2009

HUMAN RIBOSOMAL RNA GENE CLUSTERS ARE RECOMBINATIONAL HOTSPOTS IN CANCER

Dawn Michelle Stults
University of Kentucky, dmstul2@uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation
Stults, Dawn Michelle, "HUMAN RIBOSOMAL RNA GENE CLUSTERS ARE RECOMBINATIONAL HOTSPOTS IN CANCER" (2009). University of Kentucky Master's Theses. 626.
https://uknowledge.uky.edu/gradschool_theses/626
ABSTRACT OF THESIS

HUMAN RIBOSOMAL RNA GENE CLUSTERS ARE RECOMBINATIONAL HOTSPOTS IN CANCER

The gene that produces the precursor RNA transcript to the three largest ribosomal RNA molecules (rDNA) is present in multiple copies and organized into gene clusters. They represent 0.5% of the diploid human genome but are critical for cellular viability. The individual genes possess very high levels of sequence identity and are present in high local concentration, making them ideal substrates for genomic rearrangement driven by dysregulated homologous recombination. Our laboratory has developed a sensitive physical assay capable of detecting recombination-mediated genomic restructuring in the rDNA by monitoring changes in lengths of the individual clusters. In order to determine whether dysregulated recombination is a potential driving force of genomic instability in human cancer, adult patients with either lung or colorectal cancer, and pediatric patients with leukemia were prospectively recruited and assayed. Over half of the adult solid tumors show detectable rDNA rearrangements relative to either surrounding non-tumor tissue or normal peripheral blood. In contrast, there is a greatly reduced frequency of alteration in pediatric leukemia. This finding makes rDNA restructuring one of the most common chromosomal alterations in adult solid tumors, illustrates the dynamic plasticity of the human genome, and may have prognostic or predictive value in disease progression.

KEYWORDS: genomic instability, cancer, gene clusters, DNA repair, recombination

Dawn Michelle Stults

October 1, 2009
HUMAN RIBOSOMAL RNA GENE CLUSTERS ARE RECOMBINATIONAL HOTSPOTS IN CANCER

By

Dawn Michelle Stults

Andrew J. Pierce

Director of Thesis

Jeffrey N. Davidson

Director of Graduate Studies

October 1, 2009

Date
RULES FOR THE USE OF THESES

Unpublished theses submitted for the Master’s degree and deposited in the University of Kentucky Library are as a rule open for inspection, but are to be used only with due regard to the rights of the authors. Bibliographical references may be noted, but quotations or summaries of parts may be published only with the permission of the author, and with the usual scholarly acknowledgments.

Extensive copying or publication of the thesis in whole or in part also requires the consent of the Dean of the Graduate School of the University of Kentucky.

A library that borrows this thesis for use by its patrons is expected to secure the signature of each user.

Name    Date
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
THESIS

Dawn Michelle Stults

The Graduate School
University of Kentucky
2009
HUMAN RIBOSOMAL RNA GENE CLUSTERS ARE RECOMBINATIONAL HOTSPOTS IN CANCER

THESIS

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the College of Medicine at the University of Kentucky

By
Dawn Michelle Stults
Lexington, Kentucky

Director: Dr. Andrew J. Pierce, Assistant Professor of Microbiology, Immunology, and Molecular Genetics
Lexington, Kentucky
2009

Copyright © Dawn Michelle Stults 2009
ACKNOWLEDGMENTS

I wish to thank my mentor, Dr. Andrew Pierce, who made it possible for me to accomplish this unusual project. In addition to his support of my pursuing an MS concurrent with my Ph.D., he also created a unique opportunity for me to merge my disparate training in clinical research and basic science. It was Dr. Pierce who interacted with the IRB and the surgeons on my behalf, and consented many of the patients who participated in this research.

I also wish to thank the patients themselves, the lung and colorectal surgeons, the pediatric leukemia team, and all of the nurses, residents, and staff of pre-operative holding and surgical pathology for their generous cooperation.

