Earthquake Hazard Mitigation of Transportation Facilities for Ohio County

L. John Fleckenstein∗ David L. Allen† Vincent P. Drnevich‡

∗University of Kentucky, leo.fleckenstein@uky.edu
†University of Kentucky, dallen@engr.uky.edu
‡University of Kentucky
This paper is posted at UKnowledge.
https://uknowledge.uky.edu/ktc_researchreports/641
Research Report
KTC-89-5

EARTHQUAKE HAZARD MITIGATION OF TRANSPORTATION FACILITIES FOR OHIO COUNTY

by

L. John Fleckenstein
Engineering Geologist

David L. Allen
Chief Research Engineer

and

Vincent P. Drnevich
Professor of Civil Engineering

Kentucky Transportation Center
College of Engineering
University of Kentucky
Lexington, Kentucky

in cooperation with
Transportation Cabinet
Commonwealth of Kentucky

and

Federal Highway Administration
U.S. Department of Transportation

The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Kentucky, the Kentucky Transportation Cabinet, nor the Federal Highway Administration. This report does not constitute a standard, specification, or regulation. The inclusion of manufacturer names and tradenames are for identification purposes and are not to be considered as endorsements.

April 1989
Earthquake Hazard Mitigation of Transportation Facilities for Ohio County

L. J. Fleckenstein, David L. Allen, Vincent P. Drneich

Kentucky Transportation Center
College of Engineering
University of Kentucky
Lexington, KY 40506-0043

Kentucky Transportation Cabinet
State Office Building
Frankfort, KY 40622

Concern has grown in recent years over the seismic activity of the New Madrid seismic zone in Western Kentucky. Ohio County, Kentucky is located in this region. To permit emergency medical, supply, and equipment traffic into this area after an earthquake has occurred, the Kentucky Transportation Cabinet is interested in the possibility of keeping selected routes passable. This report lists the route that has been investigated and recommended as being the route in Ohio County that should be maintained in passable condition. The recommended routes, KY 136 and US 231, have been visually surveyed and all seismically significant features cataloged. These features are logged by their location on strip maps contained in Appendix A and a detailed listing of all potentially critical features is given in Appendix B.
INTRODUCTION

An awareness of earthquakes and their possible effects upon the nation’s infrastructure are critically important to the public, and in particular, to public officials. The nation’s highway system is one of the most important components of the infrastructure. After the occurrence of an earthquake, the highway system is the primary mode of transporting emergency supplies and services into an affected area. Thus, it is important to catalog the important components of the highway system and attempt to anticipate the possible damage to these components from an earthquake.

Western Kentucky in general and Ohio County in particular are in a high risk earthquake zone. In 1811-1812, three of the most severe earthquakes in American history shook the country. The location of these quakes was not on the infamous San Andreas fault nor anywhere along the well-known fault laden Pacific coast but was near a small town on the Mississippi River where the states of Kentucky and Missouri share a border (Figure 1). It is this river town, New Madrid, Missouri, that is the namesake of a region now regarded by seismologists and disaster response planners as the most hazardous earthquake zone east of the Rocky Mountains -- the New Madrid seismic zone.

In addition to these three great earthquakes, there are several other well documented factors demonstrating the susceptibility of the New Madrid region to the recurrence of major earthquakes. Through a decade of extensive research, an ancient crustal rift has been found to underlie the relatively shallow sediments comprising the region’s surface. This type of geologic structure is prone to seismic activity. The New Madrid rift has been identified as being of sufficient size to generate major earthquakes. Further evidence of the area's seismicity is the record of over 2,000 earthquakes detected in the zone since 1974. Though most have been of a magnitude below the threshold of human perception, their existence clearly indicates the high level of seismic activity occurring in the zone.

Seismologists have calculated the probabilities of recurrence of sizeable earthquakes in the New Madrid rift zone. The probability of a magnitude 6.3 earthquake (Richter scale) within 50 years is from 86 to 97 percent. The probability (1) of that same earthquake occurring within the next 15 years is from 40 to 63 percent. For comparison, the 1971 San Fernando earthquake (magnitude 6.6) killed 58 people and caused $480 million worth of damage. The Armenia earthquake of similar magnitude killed approximately 25,000 to 30,000 people.

The probability of a magnitude 7.6 earthquake occurring within 50 years is from 19 to 29 percent. The probability for this size earthquake occurring within 15 years drops to a range of 5.4 to 8.7 percent. On February 4, 1975 the Haicheng earthquake in China had a magnitude of 7.3 and destroyed or damaged about 90 percent of the structures in a city of 90,000 people.

When comparing historical earthquakes of similar magnitude,
one must take into consideration that death totals and damage estimates will vary greatly due to the geology, population density, types of building, and quality of construction.

For a given earthquake, effects at a given location are described by the Modified Mercalli Intensity (MMI) scale (2) which ranges from I (no damage and felt only by instruments) to XII (total destruction). Details of the MMI scale are given in Table 1. Values of MMI associated with the 1811-1812 earthquakes are shown in Figure 1. The potential for damage and destruction from earthquakes in the region is significant.

In 1982, the Governor's Task Force on Earthquake Hazards and Safety was created to evaluate Kentucky's earthquake risk and to make recommendations for responding to those risks. This task force recommended increased public awareness and education programs, improved emergency response planning and training, improved building codes and seismic restraint designs, evaluation of other mitigation measures, and participation in national and regional earthquake forums and funding programs.

In 1984, Governor Collins created the Governor's Earthquake Hazards and Safety Technical Advisory Panel (GEHSTAP) to analyze scientific and engineering data regarding seismic risks in Kentucky and to make specific recommendations on mitigation, public awareness, response planning, and policy development for public health and safety. The States are dependent on there highway systems for the movement of goods and services. Due to the possible adverse effects a major earthquake could have on this system, the Earthquake Stability and Transportation Subcommittee (ESTS) of GEHSTAP was formed.

ESTS has encouraged the Kentucky Transportation Cabinet to secure funding for generating and implementing an earthquake hazard and mitigation plan in an attempt to safeguard the highway system against catastrophic earthquake failure. As a result, the Cabinet commissioned the Kentucky Transportation Center at the University of Kentucky to analyze and assess the possible effects of an earthquake on highway facilities. The study area includes the 26 western-most counties in Kentucky that are adjacent to the New Madrid seismic zone (Figure 1). To date, one of the results of that study has been the recommendation that over 1,000 miles of highways in the study area be utilized as emergency or "priority" routes. These would be the primary routes used for transporting emergency supplies and personnel after an earthquake. Also, it is anticipated that these would be the first routes repaired after an earthquake.

