Earthquake Hazard Mitigation of Transportation Facilities for Carlisle County

Bobby W. Meade* David L. Allen† Vincent P. Drnevich‡

*University of Kentucky, bobby.meade@uky.edu
†University of Kentucky, dallen@engr.uky.edu
‡University of Kentucky
This paper is posted at UKnowledge.
https://uknowledge.uky.edu/ktc_researchreports/624
Research Report
KTC-89-25

EARTHQUAKE HAZARD MITIGATION OF
TRANSPORTATION FACILITIES
FOR CARLISLE COUNTY

by
Bobby W. Meade
Research Investigator

David L. Allen
Chief Research Engineer

and
Vincent P. Drnevich
Professor of Civil Engineering

Kentucky Transportation Center
College of Engineering
University of Kentucky
Lexington, Kentucky

in cooperation with
Transportation Cabinet
Commonwealth of Kentucky

and

Federal Highway Administration
U.S. Department of Transportation

The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Kentucky, the Kentucky Transportation Cabinet, nor the Federal Highway Administration. This report does not constitute a standard, specification, or regulation. The inclusion of manufacturer names and tradenames are for identification purposes and are not to be considered as endorsements.

June 1989
Concern has grown in recent years over the seismic activity of the New Madrid seismic zone in Western Kentucky. Carlisle County, Kentucky is located in this region. To permit emergency medical, supply, and equipment traffic into this area after an earthquake has occurred, the Kentucky Transportation Cabinet is interested in the possibility of keeping selected routes passable. This report lists the routes that have been investigated and recommended as being the routes in Carlisle County that should be maintained in a passable condition. The recommended routes, Ky 121 and US 62, have been visually surveyed and all seismically significant features cataloged. These features are logged by their location on strip maps contained in Appendix A and a detailed listing of all the potentially critical features is given in Appendix B.
INTRODUCTION

An awareness of earthquakes and their possible effects upon the nation's infrastructure is critically important to the public, and in particular, to public officials. The nation's highway system is one of the most important components of the infrastructure. After the occurrence of an earthquake, the highway system is the primary mode of transporting emergency supplies and services into an affected area. Thus, it is important to catalog the important components of the highway system and attempt to anticipate the possible damage to these components from an earthquake.

Western Kentucky in general and Carlisle County in particular are in a high risk earthquake zone. In 1811-1812, three of the most severe earthquakes in American history shook the country. The location of these quakes was not on the infamous San Andreas fault nor anywhere along the well-known fault laden Pacific coast but was near a small town on the Mississippi River where the states of Kentucky and Missouri share a border (Figure 1). It is this river town, New Madrid, Missouri, that is the namesake of a region now regarded by seismologists and disaster response planners as the most hazardous earthquake zone east of the Rocky Mountains -- the New Madrid seismic zone.

In addition to these three great earthquakes, there are several other well documented factors demonstrating the susceptibility of the New Madrid region to the recurrence of major earthquakes. Through a decade of extensive research, an ancient crustal rift has been found to underlie the relatively shallow sediments comprising the region's surface. This type of geologic structure is prone to seismic activity. The New Madrid rift has been identified as being of sufficient size to generate major earthquakes. Further evidence of the area's seismicity is the record of over 2,000 earthquakes detected in the zone since 1974. Though most have been of a magnitude below the threshold of human perception, their existence clearly indicates the high level of seismic activity occurring in the zone.

Seismologists have calculated the probabilities of recurrence of sizeable earthquakes in the New Madrid rift zone. The probability of a magnitude 6.3 earthquake (Richter scale) within 50 years is from 86 to 97 percent. The probability (1) of that same earthquake occurring within the next 15 years is from 40 to 63 percent. For comparison, the 1971 San Fernando earthquake (magnitude 6.6) killed 58 people and caused $480 million worth of damage. The 1988 Armenian earthquake of similar magnitude killed approximately 25,000 to 30,000 people.

The probability of a magnitude 7.6 earthquake occurring within 50 years is from 19 to 29 percent. The probability for this size earthquake occurring within 15 years drops to a range of 5.4 to 8.7 percent. On February 4, 1975, the Haicheng earthquake in China had a magnitude of 7.3 and destroyed or damaged about 90 percent of the structures in a city of 90,000 people.

