface Type - Composite</td>
</tr>
<tr>
<td>1.07</td>
<td>Trees</td>
<td>Number of Trees 25 Height 40 feet Diameter 18 in. Ending Milepoint 1.20 Distance From Road 20 feet Road Surface Type - Composite</td>
</tr>
<tr>
<td>1.35</td>
<td>Trees</td>
<td>Number of Trees 1 Height 50 feet Diameter 24 in. Ending Milepoint 1.35 Distance From Road 15 feet Road Surface Type - Flexible</td>
</tr>
<tr>
<td>1.60</td>
<td>Trees</td>
<td>Number of Trees 5 Height 45 feet Diameter 18 in. Ending Milepoint 1.64 Distance From Road 10 feet Road Surface Type - Flexible</td>
</tr>
<tr>
<td>2.00</td>
<td>Fill</td>
<td>Material Type - Soil Height 30 feet Side slope 3:2 Length 700 feet Crest 40 feet Type Fill - Side Hill Road Surface Type - Composite</td>
</tr>
<tr>
<td>2.10</td>
<td>Fill</td>
<td>Material Type - Soil Height 20 feet Side slope 3:2 Length 200 feet Crest 40 feet Type Fill - Other Road Surface Type - Rigid</td>
</tr>
<tr>
<td>2.97</td>
<td>Trees</td>
<td>Number of Trees 1 Height 40 feet Diameter 18 in. Ending Milepoint 2.97 Distance From Road 20 feet Road Surface Type - Rigid</td>
</tr>
<tr>
<td>Milepoint</td>
<td>Feature</td>
<td>Data</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>3.11</td>
<td>Bridge</td>
<td>Number of Spans 3 Overpass Concrete T-Beam End 1 Fixed Pier 1 Rocker Pier 2 Rocker END 2 Rocker Deck Type Concrete Length 132 feet Width 44 feet Pier Type Open SPC Rating B Surface Type Rigid Expansion Type Sliding Plate End 1 Substructure Pile Bent End 2 Substructure Pile Bent Foundation Type Unknown</td>
</tr>
<tr>
<td>3.45</td>
<td>Other</td>
<td>Junction The Trace Heading South Road Surface Type Flexible</td>
</tr>
<tr>
<td>4.45</td>
<td>Trees</td>
<td>Number of Trees 600 Height 30 feet Diameter 18 in. Ending Milepoint 5.90 Distance From Road 10 feet Road Surface Type Rigid</td>
</tr>
<tr>
<td>4.50</td>
<td>Cut</td>
<td>Cut Slope Type Soil Height 20 feet Length 300 feet Backslope 1:5 Road Surface Type Rigid</td>
</tr>
<tr>
<td>4.95</td>
<td>Power Line</td>
<td>Electrical Power Line 3 Lines Height 50 feet Wood Support Structure Unknown Volts Road Surface Type Flexible</td>
</tr>
<tr>
<td>4.97</td>
<td>Other</td>
<td>Gravel Pit Road Surface Type Flexible</td>
</tr>
<tr>
<td>6.00</td>
<td>Cut</td>
<td>Cut Slope Type Soil Height 20 feet Length 200 feet Backslope 1:5 Road Surface Type Rigid</td>
</tr>
<tr>
<td>6.67</td>
<td>Fault</td>
<td>Fault Road Surface Type Flexible</td>
</tr>
<tr>
<td>Milepoint</td>
<td>Feature</td>
<td>Data</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>6.95</td>
<td>Fault</td>
<td></td>
</tr>
<tr>
<td>7.10</td>
<td>Fill</td>
<td></td>
</tr>
<tr>
<td>7.10</td>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>7.29</td>
<td>Fault</td>
<td></td>
</tr>
<tr>
<td>7.40</td>
<td>Cut</td>
<td></td>
</tr>
<tr>
<td>7.44</td>
<td>Fault</td>
<td></td>
</tr>
<tr>
<td>7.80</td>
<td>Fill</td>
<td></td>
</tr>
<tr>
<td>8.20</td>
<td>Fill</td>
<td></td>
</tr>
<tr>
<td>8.27</td>
<td>Bridge</td>
<td></td>
</tr>
</tbody>
</table>