The initial task in identifying these priority routes was to decide where they should begin; that is, in the event of a major earthquake, the point at which the transport of goods and services would originate. Ideally, the city chosen should possess the following attributes:

1. Sufficient size to contain all necessary personnel, supplies, and facilities to respond
quickly to a major emergency;

2. Proximity to the high hazard area to speed the relief effort but not so close as to suffer the same high risk potential;

3. Easy access from other major cities in the State;

4. Sufficient routes to provide relatively direct access to all 26 high-risk counties.

The city best fitting these criteria is Bowling Green. Located at the eastern edge of the earthquake zone in Warren County, Bowling Green meets both the size criterion (population 40,450) and the accessibility criterion (Louisville and Nashville via I 65 and Lexington via the Bluegrass Parkway). Bowling Green provides access to the 26-county area via US 68/KY 80; this road was chosen as the main east-west artery because it crosses Lake Barkley and Kentucky Lake upstream from the dams impounding those bodies of water.

As a first step towards establishing an overall policy for earthquake hazard mitigation in the highway system, these priority routes have been visually surveyed and all natural and man-made features along these routes that are considered seismically significant were cataloged. With this information, a realistic and cost-effective plan for "hardening" these routes against earthquakes can be established. Such efforts are currently under way.

PRIORITY ROUTES IN OHIO COUNTY

Ohio County is located approximately 136 miles east-northeast of the center of the New Madrid Seismic Zone. Figure 1 indicates Ohio County is in the IX band of the MMI scale. This indicates considerable damage could occur in Ohio County in the event of a major earthquake.

KY 136 and US 231 have been designated as priority routes for Ohio County. KY 136 starts at the McLean County-Ohio County line and continues east for 9.5 miles, ending at the junction of US 231. US 231 starts at the Ohio County-Butler County line and continues north for 24.3 miles, ending at the Ohio County-Daviess County line.

A number of features along this priority route could potentially hamper rescue and relief efforts. These features included bridges, soil fills, cut slopes, gas pipe lines, power lines, geologic faults, large trees, underground mines, water impoundments, and swamps. These features are logged by their location on strip maps contained in Appendix A and a detailed listing of all potentially critical features is given in Appendix B.

BRIDGES

Bridges are the most significant and important features on the priority route. With few exceptions, existing highway bridges in the study area have not been designed to resist motions and forces that may be generated by earthquakes. Bridges located within the seismic zone could possibly be damaged, thus reducing
their load-carrying ability. In some cases, damage could be sufficiently great to cause complete collapse. Several types of damage could occur:

1. A bridge could fail at the bearing which supports the main spans, causing the spans to fall from the bearings and possibly from the piers or abutments.

2. Failure could occur in the columns, piers, or footings which would reduce the load-carrying capacity of the bridge, if the bridge was still in place.

3. An abutment could tilt allowing the entire span to fall.

4. Soil movement or slumping could affect the bridge approach fills, damaging the abutments or piers, or making the bridge inaccessible.

There are four bridges located on KY 136 and ten bridges on US 231 in Ohio County. The four bridges located on KY 136 are located over:

1. Hanley Creek,
2. Barnett Creek,
3. Little No Creek,
4. Big No Creek.

The ten bridges located on US 231 are located over:

1. Western KY Parkway crosses over US 231,
2. Muddy Creek,
3. Collins Drainage Ditch,
4. The North Fork of Muddy Creek,
5. Rough River,
6. Swamp, 0.17 miles north of the Rough River bridge,
7. Swamp, 0.24 miles south of the Barrass Ditch bridge,
8. Barrass Ditch,
9. Big No Creek,
10. Barnett Creek.

Research is currently under way studying the effects that an earthquake could have on these bridges and their approach fills.

FILLS

Highway fills are particularly important because of their tendency to fail from seismically induced motions. Fills fail in one of two major modes. The first is a generalized circular or wedge shaped failure resulting in one or both traffic lanes moving down and out. If both lanes failed, this would certainly render the route impassable and immediate repairs would be necessary. The second mode of failure is a general slumping or settling of the embankment. The roadway would probably remain passable if settlement or slumping were not severe but reduced speed limits would be required for safety.

Large fills on KY 136 and US 231 in Ohio County are located as follows:
KY 136

1. Approach fills for the bridge over Hanley Creek,
2. 0.09 mile east of the bridge over Hanley Creek,
3. 1.14 miles east of the bridge over Hanley Creek,
4. Approach fills for the bridge over Barnett Creek,
5. Approach fills for the bridge over Little No Creek,
6. 0.08 and 0.28 mile east of the Little No Creek bridge,
7. Approach fills for the bridge over Big No Creek,
8. 1.44 miles east of the Big No Creek bridge,

US 231

1. 0.10, 0.40, and 1.50 miles north of the Ohio County - Butler County line,
2. 0.85 and 1.35 miles south of the Western KY Parkway bridges,
3. 1.0 and 1.85 miles north of the Western KY Parkway bridges,
4. Approach fills for the bridge over Muddy Creek,
5. 0.34 mile north of the Muddy Creek bridge,
6. Approach fills for the bridge over Collins Drainage Ditch,
7. Approach fills for the bridge over the North Fork of Muddy Creek,
8. Approach fills for the bridge over Rough River,
9. Approach fills for the two bridges that are built over the swamps,
10. Approach fills for the bridge over Barrass Ditch,
11. 0.30 mile south of the junction of US 231 and KY 1737,
12. Approach fills for the bridge over Big No Creek,
13. 0.90, 1.05, 1.35, 1.80, 2.60, 2.90, 3.55, and 3.75 miles north of the Big No Creek bridge,
14. Approach fills for the Barnett Creek bridge,
15. 0.95, 1.10, 1.20, 1.35, 1.60, 2.30, 2.50, 3.00, 3.40, and 3.85 miles north of the Barnett Creek bridge.

CUT SLOPES

Most cut slopes cataloged during surveys of KY 136 and US 231 were in soil and were less than 35 feet in height. Should any of these slopes fail, both lanes of the roadway probably would not be closed, thus permitting passage around the slide. Cut slopes that have a history of failure and those that have steep slopes should be considered as problem areas.

The most critical cut slope appears to be one located 1.49 miles east of
the Big No Creek bridge on KY 136, and 0.20 mile south the Barnett Creek bridge on US 231.

GAS PIPE LINES

One gas pipe line crosses under KY 136 and eleven pipelines cross under US 231. It is possible that pipelines could fail under or near a priority route causing a temporary closure. If a pipe line failed, an explosion might destroy a section of the priority route. Repair could be delayed by further gas leaks, fire, and/or additional explosions.

It appears that most of the pipe lines in Ohio County were constructed with little or no seismic considerations. Gas pipe lines cross under KY 136 and US 231 at the following locations:

KY 136
1. 0.70 mile west of the junction of KY 136 and US 231.