When comparing historical earthquakes of similar magnitude, one must take into consideration that death totals and damage estimates will vary greatly due to the geology, population density, types of building, and quality of construction.
For a given earthquake, effects at a given location are described by the Modified Mercalli Intensity (MMI) scale (2) which ranges from I (no damage and felt only by instruments) to XII (total destruction). Details of the MMI scale are given in Table 1. Values of MMI associated with the 1811-1812 earthquakes are shown in Figure 1. The potential for damage and destruction from earthquakes in the region is significant.

In 1982, the Governor's Task Force on Earthquake Hazards and Safety was created to evaluate Kentucky's earthquake risk and to make recommendations for responding to those risks. This task force recommended increased public awareness and education programs, improved emergency response planning and training, improved building codes and seismic restraint designs, evaluation of other mitigation measures, and participation in national and regional earthquake forums and funding programs.

In 1984, Governor Collins created the Governor's Earthquake Hazards and Safety Technical Advisory Panel (GEHSTAP) to analyze scientific and engineering data regarding seismic risks in Kentucky and to make specific recommendations on mitigation, public awareness, response planning, and policy development for public health and safety. The States are dependent on their highway systems for the movement of goods and services. Due to the possible adverse effects a major earthquake could have on this system, the Earthquake Stability and Transportation Subcommittee (ESTS) of GEHSTAP was formed.

ESTS has encouraged the Kentucky Transportation Cabinet to secure funding for generating and implementing an earthquake hazard mitigation plan in an attempt to safeguard the highway system against catastrophic earthquake failure. As a result, the Cabinet commissioned the Kentucky Transportation Center at the University of Kentucky to analyze and assess the possible effects of an earthquake on highway facilities. The study area includes the 26 western-most counties in Kentucky that are adjacent to the New Madrid seismic zone (Figure 1). To date, one of the results of that study has been the recommendation that over 1,000 miles of highways in the study area be utilized as emergency or "priority" routes. These would be the primary routes used for transporting emergency supplies and personnel after an earthquake. Also, it is anticipated that these would be the first routes repaired after an earthquake.

The initial task in identifying these priority routes was to decide where they should begin; that is, in the event of a major earthquake, the point at which the transport of goods and services would originate. Ideally, the city chosen should possess the following attributes:

1. Sufficient size to contain all necessary personnel, supplies, and facilities to respond quickly to a major emergency;
2. Proximity to the high hazard area to speed the relief effort but not so close as to suffer the same high risk potential;
3. Easy access from other major cities in the State; and
4. Sufficient routes to provide relatively direct access to all 26
The city best fitting these criteria is Bowling Green. Located at the eastern edge of the earthquake zone in Warren County, Bowling Green meets both the size criterion (population 40,450) and the accessibility criterion (Louisville and Nashville via I 65 and Lexington via the Bluegrass Parkway). Bowling Green provides access to the 26-county area via US 68/KY 80; this road was chosen as the main east-west artery because it crosses Lake Barkley and Kentucky Lake upstream from the dams impounding those bodies of water.

As a first step towards establishing an overall policy for earthquake hazard mitigation in the highway system, these priority routes have been visually surveyed and all natural and man-made features along these routes that are considered seismically significant were cataloged. With this information, a realistic and cost-effective plan for "hardening" these routes against earthquakes can be established. Such efforts are currently under way.

PRIORITY ROUTES IN CARLISLE COUNTY

Carlisle County is located approximately 35 miles northeast of the center of the New Madrid Seismic Zone. Figure 1 indicates that approximately 70 percent of Carlisle County is in the X band of the MMI scale with the remainder in the IX band. This indicates considerable damage could occur in Carlisle County in the event of a major earthquake.

KY 121 and US 62 have been designated as the priority routes in Carlisle County. There are two basic routes in the county with KY 121 begining at the Graves County line and continuing north 9.70 miles to the Ballard County line. US 62 begins at the city of Bardwell and continues east 6.15 miles to a junction with KY 121.