My tremendous thanks to Dr. Tom Kelly, who guided me through the Clinical and Translational Science training and project development, and advocated for me to be the first to receive an MS, rather than a Certificate in Clinical and Translational Science. Thanks also to Dr. Jane Harrison, for her insight and involvement in helping me achieve the MS, and to Dr. Jeffrey Davidson, my Director of Graduate Studies for taking on a student in such an unusual circumstance and helping me navigate the pitfalls that arose because of my unique situation. Finally, I wish to thank my committee, Dr. Thomas Foster and Dr. Mary Vore, for their advice and enthusiastic support of this endeavor.
TABLE OF CONTENTS

Acknowledgments........................................................................................................iii

List of Figures...............................................................................................................v

Chapter One: Introduction.............................................................................................1

Chapter Two: Materials and Methods.........................................................................4
Sample Processing.......................................................................................................4
Southern Blot Analysis...............................................................................................5

Chapter Three: Results..................................................................................................7

Chapter Four: Discussion.............................................................................................20

References......................................................................................................................25

Vita.................................................................................................................................27
LIST OF FIGURES

Figure 3.1: Patterns of gene cluster instability in the rDNA .....................14
Figure 3.2: Lung squamous cell carcinoma rDNA stability analysis ..............15
Figure 3.3: Lung adenocarcinoma rDNA stability analysis........................16
Figure 3.4: Colon adenocarcinoma rDNA stability analysis.......................17
Figure 3.5: Rectal adenocarcinoma rDNA stability analysis.......................18
Figure 3.6: Pediatric leukemia rDNA stability analysis...........................19
CHAPTER ONE

Introduction

The human ribosomal RNA gene clusters (rDNA clusters) produce 45S precursor transcripts subsequently processed to make three of the four structural RNA components of the ribosome, and are critically required for protein synthesis and cellular viability. The rDNA clusters, which comprise collectively hundreds of gene copies, are located on the short arms of the five human acrocentric chromosome pairs (13p12, 14p12, 15p12, 21p12, 22p12: OMIM 180450–180454) and are generally organized with individual genes in head-to-tail tandemly repeated arrays (1). The individual genes are each 43 kb in length (2), with near perfect sequence conservation. Extremely high sequence similarity combined with the length of the individual repeats makes both shotgun-based and directed sequencing approaches to genome sequence assembly of the rDNA impossible. As a result, the rDNA clusters are one of the largest remaining components of the human genome with no representation in the Human Genome Project.

The highly repetitive nature of these clustered genomic repeats also prevents the application of commonly used techniques to investigate genomic instability such as array-based comparative genome hybridization (aCGH), single nucleotide polymorphism (SNP) analysis, and high-throughput paired-end sequencing approaches. Nevertheless, the very considerations that make the rDNA clusters difficult to study by conventional means also make them biologically interesting
from a genomic stability perspective. The sequence conservation, repeat length and high relative local concentration of the repeats involving multiple chromosomal loci are, in principle, conducive to cluster restructuring by homologous recombination. We previously physically characterized human rDNA cluster lengths, finding an average of 600 repeats per diploid genome spread over the 10 rDNA clusters, subject to wide person-to-person variability driven by strong meiotic recombination. The number of gene repeats per cluster changes with a frequency of approximately 10% per cluster per meiosis (3). The high meiotic recombination frequency phenotype of the rDNA led us to consider whether the rDNA clusters could serve as sentinel biomarkers for dysregulated mitotic recombination in cancer.

Dysregulated recombination has the potential to mediate genomic restructuring in cancer (reviewed in (4)). We recently demonstrated that changes in rDNA cluster lengths in cultured mitotic human cells are a potential indicator of recombination-mediated genomic destabilization by showing a 10-fold or 100-fold increase in the frequency of spontaneous rDNA cluster restructuring in cells deficient for the ataxia-telangiectasia mutated (ATM) protein or the Bloom syndrome (BLM) protein respectively (5), in line with the increased prevalence of malignancy in ATM (6) and BLM (7) patients. In order to determine whether the rDNA clusters are restructured in sporadic cancers generally, as well as in cancer predisposition syndromes like ATM and Bloom syndrome, we prospectively
recruited lung cancer, colorectal cancer, and pediatric leukemia patients for molecular analysis of their disease.