US 231
1. 2.40 miles north of the Ohio County - Butler County line,
2. 0.28 and 0.38 mile north of the Barrass Ditch Bridge,
3. 1.00, 1.60, 1.90, 2.90, 3.50, and 3.60 miles north of the Big No Creek bridge,
4. 1.40 and 0.40 miles south of the Daviess County - Ohio County line.

POWER LINES

High voltage power lines also were cataloged during the route surveys. The height of the lines above the roadway were estimated visually. Power company officials speculated that a number of breaks along each power line would occur during a major earthquake. In most cases, fallen lines would not be transmitting power because power would be automatically cut off within a few seconds in the event of a break.

Additionally, power line support towers that could potentially fall across a priority route. Power lines cross at the following locations on KY 136 and KY 231.

KY 136
1. 0.09 mile east of the Hanley Creek bridge.
2. 0.30 mile west of the junction of KY 136 and US 231.

US 231
1. 1.60 and 0.10 miles south of the junction of Western KY Parkway and US 231.
2. 0.50 and 0.60 mile north of the junction of Western KY Parkway and US 231.

GEOLOGIC FAULTS

There are numerous geologic faults (breaks in the bedrock where movement has occurred in the past) in the study area. The faults are seismically significant since a large earthquake could trigger additional movement along one or more old slip planes. There are no precautionary measures that can be taken to reduce hazards from faults except
that construction of bridges and
other facilities over or near such faults requires special consideration.
The faults are included for
informational purposes only. Faults
which cross under KY 136 and US
231 are listed below:

KY 136

1. 0.91 mile west of the Hanley Creek bridge,
2. 0.92 mile west of the Barnett Creek bridge,
3. 1.09 miles west of the Little No Creek bridge.

US 231

1. 0.83, 2.49, 3.07, 3.68, 3.74, 3.95, and 4.06, miles north of the Big No Creek bridge,
2. 0.25 and 0.10 mile south of the Barnett Creek bridge.

TREES

The behavior of trees during an earthquake depends upon many
factors including their condition, type, height, and size. Local soil
conditions, geometry of the ground surface, and the characteristics of the earthquake can also be
important. Violent ground motions accompanied by surface rupture and perhaps permanent displacement of the soil surface
produce sudden surface accelerations of the ground
which can snap and uproot large trees (3).

Trees are so numerous that, if many of them fell, KY 136 and US 231 could effectively be blocked for several hours or days before
emergency crews could clear the debris. Groups of large trees are located near the road at the following sites:

KY 136

1. 1.01 miles west of the Hanley Creek bridge,
2. 0.44 and .94 miles east of the Hanley Creek bridge,
3. 0.56, 0.81, and 1.46 miles east of the Barnett Creek bridge,
4. 0.04, 1.29, 2.49, and 2.84 miles east of the Big No Creek bridge.

US 231

1. 0.10 mile south of the junction of US 231 and KY 505,
2. 0.60, 0.90, 1.20, 1.90, and 3.40 miles north of the US 231 and the KY 505 junction,
3. 0.20 mile south of the junction of US 231 and KY 269,
4. 0.38 mile south of the junction of US 231 and the Western KY Parkway,
5. 0.50 mile north of the City of Hartford,
6. 0.30 mile south of the Barnett Creek bridge.

WATER IMPOUNDMENTS

Two large farm ponds are located along KY 136 and two along US 231. Large ponds which have large earthen dams that lie above the road surface could possibly collapse during
an earthquake and wash out a section of a priority route. Ponds which lie below the road surface and are adjacent to the toe of the fill slope could cause failures in the fill during an earthquake due to the high moisture content. The impoundments are located as follows:

KY 136

1. 0.49 and 1.69 miles east of the Big No Creek bridge.

US 231

1. 0.65 mile south of the US 231 and KY 1414 junction,

2. 2.29 miles north of the Barnett Creek bridge.

SWAMPS

US 231 is constructed over a swamp approximately 0.17 and 0.56 mile north of the Rough River bridge. Priority routes that are constructed over or adjacent to swamps will probably be damaged due to failures within the soil structure during an earthquake. The high water tables penetrate the underlying road bed and weaken the soil structure. During an earthquake the structure will be further weakened and large vertical displacements in the road surface are likely to occur.

MINES

There are several types of mining-related activities in Ohio County that could affect priority routes during a major earthquake. A large earthquake could collapse pillars in underground mines and cause rapid subsidence at the surface. Other potential hazards exist from strip mines that might have large spoil banks and possible water impoundments. Abandoned or current operating mines are located at the following.

KY 136

1. Abandoned deep mine 0.16 mile west of the Barnett Creek bridge.

US 231

1. Strip mine 2.11 miles north of the Western KY Parkway and extending 0.55 mile north along US 231.

2. Abandoned deep mine 1.45 miles north of the Big No Creek bridge.

ALLUVIUM

Soil maps for Ohio County indicate that there are large amounts of alluvium present throughout the county. Alluvium is a loose fine-grain soil which is deposited by flowing water such as creeks and rivers. Due to the nature of the alluvium, ground motions at the surface of the soil can be many times greater than those within the underlying bedrock and temporary liquefaction can occur (Figure 2). An alluvium map for Ohio County is shown in Figure 3.

CONCLUSIONS

In 1984 ESTS developed a fivefold plan of action for formulating and implementing a seismic mitigation policy for the western Kentucky seismic zone. To date the Kentucky Transportation Center has established priority routes for all 26 counties in the western Kentucky
seismic zone and developed seismic risk maps of all natural and man-made features that are susceptible to earthquake damage that could jeopardize the priority routes.

Current work is being conducted to analyze these features and make recommendations for hardening them against earthquake damage.

Future work involves training key personnel in the Transportation Cabinet in hazard mitigation and seismic safety; which includes bridge inspectors, district engineers, construction inspectors, designers, and maintenance personnel.

Following the education of key personnel, the mitigation plan proposed by the Kentucky Transportation Center will be reviewed by the Kentucky Transportation Cabinet and a program established for implementation. The final step involves the use of relevant seismic codes for all new construction, repair, and maintenance.

REFERENCES

Additional Information

The Commonwealth of Kentucky has prepared a State Emergency Operations Procedures (State EOP) manual that is produced by the Division of Disaster and Emergency Services (DES), Department of Military Affairs, Frankfort, 40601. Annexes H. on Transportation and DD on Earthquakes give additional information on disaster preparedness and response.

A copy of the State EOP and information on local hazard mitigation activities and response preparedness are available from the AREA 3 Office of DES which is located in Owensboro. The phone numbers at this office are (502) 564-8603 and (502) 683-6254.