A number of features along these priority routes could potentially hamper rescue and relief efforts. These features included bridges, soil fills, cut slopes, gas pipelines, power lines, water towers, geologic faults, large trees, mines, water impoundments, and swamps. These features are logged by their location on strip maps contained in Appendix A and a detailed listing of all potentially critical features is given in Appendix B.

BRIDGES

Bridges are the most significant and important features on the priority route. With few exceptions, existing highway bridges in the study area have not been designed to resist motions and forces that may be generated by earthquakes. Bridges located within the seismic zone could possibly be damaged, thus reducing their load-carrying ability. In some cases, damage could be sufficiently great to cause complete collapse. Several types of damage could occur:

1. A bridge could fail at the bearing which supports the main spans, causing the spans to fall from the bearings and possibly from the piers or abutments.

2. Failure could occur in the columns, piers, or footings which would reduce the load-carrying capacity of the bridge, if the bridge was still in place.
3. An abutment could tilt allowing the entire span to fall.

4. Soil movement or slumping could affect the bridge approach fills, damaging the abutments or piers, or making the bridge inaccessible.

There are two bridges on KY 121 and two on US 62. The bridges are located at:

KY 121
1. Drainage ditch, and
2. Mayfield drainage ditch.

US 62
1. Little Mayfield Creek, and
2. Fork of Hurricane Creek.

Current research is studying the effects that an earthquake could have on these bridges and their approach fills.

FILLS

Highway fills are particularly important because of their tendency to fail from seismically induced motions. Fills fail in one of two major modes. The first is a generalized circular or wedge-shaped failure resulting in one or both traffic lanes moving down and out. If both lanes failed, this would certainly render the route impassable and immediate repairs would be necessary. The second mode of failure is a general slumping or settling of the embankment. The roadway would probably remain passable if settlement or slumping were not severe but reduced speed limits would be required for safety.

Large fills on the priority routes in Carlisle County are located as follows:

KY 121
1. From 0.00 mile to 5.10 miles there are twelve (12) fills,
2. Approach fills for the drainage ditch bridge, and
3. Approach fills for the Mayfield drainage ditch bridge.

US 62
1. Approach fills for the Little Mayfield Creek bridge, and
2. Approach fills for the Fork of Hurricane Creek bridge.

GAS PIPELINES

Gas pipelines under or near a priority route could fail in the event of an earthquake. If a pipeline failed, an explosion might destroy a section of the priority route. Repair could be delayed by further gas leaks, fire, and/or additional explosions.

It appears that most of the pipelines in Carlisle County were constructed with little or no seismic considerations. Gas pipelines near priority routes are located at:

KY 121
1. 0.18 mile south and 0.02 mile north of the Mayfield drainage ditch bridge.

US 62
1. At the KY 1181 junction and 0.40 mile east of the junction, and
POWER LINES

High voltage power lines also were cataloged during the route surveys. The height of the lines above the roadway were estimated visually. Power company officials speculated that a number of breaks along each power line would occur during a major earthquake. In most cases, fallen lines would not be transmitting power because power would be automatically cut off within a few seconds in the event of a break.

In addition to the potential problem of live power lines, power line support towers could fall across and block a priority route. Power lines cross the priority routes at the following locations:

1. KY 121
 a. 0.40 mile south of the KY 307 junction.

1. US 62
 a. 0.02 mile east of the US 51 junction.

WATER IMPOUNDMENTS

Small impoundments such as large farm ponds could be a problem area. Ponds which have large earthen dams that lie above the road surface could collapse during an earthquake and wash out a section of a priority route. Ponds which lie below the road surface and are adjacent to the toe of the fill could cause failures in the fill during an earthquake due to the high moisture content.

Two ponds are located adjacent to KY 121. The ponds are 0.45 mile south and 1.80 mile north of the KY 307 junction.

SWAMPS

KY 121 is constructed over swamps 0.83 mile south of the drainage ditch bridge and 0.32 mile north of the Mayfield drainage ditch bridge. Priority routes that are constructed over or adjacent to swamps will probably be damaged during an earthquake. The high water tables penetrate the underlying road bed and weaken the soil structure. During an earthquake, the structure will be further weakened and large vertical displacements in the road surface are likely to occur.