Lung and colorectal cancers are the leading and second leading cause of American deaths from cancer, accounting for 28% and 9% of all cancer deaths respectively (8). Notably, both lung and colorectal cancers derive from tissues with potentially substantial exposure to environmental genotoxic agents. Many potential environmental carcinogens, including specifically those in tobacco smoke, are potent inducers of sister chromatid exchange (9-11), which is thought to occur by a recombination-based mechanism (12). Ordinarily, mammalian cells efficiently suppress recombination-mediated genomic rearrangements (13, 14), but damage or loss of this control of recombination, combined with protracted recombination induction by environmental agents, may significantly impact the etiology of tumors in these organs. Evidence suggesting potential cancer etiology relevance for dysregulated recombination, particularly in the case of lung cancer, includes both the overexpression of recombination genes (15) and ATM defects commonly found in this tissue (16). Conversely, pediatric leukemia is thought to be driven by specific chromosomal events, rather than the gradual accumulation of malignant features caused by many years accumulating molecular genomic insults (17). This work reports the result of testing the hypothesis that dysregulated recombination is a significant feature of primarily sporadic adult lung and colorectal cancers rather than pediatric leukemias.
CHAPTER TWO

Materials and Methods

Human investigations were performed after approval by the University of Kentucky Institutional Review Board and Markey Cancer Center Protocol Review Committee and in accordance with an assurance filed with and approved by the Department of Health and Human Services. Informed consent was obtained from patients at the University of Kentucky Medical Center undergoing surgical resection for either lung or colorectal cancer, or from the parents of pediatric patients being treated for leukemia. For patients with solid tumors, peripheral blood was drawn prior to surgery. After surgery, resected specimens were examined by the Division of Surgical Pathology and pieces of both tumor and surrounding non-tumor tissue were removed for analysis. Leukemia patients had either peripheral blood or bone marrow aspirates removed for analysis periodically throughout the course of their treatment. All patient samples are referred to in this work by study code names.

Sample processing:

Solid tissues were rinsed on ice in RPMI 1640 medium containing antibiotics and 10% fetal bovine serum (RPMI1640/FBS). Tissues were then disaggregated to single cells mechanically, either by gentle scraping and mincing, or by mincing in RPMI 1640/FBS and processing in a 50 µl pore size Medicon unit in a MediMachine, followed by debris removal by filtration with a 70 µl pore size
Filcon (all from Becton-Dickinson). For whole blood and bone marrow aspirates, leukocytes were isolated by ammonium chloride lysis. No digestive enzymes were used in the preparation of any of the single cell suspensions. DNA-containing cells were quantified by vital staining with 2 µg/ml acridine orange, followed by flow cytometric analysis with a 488 nm argon-ion laser triggering acquisition on green fluorescence (DNA content) essentially as described (18). Single cell suspensions were adjusted to 1 x 10^7 cells / ml final concentration in 0.8% low melting temperature agarose and allowed to solidify. High molecular weight genomic DNA was prepared from this solid phase cell suspension by treatment with 1% sarkosyl / 500 mM EDTA / 0.5 mg/ml proteinase K at 50 C for at least 16 hours, followed by treatment with phenylmethylsulfonyl fluoride (PMSF), extensive rinsing, and final equilibration in 50% glycerol/ 10 mM Tris / 1 mM EDTA pH 8.0 and long-term storage at -20 C.

Southern blot analysis:
The rDNA clusters were analyzed by pulsed-field gel electrophoresis and Southern blotting as described (3). Approximately 1 µg genomic DNA in a 10 µl solid-phase agarose slice was equilibrated with appropriate restriction digestion buffer and digested by EcoRV (New England Biolabs) to liberate intact rDNA clusters from bulk genomic DNA. Agarose slices containing digested genomic DNA were sealed into the wells of a 1% Pulse Field Certified agarose (Bio-Rad) gel in 44.5 mM Tris / 44.5 mM boric acid / 1.0 mM EDTA pH 8.0 (0.5x TBE) and run using a CHEF-MAPPER (Bio-Rad) in 0.5X TBE for 24
hours at 6 V/cm field strength, switching between 120° separated field vectors with a frequency ranging from 3 s to 90 s using a "ramp factor" of 0.357 (Bio-Rad) at a constant temperature of 14 C to achieve approximately linear size resolution of between 30 kb and 1 Mb.