Additional information about the study discussed in this report should be directed to David L. Allen, Project Director, at the Kentucky Transportation Center, (606) 257-4513. Requests to be placed on the mailing list for updated information should be submitted on your company or agency letterhead to the Kentucky Transportation Center at the University of Kentucky, Lexington Kentucky 40506-0043.
Figure 1: The twenty-six counties included in this study area.
Table 1: MODIFIED MERCALLI INTENSITY SCALE

Modified Mercalli Intensity Scale, 1956 Version

The following comments by Dr. Richter precede the published statement of the intensity scale:

Each effect is named at the level of intensity at which it first appears frequently and characteristically. Each effect may be found less strongly, or in fewer instances, at the next lower grade of intensity; more strongly or more often at the next higher grade. A few effects are named at two successive levels to indicate a more gradual increase.

Masonry A, B, C, D. To avoid ambiguity of language, the quality of masonry, brick or otherwise, is specified by the following lettering:

Masonry A. Good workmanship, mortar, and design; reinforced, especially laterally, and bound together by using steel, concrete, etc.; designed to resist lateral forces.
Masonry B. Good workmanship and mortar, reinforced by not designed in detail to resist lateral forces.
Masonry C. Ordinary workmanship and mortar; no extreme weakness like failing to tie corners, but neither reinforced nor designed against horizontal forces.
Masonry D. Weak materials, such as adobe; poor mortar; low standards of workmanship; weak horizontally.

The following list represents the twelve grades of the scale.

I. Not felt. Marginal and long-period effects of large earthquakes.
II. Felt by persons at rest, on upper floors, or favorable placed.
V. Felt outdoors; direction estimated. Sleepers awakened. Liquids disturbed, some spilled. Small unstable objects displaced or upset. Doors swing, close, open. Shutters, pictures move. Pendulum clocks stop, start, change rate.
VIII. Steering of motor cars affected. Damage to masonry C; partial collapse. Some damage to masonry B; none to masonry A. Fall of stucco and some masonry walls. Twisting, fall of chimneys, factory stacks, monuments, towers, elevated tanks. Frame houses moved on foundation if not bolted down; loose panel walls thrown out. Decayed piling broken off. Branches broken from trees. Changes in flow or temperature of springs and wells. Cracks in wet ground and on steep slopes.
IX. General panic. Masonry D destroyed; masonry C heavily damaged, sometimes with complete collapse; masonry B seriously damaged. Frame structures, if not bolted, shifted off foundations. Frames cracked. Serious damage to reservoirs. Underground pipes broken. Conspicuous cracks in ground. In alluviated areas sand and mud ejected, earthquake fountains, sand crater.
X. Most masonry and frame structures destroyed with the foundations. Some will-built wooden structures and bridges destroyed. Serious damage to dams, dikes, embankments. Large land slides. Water thrown on banks of canals, rivers, lakes, etc. Sand and mud shifted horizontally on beaches and flat lands. Rails bent slightly.
XI. Rails bent greatly. Underground pipelines completely out of service.
XII. Damage nearly total. Large rock masses displaced. Lines of sight and level distorted. Objects thrown in the air.
AMPLIFICATION OF SHAKING
AND
DAMAGE DUE TO SHAKING

Figure 2: Amplification of shaking in softer rock & soil during an earthquake.
APPENDIX A

STRIP MAP FOR OHIO COUNTY

KY 136 AND US 231
APPENDIX B

SEISMICALLY SIGNIFICANT FEATURES
Report by Road and Milepoint for Ohio County - Kentucky

KY 136

<table>
<thead>
<tr>
<th>Milepoint</th>
<th>Feature</th>
<th>Data</th>
</tr>
</thead>
</table>
| 0.05 | Trees | Number of Trees 50 Height 45 feet
| | | Diameter 36 in. Ending Milepoint .30
| | | Distance From Road 20 feet
| | | Road Surface Type - Flexible |
| 0.15 | Fault | Fault
| | | Road Surface Type - Flexible |
| 1.05 | Fill | Material Type - Soil Height 8 feet
| | | Side slope 2:1 Length 100 feet
| | | Crest 25 feet Type Fill - Other
| | | Road Surface Type - Flexible |
| 1.06 | Bridge | Number of Spans 4 Over Stream Concrete T-Beam
| | | End 1 Fixed Pier 1 Fixed Pier 2 Fixed
| | | End 2 Fixed |
| | | Deck Type - Concrete Length 132 feet
| | | Width 19 feet Pier Type - Open
| | | SPC Rating - B Surface Type - Flexible
| | | Expansion Type - Other
| | | End 1 Substructure - Stub
| | | End 2 Substructure - Stub
| | | Foundation Type - Unknown
| 1.15 | Power Line | Electrical Power Line 6 Lines Height 30 feet
| | | Wood Support Structure Unknown Volts
| | | Road Surface Type - Flexible |
| 1.15 | Fill | Material Type - Soil Height 8 feet
| | | Side slope 2:1 Length 100 feet
| | | Crest 25 feet Type Fill - Other
| | | Road Surface Type - Flexible |
| 1.50 | Trees | Number of Trees 100 Height 35 feet
| | | Diameter 15 in. Ending Milepoint 1.90
| | | Distance From Road 30 feet
| | | Road Surface Type - Flexible |
Report by County and Milepoint
for Ohio County - Kentucky
KY 136

<table>
<thead>
<tr>
<th>Milepoint</th>
<th>Feature</th>
<th>Data</th>
</tr>
</thead>
</table>
| 2.00 | Trees | Number of Trees 200 Height 35 feet
Diameter 24 in. Ending Milepoint 3.50
Distance From Road 10 feet
Road Surface Type - Flexible |
| 2.20 | Fill | Material Type - Soil Height 8 feet
Side slope 2:1 Length 150 feet
Crest 35 feet Type Fill - Other
Road Surface Type - Flexible |
| 2.42 | Fault | Fault
Road Surface Type - Flexible |
| 2.80 | Other | Lumber Mill
Road Surface Type - Flexible |
| 3.18 | Other | Caved Mine Adit
Road Surface Type - Flexible |
| 3.20 | Fill | Material Type - Soil Height 15 feet
Side slope 2:1 Length 1,000 feet
Crest 30 feet Type Fill - Other
Road Surface Type - Flexible |
| 3.34 | Bridge | Number of Spans 5 Over Stream Concrete T-Beam
End 1 Fixed Pier 1 Fixed Pier 2 Fixed
Pier 3 Fixed Pier 4 Fixed End 2 Fixed
Deck Type - Concrete Length 165 feet
Width 19 feet Pier Type - Open
SPC Rating - B Surface Type - Flexible
Expansion Type - Other
End 1 Substructure - Stub
End 2 Substructure - Stub
Foundation Type - Unknown |
| 3.90 | Trees | Number of Trees 20 Height 30 feet
Diameter 16 in. Ending Milepoint 4.10
Distance From Road 10 feet
Road Surface Type - Flexible |
Report by County and Milepoint for Ohio County - Kentucky