NATURAL GAS PUMPING STATION

A gas pumping station is located 0.42 mile east of the Little Mayfield Creek bridge on US 62. This facility could suffer damage during an earthquake which could result in a fire and/or explosion and closure of the priority route.

SILOS

There are five grain silos located 0.20 mile west of the KY 1372 junction on US 62. The silos could be damaged during an earthquake and block the priority route.

MINES

There is a gravel pit 0.55 mile south of the US 62 junction on KY 121. A large earthquake could collapse portions of the pit walls and temporarily block or destroy a section of the priority route. Further
inspection should be conducted to determine if this mine constitutes a probable threat to the priority route.

4. 1.64 and 0.55 miles west of the Fork of Hurricane Creek bridge.

TREES

The behavior of trees during an earthquake depends upon many factors including their condition, type, height, and size. Local soil conditions, geometry of the ground surface, and characteristics of the earthquake can also be important. Violent ground motions accompanied by surface rupture and perhaps permanent displacement of the soil surface produce sudden surface accelerations of the ground which can snap and uproot large trees (3).

Trees are so numerous that, if many of them fell, the priority routes could effectively be blocked for several hours or days before emergency crews could clear the debris. Groups of large trees are located near the road at the following sites:

KY 121

1. 2.00, 0.90, and 0.30 mile south of the US 62 junction,
2. 1.00 mile north of the US 62 junction, and
3. 0.03 mile north of the drainage ditch bridge.

US 62

1. In the city of Bardwell,
2. At the KY 1372 junction and 0.70 and 0.90 mile east of the junction,
3. 10.48 miles west of the Little Mayfield Creek bridge, and

ALLUVIUM

Soil maps for Carlisle County indicate that there are large amounts of alluvium present throughout the county. Alluvium is a loose, fine-grain soil which is deposited by flowing water such as creeks and rivers. Due to the nature of the alluvium, ground motions at the surface of the soil can be many times greater than those within the underlying bedrock and temporary liquefaction can occur (Figure 2). An alluvium map for Carlisle County is shown in Figure 3.

CONCLUSIONS

In 1984, ESTS developed a fivefold plan of action for formulating and implementing a seismic mitigation policy for the western Kentucky seismic zone. To date, the Kentucky Transportation Center has established priority routes for all 26 counties in the western Kentucky seismic zone and developed seismic risk maps of all natural and man-made features that are susceptible to earthquake damage that could jeopardize the priority routes.

Current work is being conducted to analyze these features and make recommendations for hardening them against earthquake damage.

Future work involves training key personnel in the Transportation Cabinet in hazard mitigation and seismic safety, which includes bridge inspectors, district engineers, construction inspectors, designers, and maintenance personnel.

Following the education of key personnel, the mitigation plan...
The final step involves the use of relevant seismic codes for all new construction, repair, and maintenance.

REFERENCES

Additional Information

The Commonwealth of Kentucky has prepared a State Emergency Operations Procedures (State EOP) manual that is produced by the Division of Disaster and Emergency Services (DES), Department of Military Affairs, Frankfort, 40601. Annexes H. on Transportation and DD on Earthquakes give additional information on disaster preparedness and response.

A copy of the State EOP and information on local hazard mitigation activities and response preparedness are available from the AREA 2 Office of DES which is located in Hopkinsville. The phone numbers at this office are (502) 564-8602 and (502) 885-7100.

Additional information about the study discussed in this report should be directed to David L. Allen, Project Director, at the Kentucky Transportation Center, (606) 257-4513. Requests to be placed on the mailing list for updated information should be submitted on your company or agency letterhead to the Kentucky Transportation Center at the University of Kentucky, Lexington Kentucky 40506-0043.
Figure 1: The twenty-six counties included in this study area.
Table 1: MODIFIED MERCALLI INTENSITY SCALE

Modified Mercalli Intensity Scale, 1956 Version

The following comments by Dr. Richter precede the published statement of the intensity scale:

. Each effect is named at the level of intensity at which it first appears frequently and characteristically. Each effect may be found less strongly, or in fewer instances, at the next lower grade of intensity; more strongly or more often at the next higher grade. A few effects are named at two successive levels to indicate a more gradual increase.