Road and Milepoint for Trigg County - Kentucky

US-68 / KY 80

- **Feature:** Fault
- **Data:** Road Surface Type - Flexible
- **Feature:** Fill
- **Data:** Material Type - Soil Height 20 feet, Side slope 2:1, Length 2,000 feet, Crest 40 feet, Type Fill - Other, Road Surface Type - Rigid
- **Feature:** Water on Both Sides of Fill
- **Data:** Road Surface Type - Flexible
- **Feature:** Fault
- **Data:** Road Surface Type - Flexible
- **Feature:** Cut Slope
- **Data:** Material Type - Soil Height 40 feet, Side slope 2:1, Length 300 feet, Backslope 1:1, Road Surface Type - Rigid
- **Feature:** Fault
- **Data:** Road Surface Type - Flexible
- **Feature:** Fill
- **Data:** Material Type - Soil Height 20 feet, Side slope 2:1, Length 600 feet, Crest 40 feet, Type Fill - Other, Road Surface Type - Rigid
- **Feature:** Fill
- **Data:** Material Type - Soil Height 20 feet, Side slope 2:1, Length 800 feet, Crest 40 feet, Type Fill - Other, Road Surface Type - Rigid
- **Feature:** Number of Spans 32, Steel Girder I-Beam, Bridge Type - Over Stream, Bridge Bearing Type Unknown, Deck Type - Concrete, Length 3,105 feet, Width 20 feet, Pier Type - Solid, SPC Rating - C, Surface Type - Rigid, Expansion Type - Sliding Plate, End 1 Substructure - Pile Bent, End 2 Substructure - Pile Bent, Foundation Type - Unknown

22
<table>
<thead>
<tr>
<th>Milepoint</th>
<th>Feature</th>
<th>Data</th>
</tr>
</thead>
</table>
| 9.00 | Fill | Material Type - Soil
| | | Height 10 feet
| | | Side slope 2:1
| | | Length 300 feet
| | | Crest 40 feet
| | | Type Fill - Other
| | | Road Surface Type - Rigid |
| 9.60 | Other | Junction KY 164 Heading Southeast
| | | Road Surface Type - Flexible |
| 10.05 | Fill | Material Type - Soil
| | | Height 25 feet
| | | Side slope 1:1
| | | Length 250 feet
| | | Crest 30 feet
| | | Type Fill - Other
| | | Road Surface Type - Flexible |
| 10.80 | Fill | Material Type - Soil
| | | Height 12 feet
| | | Side slope 2:1
| | | Length 2,000 feet
| | | Crest 40 feet
| | | Type Fill - Other
| | | Road Surface Type - Rigid |
| 10.94 | Bridge | Number of Spans 3
| | | Over Stream Concrete T-Beam
| | | End 1 Fixed
| | | Pier 1 Fixed
| | | Pier 2 Fixed
| | | End 2 Fixed
| | | Deck Type - Concrete
| | | Length 99 feet
| | | Width 28 feet
| | | Pier Type - Open
| | | SPC Rating - C
| | | Surface Type - Rigid
| | | Expansion Type - Other
| | | End 1 Substructure - Stub
| | | End 2 Substructure - Stub
| | | Foundation Type - Unknown |
| 11.06 | Trees | Number of Trees 40
| | | Height 40 feet
| | | Diameter 18 in.
| | | Ending Milepoint 11.15
| | | Distance From Road 25 feet
| | | Road Surface Type - Rigid |
| 11.40 | Other | Junction KY 1489 Heading North
<p>| | | Road Surface Type - Flexible |</p>
<table>
<thead>
<tr>
<th>Milepoint</th>
<th>Feature</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.30</td>
<td>Trees</td>
<td>Number of Trees: 3 Height: 35 feet Diameter: 18 in. Ending Milepoint: 12.30 Distance From Road: 15 feet Road Surface Type: Flexible</td>
</tr>
<tr>
<td>13.00</td>
<td>Cut</td>
<td>Cut Slope Type: Soil Height: 15 feet Length: 400 feet Backslope: 1:5 Road Surface Type: Composite</td>
</tr>
<tr>
<td>13.24</td>
<td>Trees</td>
<td>Number of Trees: 30 Height: 40 feet Diameter: 18 in. Ending Milepoint: 13.60 Distance From Road: 6 feet Road Surface Type: Composite</td>
</tr>
<tr>
<td>14.40</td>
<td>Trees</td>
<td>Number of Trees: 50 Height: 40 feet Diameter: 15 in. Ending Milepoint: 14.52 Distance From Road: 15 feet Road Surface Type: Composite</td>
</tr>
<tr>
<td>14.70</td>
<td>Other</td>
<td>Junction KY 272 Heading South Road Surface Type: Flexible</td>
</tr>
<tr>
<td>15.17</td>
<td>Fault</td>
<td>Fault Road Surface Type: Flexible</td>
</tr>
<tr>
<td>15.20</td>
<td>Other</td>
<td>Junction KY 1489 Heading Northwest Road Surface Type: Flexible</td>
</tr>
<tr>
<td>15.21</td>
<td>Trees</td>
<td>Number of Trees: 200 Height: 40 feet Diameter: 12 in. Ending Milepoint: 15.40 Distance From Road: 15 feet Road Surface Type: Composite</td>
</tr>
<tr>
<td>15.70</td>
<td>Power Line</td>
<td>Electrical Power Line: 3 Lines Height: 25 feet Wood Support Structure: Unknown Volts: 24 Road Surface Type: Flexible</td>
</tr>
</tbody>
</table>
Milepoint Feature Data