KY 136

<table>
<thead>
<tr>
<th>Milepoint</th>
<th>Feature</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.15</td>
<td>Trees</td>
<td>Number of Trees 3 Height 70 feet Diameter 36 in. Ending Milepoint 4.15 Distance From Road 20 feet Road Surface Type - Flexible</td>
</tr>
<tr>
<td>4.58</td>
<td>Fault</td>
<td>Fault Road Surface Type - Flexible</td>
</tr>
<tr>
<td>4.80</td>
<td>Trees</td>
<td>Number of Trees 5 Height 45 feet Diameter 30 in. Ending Milepoint 4.81 Distance From Road 15 feet Road Surface Type - Flexible</td>
</tr>
<tr>
<td>5.67</td>
<td>Bridge</td>
<td>Number of Spans 2 Over Stream Concrete T-Beam End 1 Fixed Pier 1 Fixed End 2 Fixed Deck Type - Concrete Length 53 feet Width 23 feet Pier Type - Solid SPC Rating - B Surface Type - Flexible Expansion Type - Other End 1 Substructure - Full End 2 Substructure - Full Foundation Type - Unknown</td>
</tr>
<tr>
<td>5.75</td>
<td>Fill</td>
<td>Material Type - Soil Height 10 feet Side slope 2:1 Length 100 feet Crest 30 feet Type Fill - Other Road Surface Type - Flexible</td>
</tr>
<tr>
<td>5.95</td>
<td>Fill</td>
<td>Material Type - Soil Height 10 feet Side slope 3:2 Length 100 feet Crest 25 feet Type Fill - Other Road Surface Type - Flexible</td>
</tr>
<tr>
<td>6.01</td>
<td>Bridge</td>
<td>Number of Spans 1 Over Stream Concrete T-Beam End 1 Fixed End 2 Fixed Deck Type - Concrete Length 53 feet Width 19 feet Pier Type - Solid SPC Rating - B Surface Type - Flexible Expansion Type - Other End 1 Substructure - Full End 2 Substructure - Full Foundation Type - Unknown</td>
</tr>
</tbody>
</table>
Report by County and Milepoint
for Ohio County - Kentucky
KY 136

<table>
<thead>
<tr>
<th>Milepoint</th>
<th>Feature</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.05</td>
<td>Fill</td>
<td>Material Type - Soil Height 10 feet Side slope 3:2 Length 500 feet Crest 25 feet Type Fill - Other Road Surface Type - Flexible</td>
</tr>
<tr>
<td>6.05</td>
<td>Trees</td>
<td>Number of Trees 20 Height 30 feet Diameter 12 in. Ending Milepoint 6.15 Distance From Road 20 feet Road Surface Type - Flexible</td>
</tr>
<tr>
<td>6.50</td>
<td>Other</td>
<td>Small Pond Road Surface Type - Flexible</td>
</tr>
<tr>
<td>7.30</td>
<td>Trees</td>
<td>Number of Trees 50 Height 40 feet Diameter 18 in. Ending Milepoint 7.40 Distance From Road 15 feet Road Surface Type - Flexible</td>
</tr>
<tr>
<td>7.45</td>
<td>Fill</td>
<td>Material Type - Soil Height 30 feet Side slope 1:1 Length 100 feet Crest 25 feet Type Fill - Other Road Surface Type - Flexible</td>
</tr>
<tr>
<td>7.50</td>
<td>Cut</td>
<td>Cut Slope Type - Soil Height 15 feet Length 100 feet Backslope 1:1 Road Surface Type - Flexible</td>
</tr>
<tr>
<td>7.70</td>
<td>Other</td>
<td>Small Ponds Road Surface Type - Flexible</td>
</tr>
<tr>
<td>8.50</td>
<td>Trees</td>
<td>Number of Trees 8 Height 40 feet Diameter 18 in. Ending Milepoint 8.51 Distance From Road 15 feet Road Surface Type - Flexible</td>
</tr>
<tr>
<td>8.80</td>
<td>Pipeline</td>
<td>Pipeline Type - Gas Road Surface Type - Flexible</td>
</tr>
</tbody>
</table>
Report by Road and Milepoint for Ohio County - Kentucky

KY 136

<table>
<thead>
<tr>
<th>Milepoint</th>
<th>Feature</th>
<th>Data</th>
</tr>
</thead>
</table>
| 8.85 | Trees | Number of Trees 20 Height 40 feet
Diameter 18 in. Ending Milepoint 8.86
Distance From Road 15 feet
Road Surface Type - Flexible |
| 9.20 | Power Line| Electrical Power Line 3 Lines Height 30 feet
Wood Support Structure Unknown Volts
Road Surface Type - Flexible |
| 9.50 | Other | Junction US 231 Heading Northwest-Southeast
Road Surface Type - Flexible |
| 9.50 | Other | End KY 136 Quake Study
Road Surface Type - Flexible |
<table>
<thead>
<tr>
<th>Milepoint</th>
<th>Feature</th>
<th>Data</th>
</tr>
</thead>
</table>
| 0.00 | Other | Ohio Co - Butler Co Boundary
Road Surface Type - Flexible |
| 0.10 | Fill | Material Type - Soil
Height 15 feet
Side slope 2:1
Length 100 feet
Crest 20 feet
Type Fill - Other
Road Surface Type - Flexible |
| 0.40 | Fill | Material Type - Soil
Height 15 feet
Side slope 2:1
Length 100 feet
Crest 20 feet
Type Fill - Other
Road Surface Type - Flexible |
| 1.50 | Fill | Material Type - Soil
Height 1 feet
Side slope 2:1
Length 100 feet
Crest 20 feet
Type Fill - Other
Road Surface Type - Flexible |
| 1.60 | Trees | Number of Trees 1
Height 40 feet
Diameter 36 in.
Ending Milepoint 1.60
Distance From Road 15 feet
Road Surface Type - Flexible |
| 1.70 | Other | Junction KY 505 Heading Northwest
Road Surface Type - Flexible |
| 2.30 | Trees | Number of Trees 1
Height 45 feet
Diameter 30 in.
Ending Milepoint 2.30
Distance From Road 15 feet
Road Surface Type - Flexible |
| 2.40 | Pipeline | Pipeline Type - Natural Gas
Road Surface Type - Flexible |
| 2.60 | Trees | Number of Trees 2
Height 45 feet
Diameter 28 in.
Ending Milepoint 2.61
Distance From Road 15 feet
Road Surface Type - Flexible |
<table>
<thead>
<tr>
<th>Milepoint</th>
<th>Feature</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.90</td>
<td>Trees</td>
<td>Number of Trees 5 Height 35 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diameter 18 in. Ending Milepoint 2.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distance From Road 12 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>3.60</td>
<td>Trees</td>
<td>Number of Trees 10 Height 30 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diameter 18 in. Ending Milepoint 3.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distance From Road 12 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>5.10</td>
<td>Trees</td>
<td>Number of Trees 10 Height 30 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diameter 16 in. Ending Milepoint 5.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distance From Road 10 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>5.10</td>
<td>Power Line</td>
<td>Electrical Power Line 3 Lines Height 20 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wood Support Structure Unknown Volts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>5.35</td>
<td>Fill</td>
<td>Material Type - Soil Height 18 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Side slope 2:1 Length 30 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crest 25 feet Type Fill - Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>5.60</td>
<td>Trees</td>
<td>Number of Trees 20 Height 35 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diameter 16 in. Ending Milepoint 6.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distance From Road 10 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>5.80</td>
<td>Other</td>
<td>Junction KY 269 Heading South</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>5.85</td>
<td>Fill</td>
<td>Material Type - Soil Height 10 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Side slope 2:1 Length 30 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crest 24 feet Type Fill - Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
</tbody>
</table>
Report by County and Milepoint
for Ohio County - Kentucky
US 231