- Masonry A, B, C, D. To avoid ambiguity of language, the quality of masonry, brick or otherwise, is specified by the following lettering.
- Masonry A. Good workmanship, mortar, and design; reinforced, especially laterally, and bound together by using steel, concrete, etc.; designed to resist lateral forces.
- Masonry B. Good workmanship and mortar, reinforced by not designed in detail to resist lateral forces.
- Masonry C. Ordinary workmanship and mortar; no extreme weakness like failing to tie corners, but neither reinforced nor designed against horizontal forces.
- Masonry D. Weak materials, such as adobe; poor mortar; low standards of workmanship; weak horizontally.

The following list represents the twelve grades of the scale.

I. Not felt. Marginal and long-period effects of large earthquakes.
II. Felt by persons at rest, on upper floors, or favorable placed.
V. Felt outdoors; direction estimated. Sleepers awakened. Liquids disturbed, some spilled. Small unstable objects displaced or upset. Doors swing, close, open. Shutters, pictures move. Pendulum clocks stop, start, change rate.
VIII. Steering of motor cars affected. Damage to masonry C; partial collapse. Some damage to masonry B; none to masonry A. Fall of stucco and some masonry walls. Twisting, fall of slabs, fages, stacks, monuments, towers, elevated tanks. Frames houses moved on foundation if not bolted down; loose paper, walls thrown out. Decayed pilings broken off. Branches broken from trees. Changes in flow or temperature of springs and wells. Cracks in wet ground and on steep slopes.
X. Most masonry and frame structures destroyed with their foundations. Some well-built wooden structures and bridges destroyed. Serious damage to dams, dikes, embankments. Large land slides. Water thrown on banks of canals, river, lakes, etc. Sand and mud shifted horizontally on beaches and flat lands. Rails bent slightly.
XI. Rails bent greatly. Underground pipelines completely out of service.
XII. Damage nearly total. Large rock masses displaced. Lines of sight and level distorted. Objects thrown in the air.
Figure 2: Amplification of shaking in softer rock & soil during an earthquake.
Figure 3. Alluvium map for Carlisle County.
APPENDIX A