Following electrophoresis, gels were equilibrated to 0.5% final concentration glycerol and dried at 65 C. Dried gels were rehydrated with water, denatured with 0.4 N NaOH / 0.8 M NaCl, neutralized with 0.5 M Tris pH 8.0 / 0.8 M NaCl and prehybridized at 65 C in 2X SSC (300 mM NaCl / 30 mM Na-citrate) with 7% SDS and 0.5% casein. Gels were probed overnight at 65 C in fresh prehybridization solution using the rDNA-specific radiolabeled PCR products of primers 5'-GGGCTCGAGATTTGGGACGTCAGCTTCTG and 5'-GGGTCTAGAGTGCTCCCTTCCTGTGAG, amplified from pBSrDNA11, a pBluescript-based (Stratagene) plasmid containing a subcloned and sequenced segment of the human rDNA intergenic spacer generated by using the aforementioned primers to amplify human genomic DNA (3). Gels were rinsed at 65 C with 2X SSC / 0.1% SDS followed by 0.5 X SSC / 0.1% SDS, briefly equilibrated with 2X SSC and developed by exposing a PhosphorImager cassette with subsequent imaging in a PhosphorImager (Molecular Dynamics). Raw data was obtained in TIFF format and processed using Adobe Photoshop. All images were processed en bloc. In no case did image processing either obscure bands from the raw data, or cause bands not apparent in the raw data to appear.
CHAPTER THREE

Results

We assay for dysregulated recombination in the rDNA by examining changes in the physical length of individual rDNA clusters (Figure 1). Every person has a unique configuration of these rDNA clusters (3), so the cluster lengths vary from person to person. Where possible, we compare the rDNA cluster lengths found in surgically excised nearby non-tumor tissue to the gene cluster lengths found in the tumor itself, and to gene cluster lengths from the patients’ peripheral blood as an additional control, indicated in the figure as the ‘N’, ‘T’ and ‘B’ lanes respectively. Our prior experiences with both human blood and cell lines indicated that analysis of gene cluster lengths from 50 kb to approximately 1 Mb is the most informative range for detection recombination-mediated alterations (3, 5), so this is the methodology we followed in this present work. Gene clusters larger than 1 Mb all run together unresolved at the top of the gel in the region indicated by the star under these electrophoretic conditions. Otherwise, all unique gene clusters shorter than 1 Mb are resolved as individual bands. If the rDNA clusters are stable under mitotic cellular expansion, the banding pattern found in tumor cells will match that found in non-tumor cells (Figure 1 – ‘Stable’). Occasionally we observe a relatively low molecular weight ladder of bands at the bottom of the gel in tumor and normal tissues (Figure 1 – ‘Sample Fragility’) consistent with the 43 kb rDNA individual gene repeat length. These bands appear to arise from stochastic, low-frequency fragile-site breakage in individual rDNA repeats during the genomic DNA isolation procedure itself, rather than from
bona fide chromosomal alterations in cells; since the intensities of these bands follows a smooth Gaussian distribution and is not dependent upon liberation of the gene clusters from bulk genomic DNA by restriction enzyme digestion. Although this fragility may contribute to initiating chromosomal alterations in gene cluster lengths, we do not consider a low molecular weight banding pattern on its own to be indicative of genomic instability.

On the other hand, if a tumor has lost control over recombination, the configuration of gene cluster lengths in the tumor will be different relative to non-tumor cells (5). If the rDNA cluster length restructuring occurred before clonal expansion of the proto-tumor cell, for example in the lungs of a heavy smoker, the altered length gene clusters will be present in the entirety of the subsequent tumor. In this case, some bands found in non-tumor tissue may be lost in the tumor, and new bands become evident (Figure 1 – ‘Instability Before Expansion’). These new bands are indicated in the figure by filled triangles and show intensities proportional to their length. Tumor samples are commonly contaminated with non-tumor tissue, so fainter bands in the tumor sample occurring at the same position as bands found in normal tissue likely represent contaminating normal tissue rather than heterogeneity of cluster lengths within the tumor itself.