<table>
<thead>
<tr>
<th>Milepoint</th>
<th>Feature</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.32</td>
<td>Trees</td>
<td>Number of Trees 15 Height 35 feet Diameter 16 in. Ending Milepoint 6.40 Distance From Road 12 feet Road Surface Type - Flexible</td>
</tr>
<tr>
<td>6.60</td>
<td>Power Line</td>
<td>Electrical Power Line 3 Lines Height 40 feet Steel Support Structure Unknown Volts Road Surface Type - Flexible</td>
</tr>
<tr>
<td>6.70</td>
<td>Bridge</td>
<td>Number of Spans 3 Overpass Concrete T-Beam End 1 Fixed Pier 1 Fixed Pier 2 Fixed End 2 Fixed Deck Type - Concrete Length 75 feet Width 25 feet Pier Type - Open SPC Rating - B Surface Type - Flexible Expansion Type - Other End 1 Substructure - Stub End 2 Substructure - Stub Foundation Type - Unknown</td>
</tr>
<tr>
<td>6.70</td>
<td>Other</td>
<td>Two Bridges - Same Data For Both Road Surface Type - Flexible</td>
</tr>
<tr>
<td>6.70</td>
<td>Other</td>
<td>Junction Western KY Parkway Heading East-West Road Surface Type - Flexible</td>
</tr>
<tr>
<td>7.20</td>
<td>Power Line</td>
<td>Electrical Power Line 3 Lines Height 30 feet Wood Support Structure Unknown Volts Road Surface Type - Flexible</td>
</tr>
<tr>
<td>7.30</td>
<td>Power Line</td>
<td>Electrical Power Line 3 Lines Height 30 feet Wood Support Structure Unknown Volts Road Surface Type - Flexible</td>
</tr>
<tr>
<td>7.70</td>
<td>Fill</td>
<td>Material Type - Soil Height 20 feet Side slope 3:1 Length 300 feet Crest 40 feet Type Fill - Other Road Surface Type - Flexible</td>
</tr>
</tbody>
</table>
Report by County and Milepoint
for Ohio County - Kentucky
US 231

<table>
<thead>
<tr>
<th>Milepoint</th>
<th>Feature</th>
<th>Data</th>
</tr>
</thead>
</table>
| 8.55 | Fill | Material Type - Soil Height 30 feet
 Side slope 2:1 Length 30 feet
 Crest 40 feet Type Fill - Other
 Road Surface Type - Flexible |
| 8.81 | Other | Strip Mine - Runs to 9.36 Milepoint
 Road Surface Type - Flexible |
| 8.85 | Sign | Overhead Sign Height 25 feet
 Area 45 square feet
 Road Surface Type - Flexible
 Aluminum Support Structure |
| 9.30 | Other | Junction KY 369 Heading South
 Road Surface Type - Flexible |
| 9.50 | Other | City of Hartford
 Road Surface Type - Flexible |
| 10.00 | Trees | Number of Trees 2 Height 40 feet
 Diameter 36 in. Ending Milepoint 10.00
 Distance From Road 5 feet
 Road Surface Type - Flexible |
| 10.00 | Other | Mileposts Inaccurate Inside City Limits
 Road Surface Type - Flexible |
| 10.00 | Other | City of Beaver Dam
 Road Surface Type - Flexible |
| 10.70 | Other | Junction US 62 Heading West
 Road Surface Type - Flexible |
| 11.46 | Bridge | Number of Spans 4 Over Stream Concrete T-Beam
 End 1 Fixed Pier 1 Fixed Pier 2 Fixed
 Pier 3 Fixed End 2 Fixed
 Deck Type - Concrete Length 132 feet
 Width 24 feet Pier Type - Solid
 SPC Rating - B Surface Type - Flexible
 Expansion Type - Other
 End 1 Substructure - Stub
 End 2 Substructure - Stub
 Foundation Type - Unknown |
Milepoint Feature Data

Milepoint: 11.80
Feature: Fill
Data: Material Type - Soil
Height: 15 feet
Side slope: 2:1
Length: 500 feet
Crest: 30 feet
Type: Fill - Other
Road Surface Type: Flexible

Milepoint: 11.95
Feature: Bridge
Data: Number of Span: 4
Over Stream: Concrete T-Beam
End 1 Fixed
Pier 1 Fixed
Pier 2 Fixed
Pier 3 Fixed
End 2 Fixed
Deck Type: Concrete
Length: 132 feet
Width: 24 feet
Pier Type: Open
SPC Rating: B
Surface Type: Flexible
Expansion Type: Other
End 1 Substructure: Stub
End 2 Substructure: Stub
Foundation Type: Unknown

Milepoint: 11.95
Feature: Fill
Data: Material Type - Soil
Height: 15 feet
Side slope: 2:1
Length: 250 feet
Crest: 40 feet
Type: Fill - Other
Road Surface Type: Flexible

Milepoint: 12.10
Feature: Other
Data: Junction KY 69 Heading Northeast
Road Surface Type: Flexible

Milepoint: 12.25
Feature: Fill
Data: Material Type - Soil
Height: 10 feet
Side slope: 2:1
Length: 30 feet
Crest: 35 feet
Type: Fill - Other
Road Surface Type: Flexible

Milepoint: 12.30
Feature: Bridge
Data: Number of Span: 1
Overpass: Concrete T-Beam
End 1 Fixed
End 2 Fixed
Deck Type: Concrete
Length: 32 feet
Width: 32 feet
Pier Type: Unknown
SPC Rating: B
Surface Type: Flexible
Expansion Type: Other
End 1 Substructure: Full
End 2 Substructure: Full
Foundation Type: Unknown
Report by County and Milepoint
for Ohio County - Kentucky
US 231