STRIP MAP FOR CARLISLE COUNTY

KY 121 and US 62
APPENDIX B
SEISMICALLY SIGNIFICANT FEATURES
<table>
<thead>
<tr>
<th>Milepoint</th>
<th>Feature</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>Other</td>
<td>Carlisle Co - Graves Co Boundary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>0.05</td>
<td>Fill</td>
<td>Material Type - Soil Height 25 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Side slope 2:1 Length 50 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crest 25 feet Type Fill - Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>0.20</td>
<td>Fill</td>
<td>Material Type - Soil Height 25 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Side slope 2:1 Length 50 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crest 25 feet Type Fill - Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>0.40</td>
<td>Fill</td>
<td>Material Type - Soil Height 25 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Side slope 2:1 Length 50 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crest 25 feet Type Fill - Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>1.20</td>
<td>Fill</td>
<td>Material Type - Soil Height 15 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Side slope 2:1 Length 50 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crest 25 feet Type Fill - Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>2.50</td>
<td>Fill</td>
<td>Material Type - Soil Height 25 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Side slope 2:1 Length 50 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crest 25 feet Type Fill - Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>2.70</td>
<td>Fill</td>
<td>Material Type - Soil Height 25 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Side slope 2:1 Length 50 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crest 25 feet Type Fill - Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>2.85</td>
<td>Fill</td>
<td>Material Type - Soil Height 15 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Side slope 2:1 Length 50 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crest 25 feet Type Fill - Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>Milepoint</td>
<td>Feature</td>
<td>Data</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>2.85</td>
<td>Other</td>
<td>Pond (50 X 50) feet, 30 feet from Road</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>2.90</td>
<td>Power</td>
<td>Electrical Power Line - 3 Lines</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Height 30 feet</td>
</tr>
<tr>
<td></td>
<td>Line</td>
<td>Steel Support Structure Unknown</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Volts</td>
</tr>
<tr>
<td>3.30</td>
<td>Other</td>
<td>Junction KY 307 Heading North-South</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>4.20</td>
<td>Fill</td>
<td>Material Type - Soil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Height 20 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Side slope 2:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Length 100 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crest 25 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Type Fill - Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>4.50</td>
<td>Fill</td>
<td>Material Type - Soil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Height 20 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Side slope 2:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Length 199 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crest 25 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Type Fill - Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>4.80</td>
<td>Fill</td>
<td>Material Type - Soil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Height 15 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Side slope 2:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Length 50 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crest 25 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Type Fill - Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>4.90</td>
<td>Fill</td>
<td>Material Type - Soil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Height 15 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Side slope 2:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Length 50 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crest 25 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Type Fill - Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>5.10</td>
<td>Fill</td>
<td>Material Type - Soil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Height 10 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Side slope 2:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Length 50 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crest 25 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Type Fill - Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>5.10</td>
<td>Other</td>
<td>Pond (50 X 75) feet, 30 feet along Road</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Surface Type - Flexible</td>
</tr>
<tr>
<td>Milepoint</td>
<td>Feature</td>
<td>Data</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| 5.30 | Trees | Number of Trees 5 Height 45 feet
Diameter 15 in. Ending Milepoint 5.31
Distance From Road 15 feet
Road Surface Type - Flexible |
| 6.40 | Trees | Number of Trees 100 Height 50 feet