Finally, gene cluster lengths may have changed both before clonal expansion of the proto-tumor cell and also during the clonal expansion of the new tumor.
Alterations that occurred after the tumor began clonal expansion will manifest as new bands, but with reduced intensity (Figure 1 – ‘Ongoing Instability’) shown by open triangles. The degree to which the intensity of these “minor bands” is reduced relative to the intensities of the “major new bands” in the tumor is determined by the fraction of the tumor made up of cells with these alterations. The later in the clonal expansion the gene cluster alteration occurred, the fainter the minor intensity bands will be. In contrast to the ‘Sample Fragility’ bands, new minor bands in the tumor occur at high molecular weights, do not vary smoothly in intensity, and are dependent upon liberation from bulk genomic DNA by restriction digestion prior to visualization on the gels.

We first analyzed lung squamous cell carcinoma (Figure 2). Four out of eleven patients, TIBBO-JU, PANIU-HA, AFILA-PA and JIMIL-GE show no differences between observed gene cluster lengths in tumor relative to non-tumor tissues, indicating rDNA cluster stability. Two more patients, RESCA-BO and OFIAT-MA, show the same gene cluster profiles between tumor and non-tumor cells, with the exception of an even laddering of bands in the lower part of the gel (indicated by round dots) consistent with fragility in the isolated genomic DNA. We therefore also consider these tumors to be gene cluster stable. The stability of TIBBO-JU is particularly remarkable since this tumor was a recurrence following both chemotherapy and radiation treatment. Clearly the intense genomic damage from treatment does not necessarily cause loss of gene cluster stability, nor is loss of gene cluster stability necessarily required for poor response to therapy.
The remaining five lung squamous cell carcinomas all show evidence of structural alteration in the rDNA. XEPRY-DA, QIPPI-SH and VEKOR-CH show bands found in tumor cells that are not present in either blood or surrounding non-tumor cells (Figure 2, solid triangles). In XEPRY-DA and VEKOR-CH, novel bands are each approximately 30% the intensity of the bands found in non-tumor tissue, consistent with the rearrangements occurring early in the clonal expansion of the initial proto-tumor cell, or in the pre-tumor lung tissue prior to the initiation of clonal expansion, in which case the tumor would make up 30% of the cells in the tumor sample, with the remaining 70% being normal tissue. The novel bands in QIPPI-SH are on the order of intensity of bands in non-tumor tissue, suggesting these genomic alterations preceded clonal tumor cell expansion.

Finally, two of the poorly differentiated lung squamous cell carcinomas, BONTA-DA and WOFUT-BR, show evidence of extensive and ongoing recombinational instability. In both cases, there are new major bands in the tumors not found in non-tumor tissue (Figure 2, solid triangles). Significantly, there are also several high molecular weight minor intensity bands (Figure 2, unfilled triangles). The presence of both new major and minor intensity bands indicates that not only were the rDNA clusters altered in the pre-tumor tissue, as might be expected for cells under genotoxic pressure from tobacco exposure, but that these gene clusters continued to structurally rearrange in the early history of the tumor after the prototumor cells had already become committed to clonal expansion.
We see a similar level of gene cluster restructuring in lung adenocarcinomas (Figure 3). In six of 14 cases, there is no evidence for rDNA cluster rearrangement. In PHAZL-SA, SEBON-CL, and IBINA-KE gene cluster lengths in all of non-tumor, tumor and blood samples are longer than the approximately 1 Mb resolution limit of the gels. This absence of resolved size differences in the gene clusters from the tumor samples compared to the non-tumor controls indicates that these tumors did not undergo recombination-mediated gene cluster alterations, although we cannot preclude alterations in the unresolved gene cluster lengths larger than 1 Mb in these patients. The banding patterns in MILST-BR, PARLA-CA and CEVAT-MA are also the same between tumor and either peripheral blood or normal lung, indicating gene cluster stability. However, UGOBI-FO, KABIG-NI and EVIEN-RA show evidence of pre-tumor alteration with new major bands, but no new minor banding. The remaining five tumors, TIPOR-PA, GLOAK-EU, MEERY-BE, MUVID-DO and FOBIK-TE all show both new major and minor intensity bands, consistent with a period of dysregulated recombination both before and immediately following commitment to clonal tumor cell expansion.