<table>
<thead>
<tr>
<th>Milepoint</th>
<th>Feature</th>
<th>Data</th>
</tr>
</thead>
</table>
| 12.35 | Fill | Material Type - Soil Height 10 feet
 | | Side slope 2:1 Length 30 feet
 | | Crest 35 feet Type Fill - Other
 | | Road Surface Type - Flexible |
| 13.20 | Other | Junction KY 1543 Heading Southeast
 | | Road Surface Type - Flexible |
| 13.20 | Other | Junction KY 69 Heading Southeast
 | | Road Surface Type - Flexible |
| 13.32 | Bridge | Number of Spans 3 Steel Girder I-Beam
 | | Bridge Type - Over Stream
 | | End 1 Rocker Pier 1 Rocker Pier 2 Rocker
 | | END 2 Rocker
 | | Deck Type - Concrete Length 219 feet
 | | Width 24 feet Pier Type - Solid
 | | SPC Rating - B Surface Type - Flexible
 | | Expansion Type - Other
 | | End 1 Substructure - Stub
 | | End 2 Substructure - Stub
 | | Foundation Type - Unknown |
| 13.40 | Fill | Material Type - Soil Height 10 feet
 | | Side slope 2:1 Length 150 feet
 | | Crest 30 feet Type Fill - Other
 | | Road Surface Type - Flexible |
| 13.49 | Bridge | Number of Spans 6 Concrete T-Beam
 | | Bridge Type Unknown
 | | End 1 Fixed Pier 1 Fixed Pier 2 Fixed
 | | Pier 3 Fixed Pier 4 Fixed Pier 5 Fixed
 | | End 2 Fixed
 | | Deck Type - Concrete Length 198 feet
 | | Width 24 feet Pier Type - Solid
 | | SPC Rating - B Surface Type - Flexible
 | | Expansion Type - Other
 | | End 1 Substructure - Full
 | | End 2 Substructure - Full
<pre><code> | | Foundation Type - Unknown |
</code></pre>
<table>
<thead>
<tr>
<th>Milepoint</th>
<th>Feature</th>
<th>Data</th>
</tr>
</thead>
</table>
| 13.50 | Fill | Material Type: Soil Height: 12 feet
| | | Side slope: 2:1 Length: 1,500 feet
| | | Crest: 35 feet Type: Fill - Other
| | | Road Surface Type: Flexible |
| 13.85 | Other | Bridge Use: 13.45 milepoint
| | | Data Road Surface Type: Flexible |
| 13.88 | Bridge | Number of Spans: 6
| | | Overpass: Concrete
| | | T-Beam
| | | End 1 Fixed Pier 1 Fixed Pier 2 Fixed
| | | Pier 3 Fixed Pier 4 Fixed Pier 5 Fixed
| | | End 2 Fixed
| | | Deck Type: Concrete Length: 198 feet
| | | Width: 24 feet
| | | Pier Type: Open
| | | SPC Rating: B
| | | Surface Type: Flexible
| | | Expansion Type: Other
| | | End 1 Substructure: Stub
| | | End 2 Substructure: Stub
| | | Foundation Type: Unknown |
| 13.90 | Fill | Material Type: Soil Height: 15 feet
| | | Side slope: 2:1 Length: 1,200 feet
| | | Crest: 35 feet Type: Fill - Other
| | | Road Surface Type: Flexible |
| 14.12 | Bridge | Number of Spans: 3
| | | Over Stream: Concrete
| | | I-Beam
| | | End 1 Fixed Pier 1 Neoprene Pier 2 Neoprene
| | | End 2 Fixed
| | | Deck Type: Concrete Length: 212 feet
| | | Width: 30 feet
| | | Pier Type: Solid
| | | SPC Rating: B
| | | Surface Type: Flexible
| | | Expansion Type: Poured Compression
| | | End 1 Substructure: Stub
| | | End 2 Substructure: Stub
| | | Foundation Type: Unknown |
| 14.15 | Fill | Material Type: Soil Height: 15 feet
| | | Side slope: 3:1 Length: 800 feet
| | | Crest: 35 feet Type: Fill - Other
| | | Road Surface Type: Flexible |
Report by County and Milepoint
for **Ohio County - Kentucky**
US 231

<table>
<thead>
<tr>
<th>Milepoint</th>
<th>Feature</th>
<th>Data</th>
</tr>
</thead>
</table>
| 14.40 | Pipeline| Pipeline Type - Gas
Road Surface Type - Flexible |
| 14.50 | Pipeline| Pipeline Type - Gas
Road Surface Type - Flexible |
| 14.80 | Other | Junction KY 136 Heading Northwest
Road Surface Type - Flexible |
| 15.30 | Fill | Material Type - Soil
Height 15 feet
Side slope 3:2
Length 150 feet
Crest 30 feet
Type Fill - Other
Road Surface Type - Flexible |
| 15.60 | Other | Junction KY 1737 Heading North
Road Surface Type - Flexible |
| 15.70 | Fill | Material Type - Soil
Height 10 feet
Side slope 5:2
Length 500 feet
Crest 30 feet
Type Fill - Other
Road Surface Type - Flexible |
| 15.80 | Bridge | Number of Spans 3
Over Stream Concrete T-Beam
End 1 Fixed
Pier 1 Fixed
Pier 2 Fixed
End 2 Fixed
Deck Type - Concrete
Length 69 feet
Width 26 feet
Pier Type - Open
SPC Rating - B
Surface Type - Flexible
Expansion Type - Other
End 1 Substructure - Stub
End 2 Substructure - Stub
Foundation Type - Unknown |
| 15.85 | Fill | Material Type - Soil
Height 10 feet
Side slope 5:2
Length 200 feet
Crest 30 feet
Type Fill - Other
Road Surface Type - Flexible |
Report by County and Milepoint for Ohio County - Kentucky
US 231

<table>
<thead>
<tr>
<th>Milepoint</th>
<th>Feature</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.63</td>
<td>Fault</td>
<td>Fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>16.70</td>
<td>Fill</td>
<td>Material Type - Soil Height 20 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Side slope 2:1 Length 200 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crest 28 feet Type Fill - Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>16.80</td>
<td>Other</td>
<td>Residential Gas Pipeline</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>16.85</td>
<td>Fill</td>
<td>Material Type - Soil Height 20 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Side slope 2:1 Length 200 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crest 28 feet Type Fill - Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>17.15</td>
<td>Fill</td>
<td>Material Type - Soil Height 20 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Side slope 2:1 Length 200 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crest 28 feet Type Fill - Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>17.25</td>
<td>Other</td>
<td>Abandoned Coal Adit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>17.40</td>
<td>Pipeline</td>
<td>Pipeline Type - Gas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>17.60</td>
<td>Fill</td>
<td>Material Type - Soil Height 20 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Side slope 2:1 Length 100 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crest 30 feet Type Fill - Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>17.70</td>
<td>Pipeline</td>
<td>Pipeline Type - Gas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>18.05</td>
<td>Power Line</td>
<td>Electrical Power Line 3 Lines Height 30 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wood Support Structure Unknown Volts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
</tbody>
</table>
Report by County and Milepoint
for Ohio County - Kentucky