<table>
<thead>
<tr>
<th>Milepoint</th>
<th>Feature</th>
<th>Feature Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.80</td>
<td>Trees</td>
<td>Number of Trees 4, Height 40 feet, Diameter 18 in., Ending Milepoint 15.80, Distance From Road 6 feet, Road Surface Type - Composite</td>
</tr>
<tr>
<td>16.00</td>
<td>Trees</td>
<td>Number of Trees 12, Height 40 feet, Diameter 18 in., Ending Milepoint 16.10, Distance From Road 6 feet, Road Surface Type - Composite</td>
</tr>
<tr>
<td>16.80</td>
<td>Trees</td>
<td>Number of Trees 30, Height 40 feet, Diameter 24 in., Ending Milepoint 16.90, Distance From Road 10 feet, Road Surface Type - Composite</td>
</tr>
<tr>
<td>16.98</td>
<td>Trees</td>
<td>Number of Trees 35, Height 40 feet, Diameter 24 in., Ending Milepoint 17.00, Distance From Road 10 feet, Road Surface Type - Composite</td>
</tr>
<tr>
<td>17.10</td>
<td>Trees</td>
<td>Number of Trees 900, Height 60 feet, Diameter 12 in., Ending Milepoint 17.90, Distance From Road 20 feet, Road Surface Type - Composite</td>
</tr>
<tr>
<td>17.29</td>
<td>Other</td>
<td>Sink, Road Surface Type - Flexible</td>
</tr>
<tr>
<td>17.40</td>
<td>Other</td>
<td>Junction KY 274 Heading Northwest, Road Surface Type - Flexible</td>
</tr>
<tr>
<td>17.40</td>
<td>Other</td>
<td>Junction KY 1175 Heading South, Road Surface Type - Flexible</td>
</tr>
<tr>
<td>17.70</td>
<td>Cut</td>
<td>Cut Slope Type - Rock, Height 10 feet, Length 500 feet, Backslope 1:1, Road Surface Type - Composite</td>
</tr>
</tbody>
</table>
Road and Milepoint Report for Trigg County - Kentucky