The colorectal tumor patients show a similar distribution of rDNA cluster instability as the lung cancer patients. Of the ten colon cancer samples (Figure 4), four appear stable (SAGOF-GR, FONET-VI, ARPIC-RO and EBETH-DA), and five more show pre-clonal expansion alterations (VOBLE-JO, DAPEB-MA,
COBEZ-WI, RIZON-HE and SNARG-GE), while one shows both new major and minor bands indicative of gene cluster restructuring both before and after tumor-cell commitment (PULAB-GE). The process of metastasis does not necessarily involve recombinational gene cluster restructuring, as seen in the colon tumor from EBETH-DA which was surgically recovered from a colon metastasis to lung. Likewise, it is notable that unlike the lung cancer patients, nearly all of whom have a smoking history, rDNA cluster alterations are also seen in colon cancer patient tumors from either non-smokers (RIZON-HE, PULAB-GE) or individuals with a relatively modest smoking history (VOBLE-JO).

The rectal cancers follow a similar pattern (Figure 5). Two of four patients (CLIMP-HA and DOOVA-CL) show light stochastic breakage but are otherwise gene cluster stable. Two other patient tumors show evidence of either pre-expansion (BINTA-CH) or pre- and post-clonal expansion (WIVIT-HE) gene cluster instability. Our experience was that non-tumor rectal tissue was difficult to work with, so generally we compared tumor gene cluster structure to that from peripheral blood.

Architectural rearrangements in the rDNA clusters are less frequent in the 12 pediatric leukemias we have examined (Figure 6). Comparing peripheral blood containing blasts before or shortly after the initiation of treatment to peripheral blood from the same patients in remission with no residual detectable blasts after
recovery from induction chemotherapy shows the same pattern of bands in 10 of the 12 different pediatric patients. Evidence of preexpansion rearrangement is detected in NIPRY-JA and RAMAH-LE, with novel band intensities proportional to the fraction of blasts found in these patients’ peripheral blood.

PALT-BR is an interesting, if tragic, case. We first encountered this 5-year old boy in remission (R) three years after a diagnosis of and treatment for pre-B cell acute lymphocytic leukemia prior to his allogeneic stem cell transplant. After his transplant, his peripheral blood shows the rDNA cluster pattern of the engrafted donor marrow (D). Shortly after the transplant, the patient relapsed, and we see a re-establishment of his pre-transplant rDNA cluster pattern (L) two weeks prior to his death. Even though this individual underwent years of intensive chemotherapy and full body irradiation, his disease shows no evidence of rDNA cluster instability (R vs. L, ignoring the bands from the donor marrow).
Figure 3.1: Gene Cluster Instability Phenotypes

Patterns of genomic instability in the rDNA. In each case lanes are 'N' – non-tumor tissue, 'T' – tumor tissue, 'B' – peripheral blood. The grouped bands at the star represent unresolved gene clusters larger than 1 Mb. The lower limit of resolution of the gel is 50 kb. Breakage from fragile DNA not involving actual chromosomal restructuring is indicated by dots. New bands found in tumors and not in non-tumor tissue are indicated by solid triangles. New bands found in a fraction of tumor tissue but not non-tumor tissue are indicated by open triangles. Bands found in non-tumor tissue but under-represented in tumor tissue are indicated by arrows.
Lung squamous cell carcinoma rDNA stability analysis. rDNA clusters resolved up to 1 Mb in length (star). ‘N’ – non-tumor tissue; ‘T’ – tumor tissue; ‘B’ – peripheral blood. Sample fragility indicated by dots, new major bands found in tumors indicated by solid triangles, new minor bands found in tumors indicated by open triangles. Coded patient names are indicated below each gel. Differentiation status of tumors: ‘mod’ is moderately differentiated, ‘mod/poor’ is moderately to poorly differentiated, ‘poor’ is poorly differentiated. Any clinical pretreatment is indicated as ‘chemo/XRT’ – chemotherapy and radiation therapy. Pathological staging of tumors is indicated. Smoking history is given in ‘ppy’ – person-packyears, or ‘yes’ when the patient is a smoker but smoking history has not been obtained, ‘unk’: unknown.
**Figure 3.3: Lung Adenocarcinoma**