Diameter 18 in. Ending Milepoint 6.80
Distance From Road 20 feet
Road Surface Type - Flexible |
| 6.75 | Other | Gravel Pit - Ends 6.46 Milepoint
Road Surface Type - Flexible |
| 7.00 | Trees | Number of Trees 100 Height 60 feet
Diameter 18 in. Ending Milepoint 7.90
Distance From Road 30 feet
Road Surface Type - Flexible |
| 7.30 | Other | Junction US 62 Heading Northeast-Southwest
Road Surface Type - Flexible |
| 8.30 | Trees | Number of Trees 5 Height 45 feet
Diameter 15 in. Ending Milepoint 8.30
Distance From Road 15 feet
Road Surface Type - Flexible |
| 8.30 | Other | Swamp
Road Surface Type - Flexible |
| 8.65 | Other | Junction KY 1628 Heading East
Road Surface Type - Flexible |
| 9.10 | Bridge | Number of Spans 1 Over Stream Concrete T-Beam
End 1 Fixed End 2 Fixed
Deck Type - Concrete Length 38 feet
Width 22 feet Pier Type - Unknown
SPC Rating - D Surface Type - Flexible
Expansion Type - Other
End 1 Substructure - Full
End 2 Substructure - Full
Foundation Type - Unknown |
<table>
<thead>
<tr>
<th>Milepoint</th>
<th>Feature</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10</td>
<td>Trees</td>
<td>Number of Trees 250 Height 40 feet Diameter 6 in. Ending Milepoint 9.70 Distance From Road 15 feet Road Surface Type - Flexible</td>
</tr>
<tr>
<td>9.20</td>
<td>Pipeline</td>
<td>Pipeline Type - Gas Road Surface Type - Flexible</td>
</tr>
<tr>
<td>9.38</td>
<td>Bridge</td>
<td>Number of Spans 5 Over Stream Concrete T-Beam End 1 Fixed Pier 1 Fixed Pier 2 Fixed Pier 3 Fixed Pier 4 Fixed End 2 Fixed Deck Type - Concrete Length 180 feet Width 25 feet Pier Type - Unknown SPC Rating - D Surface Type - Flexible Expansion Type - Other End 1 Substructure - Full End 2 Substructure - Full Foundation Type - Unknown</td>
</tr>
<tr>
<td>9.40</td>
<td>Pipeline</td>
<td>Pipeline Type - Petroleum Road Surface Type - Flexible</td>
</tr>
<tr>
<td>9.60</td>
<td>Other</td>
<td>Swamp Road Surface Type - Flexible</td>
</tr>
<tr>
<td>9.70</td>
<td>Other</td>
<td>Carlisle Co - Ballard Co Boundary Road Surface Type - Flexible</td>
</tr>
<tr>
<td>Milepoint</td>
<td>Feature</td>
<td>Data</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>------</td>
</tr>
</tbody>
</table>
| 0.34 | Trees | Number of Trees 100 Height 75 feet
Distance From Road 15 feet
Road Surface Type - Flexible |
| 0.36 | Power Line | Electrical Power Line 3 Lines Height 40 feet
Wood Support Structure Unknown Volts
Road Surface Type - Flexible |
| 0.70 | Other | City of Bardwell
Road Surface Type - Flexible |
| 0.90 | Other | 5 Grain Silos
Road Surface Type - Flexible |
| 1.10 | Other | Junction KY 1372 Heading East
Road Surface Type - Flexible |
| 1.10 | Trees | Number of Trees 6 Height 50 feet
Diameter 18 in. Ending Milepoint 1.11
Distance From Road 15 feet
Road Surface Type - Flexible |
| 1.80 | Trees | Number of Trees 6 Height 45 feet
Diameter 18 in. Ending Milepoint 1.80
Distance From Road 15 feet
Road Surface Type - Flexible |
| 2.00 | Trees | Number of Trees 6 Height 45 feet
Diameter 18 in. Ending Milepoint 2.00
Distance From Road 15 feet
Road Surface Type - Flexible |
| 2.80 | Pipeline | Pipeline Type - Gas
Road Surface Type - Flexible |
| 2.80 | Other | Junction KY 1181 Heading South
Road Surface Type - Flexible |
<table>
<thead>
<tr>
<th>Milepoint</th>
<th>Feature</th>
<th>Data</th>
</tr>
</thead>
</table>
| 3.20 | Pipeline | Pipeline Type - Gas
| | | Road Surface Type - Flexible |
| 3.40 | Trees | Number of Trees 50
| | | Height 45 feet
| | | Diameter 18 in.
| | | Ending Milepoint 3.60
| | | Distance From Road 15 feet
| | | Road Surface Type - Flexible |
| 3.88 | Bridge | Number of Spans 3
| | | Overpass Concrete T-Beam
| | | End 1 Fixed
| | | Pier 1 Fixed
| | | Pier 2 Fixed
| | | End 2 Fixed
| | | Deck Type - Concrete
| | | Length 129 feet
| | | Width 19 feet
| | | Pier Type - Open
| | | SPC Rating - D
| | | Surface Type - Flexible
| | | Expansion Type - Other
| | | End 1 Substructure - Stub
| | | End 2 Substructure - Stub
| | | Foundation Type - Unknown |
| 4.30 | Pipeline | Pipeline Type - Gas
| | | Road Surface Type - Flexible |
| 4.30 | Other | Pumping Station
| | | Road Surface Type - Flexible |
| 4.40 | Trees | Number of Trees 6
| | | Height 45 feet
| | | Diameter 13 in.
| | | Ending Milepoint 4.41
| | | Distance From Road 15 feet
| | | Road Surface Type - Flexible |
| 5.05 | Other | Junction KY 408 Heading North-South
| | | Road Surface Type - Flexible |
| 5.30 | Trees | Number of Trees 20
| | | Height 45 feet
| | | Diameter 18 in.
| | | Ending Milepoint 5.40
| | | Distance From Road 15 feet
| | | Road Surface Type - Flexible |
Milepoint Feature Data

<table>
<thead>
<tr>
<th>Milepoint</th>
<th>Feature</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.50</td>
<td>Trees</td>
<td>Number of Trees 20 Height 45 feet Diameter 18 in. Ending Milepoint 5.60 Distance From Road 15 feet Road Surface Type - Flexible</td>
</tr>
<tr>
<td>6.04</td>
<td>Bridge</td>
<td>Number of Spans 1 Type Unknown Concrete T-Beam End 1 Fixed End 2 Fixed Deck Type - Concrete Length 43 feet Width 20 feet Pier Type - Unknown SPC Rating - D Surface Type - Flexible Expansion Type - Other End 1 Substructure - Full End 2 Substructure - Full Foundation Type - Unknown</td>
</tr>
<tr>
<td>6.15</td>
<td>Other</td>
<td>Junction KY 121 Heading Southeast Road Surface Type - Flexible</td>
</tr>
</tbody>
</table>