US 68 / KY 80

<table>
<thead>
<tr>
<th>Milepoint</th>
<th>Feature</th>
<th>Data</th>
</tr>
</thead>
</table>
| 17.89 | Bridge | Number of Spans 6
Over Stream
Concrete T-Beam
End 1 Fixed
Pier 1 Fixed
Pier 2 Fixed
Pier 3 Fixed
Pier 4 Fixed
Pier 5 Fixed
End 2 Fixed
Deck Type - Concrete
Length 277 feet
Width 28 feet
Pier Type - Solid
SPC Rating - C
Surface Type - Composite
Expansion Type - Poured Compression
End 1 Substructure - Stub
End 2 Substructure - Stub
Foundation Type - Unknown |
| 17.90 | Other | Abandoned Quarry
Road Surface Type - Flexible |
| 18.20 | Trees | Number of Trees 900
Height 60 feet
Diameter 36 in.
Ending Milepoint 18.60
Distance From Road 35 feet
Road Surface Type - Composite |
| 18.20 | Other | Junction KY 139 Heading North-South
Road Surface Type - Flexible |
| 20.00 | Other | City of Cadiz
Road Surface Type - Flexible |
| 20.10 | Power Line | Electrical Power Line 3 Lines
Height 40 feet
Wood Support Structure Unknown Volts
Road Surface Type - Composite |
| 20.90 | Trees | Number of Trees 5
Height 40 feet
Diameter 30 in.
Ending Milepoint 20.90
Distance From Road 15 feet
Road Surface Type - Flexible |
| 21.42 | Other | Sink
Road Surface Type - Flexible |
<table>
<thead>
<tr>
<th>Milepoint</th>
<th>Feature</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.80</td>
<td>Other</td>
<td>Sink</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>21.89</td>
<td>Trees</td>
<td>Number of Trees 10 Height 40 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diameter 30 in. Ending Milepoint 21.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distance From Road 15 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>22.50</td>
<td>Trees</td>
<td>Number of Trees 2 Height 50 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diameter 24 in. Ending Milepoint 22.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distance From Road 15 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>22.54</td>
<td>Other</td>
<td>Sink</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>22.70</td>
<td>Trees</td>
<td>Number of Trees 7 Height 50 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diameter 24 in. Ending Milepoint 22.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distance From Road 15 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>23.80</td>
<td>Other</td>
<td>Railroad Crossing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>24.10</td>
<td>Other</td>
<td>Junction KY 276 Heading North</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>24.10</td>
<td>Other</td>
<td>Junction KY 1585 Heading Southeast</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>24.50</td>
<td>Bridge</td>
<td>Number of Spana 1 Steel Girder I-Beam</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bridge Type - Underpass</td>
</tr>
<tr>
<td></td>
<td></td>
<td>End 1 Rocker End 2 Rocker</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deck Type - Concrete Length 75 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Width 38 feet Pier Type - Solid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPC Rating - B Surface Type - Flexible</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expansion Type - Sliding Plate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>End 1 Substructure - Full</td>
</tr>
<tr>
<td></td>
<td></td>
<td>End 2 Substructure - Full</td>
</tr>
<tr>
<td>Milepoint</td>
<td>Feature</td>
<td>Data</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>24.50</td>
<td>Other</td>
<td>East and Westbound Interstate 24 Bridges Road Surface Type - Flexible</td>
</tr>
<tr>
<td>24.80</td>
<td>Trees</td>
<td>Number of Trees 2 Height 40 feet Diameter 24 in. Ending Milepoint 24.80 Distance From Road 8 feet Road Surface Type - Flexible</td>
</tr>
<tr>
<td>25.10</td>
<td>Other</td>
<td>Junction KY 958 Heading North Road Surface Type - Flexible</td>
</tr>
<tr>
<td>26.87</td>
<td>Other</td>
<td>Sink Road Surface Type - Flexible</td>
</tr>
<tr>
<td>27.20</td>
<td>Trees</td>
<td>Number of Trees 3 Height 30 feet Diameter 12 in. Ending Milepoint 27.20 Distance From Road 10 feet Road Surface Type - Flexible</td>
</tr>
<tr>
<td>27.90</td>
<td>Other</td>
<td>Junction KY 120 Heading North Road Surface Type - Flexible</td>
</tr>
<tr>
<td>28.10</td>
<td>Other</td>
<td>Railroad Crossing Road Surface Type - Flexible</td>
</tr>
<tr>
<td>28.20</td>
<td>Other</td>
<td>Trigg Co - Christian Co Boundary Road Surface Type - Flexible</td>
</tr>
</tbody>
</table>