Lung adenocarcinoma rDNA stability analysis. rDNA clusters resolved up to 1 Mb in length (star). 'N' – non-tumor tissue; 'T' – tumor tissue; 'B' – peripheral blood. Sample fragility indicated by dots, new major bands found in tumors indicated by solid triangles, new minor bands found in tumors indicated by open triangles. Coded patient names are indicated below each gel. Differentiation status of tumors: 'mod' is moderately differentiated, 'mod/poor' is moderately to poorly differentiated, 'poor' is poorly differentiated. Pathological staging of tumors is indicated. Smoking history is given in 'ppy' – person-pack-years, or 'yes' when the patient is a smoker but smoking history has not been obtained, 'unk': unknown.
Colon adenocarcinoma rDNA stability analysis. rDNA clusters resolved up to 1 Mb in length (star). ‘N’ – non-tumor tissue; ‘T’ – tumor tissue; ‘B’ – peripheral blood. Sample fragility indicated by dots, new major bands found in tumors indicated by solid triangles, new minor bands found in tumors indicated by open triangles. Coded patient names are indicated below each gel. Differentiation status of tumors: ‘well’ is well differentiated, ‘mod’ is moderately differentiated, ‘mod/poor’ is moderate to poorly differentiated, alternatively tumors are classified as either mucinous or metastatic. Pathological staging of non-metastatic tumors is indicated. ‘from lung’ indicates likely metastatic colon adenocarcinoma surgically excised from lung tissue. Smoking history is given in ‘ppy’ – person-pack-years, or ‘yes’ when the patient is a smoker but smoking history has not been obtained, or ‘no’ for a non-smoker, ‘unk’: unknown.
Rectal adenocarcinoma rDNA stability analysis. rDNA clusters resolved up to 1 Mb in length (star). ‘N’ – non-tumor tissue; ‘T’ – tumor tissue; ‘B’ – peripheral blood. Sample fragility indicated by dots, new major bands found in tumors indicated by solid triangles, new minor bands found in tumors indicated by open triangles. Coded patient names are indicated below each gel. Differentiation status of tumors: ‘mod’ is moderately differentiated. Pathological staging of non-metastatic tumors is indicated. Smoking history is given in ‘ppy’ – person-pack-years, or ‘no’ for a non-smoker.
CHAPTER FOUR

Discussion

Of the solid tumors analyzed for rDNA cluster instability, the overall frequency of any observed rDNA cluster alteration is 54% (21 of 39: 95% confidence interval 39% to 68% by adjusted Wald method). 31% (12 of 39) demonstrated alterations consistent with pre-clonal expansion alterations only, and a further 23% (9 of 39) showed evidence of recombination-mediated rDNA cluster alterations both before the start of clonal tumor expansion, as well as in the several rounds of cell division immediately following commitment to clonal expansion. No evidence of rDNA cluster instability was observed in 46% (18 of 39) of cases. Since the rDNA clusters range in size up to 6 Mb and we only analyzed clusters smaller than 1 Mb, the frequency of 54% observed gene cluster alterations is likely an underestimate.

Considering that the rDNA clusters only make up approximately 0.5% of the diploid human genome, this alteration frequency of over 50% in human solid tumors indicates that the rDNA clusters are extraordinarily sensitive indicators of the capacity for human cancer to use recombination to alter sub-microscopic genomic structure, and that this sub-microscopic genomic restructuring is one of the most frequent chromosomal aberrations found in nonhereditary solid tumors. In comparison, rDNA alteration in pediatric leukemia is only found in approximately 15% of cases. This frequency difference in cluster recombinational
restructuring between pediatric leukemia and adult solid tumors (P=0.04 Fisher’s two-tailed exact test) may reflect the adult tumors’ progressive accumulation of genomic insults from both time and genotoxic environmental exposure, compared to more simple specific translocation driven disease in the pediatric patients.