US 231

<table>
<thead>
<tr>
<th>Milepoint</th>
<th>Feature</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.29</td>
<td>Fault</td>
<td>Fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>18.40</td>
<td>Fill</td>
<td>Material Type - Soil Height 20 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Side slope 2:1 Length 100 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crest 30 feet Type Fill - Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>18.70</td>
<td>Pipeline</td>
<td>Pipeline Type - Gas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>18.70</td>
<td>Fill</td>
<td>Material Type - Soil Height 20 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Side slope 2:1 Length 200 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crest 30 feet Type Fill - Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>18.87</td>
<td>Fault</td>
<td>Fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>19.30</td>
<td>Pipeline</td>
<td>Pipeline Type - Gas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>19.35</td>
<td>Fill</td>
<td>Material Type - Soil Height 20 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Side slope 2:1 Length 200 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crest 30 feet Type Fill - Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>19.40</td>
<td>Pipeline</td>
<td>Pipeline Type - Gas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>19.48</td>
<td>Fault</td>
<td>Fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>19.54</td>
<td>Fault</td>
<td>Fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>19.55</td>
<td>Other</td>
<td>Pond - (60 x 60) feet, 30 feet from Road</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
</tbody>
</table>
Report by County and Milepoint for Ohio County - Kentucky
US 231

<table>
<thead>
<tr>
<th>Milepoint</th>
<th>Feature</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.55</td>
<td>Fill</td>
<td>Material Type - Soil Height 20 feet Side slope 2:1 Length 200 feet Crest 30 feet Type Fill - Other Road Surface Type - Flexible</td>
</tr>
<tr>
<td>19.75</td>
<td>Fault</td>
<td>Fault Road Surface Type - Flexible</td>
</tr>
<tr>
<td>19.86</td>
<td>Fault</td>
<td>Fault Road Surface Type - Flexible</td>
</tr>
<tr>
<td>20.00</td>
<td>Trees</td>
<td>Number of Trees 50 Height 35 feet Diameter 16 in. Ending Milepoint 20.10 Distance From Road 12 feet Road Surface Type - Flexible</td>
</tr>
<tr>
<td>20.05</td>
<td>Fault</td>
<td>Fault Road Surface Type - Flexible</td>
</tr>
<tr>
<td>20.10</td>
<td>Cut</td>
<td>Cut Slope Type - Rock Height 25 feet Length 200 feet Backslope 1:1 Road Surface Type - Flexible</td>
</tr>
<tr>
<td>20.20</td>
<td>Other</td>
<td>Junction KY 1414 Heading East Road Surface Type - Flexible</td>
</tr>
<tr>
<td>20.20</td>
<td>Fault</td>
<td>Fault Road Surface Type - Flexible</td>
</tr>
<tr>
<td>20.25</td>
<td>Fill</td>
<td>Material Type - Soil Height 10 feet Side slope 2:1 Length 200 feet Crest 30 feet Type Fill - Other Road Surface Type - Flexible</td>
</tr>
<tr>
<td>Milepoint</td>
<td>Feature</td>
<td>Data</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>20.30</td>
<td>Bridge</td>
<td>Number of Spans 4 Over Stream Concrete T-Beam
End 1 Fixed Pier 1 Fixed Pier 2 Fixed
Pier 3 Fixed End 2 Fixed
Deck Type - Concrete Length 132 feet
Width 26 feet Pier Type - Open
SPC Rating - B Surface Type - Flexible
Expansion Type - Other
End 1 Substructure - Stub
End 2 Substructure - Stub
Foundation Type - Unknown</td>
</tr>
<tr>
<td>20.35</td>
<td>Fill</td>
<td>Material Type - Soil Height 10 feet
Side slope 2:1 Length 150 feet
Crest 55 feet Type Fill - Other
Road Surface Type - Flexible</td>
</tr>
<tr>
<td>21.25</td>
<td>Fill</td>
<td>Material Type - Soil Height 25 feet
Side slope 2:1 Length 150 feet
Crest 30 feet Type Fill - Other
Road Surface Type - Flexible</td>
</tr>
<tr>
<td>21.40</td>
<td>Fill</td>
<td>Material Type - Soil Height 25 feet
Side slope 2:1 Length 150 feet
Crest 30 feet Type Fill - Other
Road Surface Type - Flexible</td>
</tr>
<tr>
<td>21.50</td>
<td>Fill</td>
<td>Material Type - Soil Height 15 feet
Side slope 2:1 Length 100 feet
Crest 30 feet Type Fill - Other
Road Surface Type - Flexible</td>
</tr>
<tr>
<td>21.65</td>
<td>Fill</td>
<td>Material Type - Soil Height 20 feet
Side slope 2:1 Length 250 feet
Crest 30 feet Type Fill - Other
Road Surface Type - Flexible</td>
</tr>
<tr>
<td>21.90</td>
<td>Fill</td>
<td>Material Type - Soil Height 20 feet
Side slope 2:1 Length 250 feet
Crest 30 feet Type Fill - Other
Road Surface Type - Flexible</td>
</tr>
<tr>
<td>Milepoint</td>
<td>Feature</td>
<td>Data</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>22.59</td>
<td>Other</td>
<td>Pond: (150 x 200) feet, 70 feet from Road</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>22.60</td>
<td>Fill</td>
<td>Material Type - Soil Height 20 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Side slope 2:1 Length 150 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crest 25 feet Type Fill - Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>22.80</td>
<td>Fill</td>
<td>Material Type - Soil Height 20 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Side slope 2:1 Length 150 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crest 25 feet Type Fill - Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>22.90</td>
<td>Pipeline</td>
<td>Pipeline Type - Gas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>23.30</td>
<td>Fill</td>
<td>Material Type - Soil Height 15 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Side slope 2:1 Length 75 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crest 28 feet Type Fill - Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>23.70</td>
<td>Fill</td>
<td>Material Type - Soil Height 25 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Side slope 2:1 Length 75 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crest 28 feet Type Fill - Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>23.90</td>
<td>Pipeline</td>
<td>Pipeline Type - Natural Gas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>24.15</td>
<td>Fill</td>
<td>Material Type - Soil Height 30 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Side slope 2:1 Length 200 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crest 35 feet Type Fill - Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>24.30</td>
<td>Other</td>
<td>Daviess Co - Ohio Co Boundary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
</tbody>
</table>