The rDNA clusters are critical components of cellular metabolism, so recombinational dysregulation in the rDNA may directly alter the capacity for tumor cell growth. The hypermetabolic nature of cancer cells requires expanded capacity for protein synthesis. Since rRNA production is rate limiting for the construction of new ribosomes, instability in the rDNA clusters will allow for positive selection of sub-populations of cancer cells that have expanded their rDNA complement. Upregulation of rDNA expression through epigenetic derepression is already known in lung cancer (19), making selectable gene amplification of the rDNA an additional effective mechanism for producing the large number of required ribosomes in hypermetabolic, relatively rapidly dividing tumor cells.

In addition to their direct contribution to tumor cell metabolism, instability of the rDNA may be indicative of broader recombination-based genomic instability in repetitive genomic elements and serve as sentinel biomarkers for genomic alteration mediated by recombination between other high-similarity low-copy repeated sequences (20). For example, dysregulated recombination causing
genomic restructuring of centromeric α-satellite repeats may result in centromeric dysfunction, contributing to the aneuploidy commonly seen in adult solid tumors (21). Intriguingly, other highly self-similar clustered gene loci in the human genome (22) express protein products found with relative specificity only in cancer and in highly recombination-active tissues such as testes: the so-called “CT” genes (23). We are actively pursuing whether these loci are also recombinationally destabilized in cancer and with what potential clinical relevance.

From a predictive standpoint, since DNA double-strand breaks are potent inducers of homologous recombination in human cells (24), and many chemotherapeutic agents exert their genotoxic effects through DNA double-strand breaks, the use of these agents in tumors with dysregulated recombination may prove to be problematic. Dysregulated recombination in tumor cells may facilitate large-scale genomic restructuring in response to radiomimetic chemotherapy accelerating establishment of chemotherapeutic resistance. Similarly, exposure to genotoxic agents from tobacco in potentially numerous pre-cancerous cells with dysregulated recombination may contribute to the synchronous dissimilar primary lung tumors sometimes found in heavy smokers.

We are continuing to follow and expand our enrolled patient population to ascertain whether assaying rDNA restructuring in tumor cells has prognostic
and/or predictive value. Specifically, now that we can divide solid tumor cancer patients into two approximately evenly populated cohorts based on whether tumors either do or do not display evidence of dysregulated recombination, we will determine whether dysregulated recombination is informative with regard to risk of tumor recurrence, the disease-free survival interval post-surgery and with overall survival. For patients that undergo adjuvant chemotherapy or radiation therapy postsurgery, we will also determine whether the degree of responsiveness to adjuvant therapy is influenced by the presence of dysregulated recombination in the primary tumors. The dysregulated recombination cohort can be further subdivided, based on the presence or absence of minor banding in the tumor sample, into patients for whom the tumor was still actively recombining the rDNA clusters during the initial phase of tumor clonal expansion and those for whom dysregulated recombination appeared to be restricted to the interval before primary tumor clonal expansion, allowing further fine-tuning of the potential clinical application of the assay.

In summary, we have detected structural alterations to the ribosomal RNA gene clusters in over 50% of the adult solid tumors examined, making these genomic rearrangements one of the most common specific chromosomal alterations in adult solid tumors. The functional significance of the rDNA for the capacity of tumor cells to produce protein as well as the potential sentinel biomarker nature of the rDNA for recombination-driven genomic alterations involving other highly
conserved low copy repetitive genomic elements suggests assaying rDNA cluster instability in tumors may prove to have prognostic and/or predictive value.
REFERENCES


VITA

Author’s Name: Dawn Michelle Stults

Date of Birth: July 18, 1967

Place of Birth: Nashville, Tennessee

EDUCATION

2004 – present  Ph.D Candidate, Curriculum in Toxicology, University of Kentucky, Lexington, KY. MS Medical Science Candidate Curriculum in Clinical and Translational Science.

2000 - 2003  Curriculum in Biomedical Science, Middle Tennessee State University, Murfreesboro, TN.

1990  Bachelor of Fine Arts, Major in Dramatic Performance, New York University, Tisch School of the Arts, New York, NY.

PUBLICATIONS

