Earthquake Hazard Mitigation of Transportation Facilities for Butler County

L. John Fleckenstein* David L. Allen†
Vincent P. Drnevich‡

*University of Kentucky, leo.fleckenstein@uky.edu
†University of Kentucky, dallen@engr.uky.edu
‡University of Kentucky
This paper is posted at UKnowledge.
https://uknowledge.uky.edu/ktc_researchreports/620
Research Report
KTC-89-8

EARTHQUAKE HAZARD MITIGATION OF
TRANSPORTATION FACILITIES
FOR BUTLER COUNTY

by

L. John Fleckenstein
Engineering Geologist

David L. Allen
Chief Research Engineer

and

Vincent P. Drnevich
Professor of Civil Engineering

Kentucky Transportation Center
College of Engineering
University of Kentucky
Lexington, Kentucky

in cooperation with
Transportation Cabinet
Commonwealth of Kentucky

and

Federal Highway Administration
U.S. Department of Transportation

The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Kentucky, the Kentucky Transportation Cabinet, nor the Federal Highway Administration. This report does not constitute a standard, specification, or regulation. The inclusion of manufacturer names and tradenames are for identification purposes and are not to be considered as endorsements.

May 1989
Earthquake Hazard Mitigation of Transportation Facilities for Butler County

Concern has grown in recent years over the seismic activity of the New Madrid seismic zone in Western Kentucky. Butler County, Kentucky is located in this region. To permit emergency medical, supply, and equipment traffic into this area after an earthquake has occurred, the Kentucky Transportation Cabinet is interested in the possibility of keeping selected routes passable. This report lists the route that has been investigated and recommended as being the route in Butler County that should be maintained in a passable condition. The recommended route, US 231, has been visually surveyed and all seismically significant features cataloged. These features are logged by their location on strip maps contained in Appendix A and a detailed listing of all the potentially critical features is given in Appendix B.
INTRODUCTION

An awareness of earthquakes and their possible effects upon the nation's infrastructure is critically important to the public, and in particular, to public officials. The nation's highway system is one of the most important components of the infrastructure. After the occurrence of an earthquake, the highway system is the primary mode of transporting emergency supplies and services into an affected area. Thus, it is important to catalog the important components of the highway system and attempt to anticipate the possible damage to these components from an earthquake.

Western Kentucky in general and Butler County in particular are in a high risk earthquake zone. In 1811-1812, three of the most severe earthquakes in American history shook the country. The location of these quakes was not on the infamous San Andreas fault nor anywhere along the well-known fault laden Pacific coast but was near a small town on the Mississippi River where the states of Kentucky and Missouri share a border (Figure 1). It is this river town, New Madrid, Missouri, that is the namesake of a region now regarded by seismologists and disaster response planners as the most hazardous earthquake zone east of the Rocky Mountains -- the New Madrid seismic zone.

In addition to these three great earthquakes, there are several other well documented factors demonstrating the susceptibility of the New Madrid region to the recurrence of major earthquakes. Through a decade of extensive research, an ancient crustal rift has been found to underlie the relatively shallow sediments comprising the region's surface. This type of geologic structure is prone to seismic activity. The New Madrid rift has been identified as being of sufficient size to generate major earthquakes. Further evidence of the area's seismicity is the record of over 2,000 earthquakes detected in the zone since 1974. Though most have been of a magnitude below the threshold of human perception, their existence clearly indicates the high level of seismic activity occurring in the zone.

Seismologists have calculated the probabilities of recurrence of sizeable earthquakes in the New Madrid rift zone. The probability of a magnitude 6.3 earthquake (Richter scale) within 50 years is from 86 to 97 percent. The probability (1) of that same earthquake occurring within the next 15 years is from 40 to 63 percent. For comparison, the 1971 San Fernando earthquake (magnitude 6.6) killed 58 people and caused $480 million worth of damage. The 1988 Armenian earthquake of similar magnitude killed approximately 25,000 to 30,000 people.

The probability of a magnitude 7.6 earthquake occurring within 50 years is from 19 to 29 percent. The probability for this size earthquake occurring within 15 years drops to a range of 5.4 to 8.7 percent. On February 4, 1975, the Haicheng earthquake in China had a magnitude of 7.3 and destroyed or damaged about 90 percent of the structures in a city of 90,000 people.

When comparing historical earthquakes of similar magnitude, one must take into consideration...
that death totals and damage estimates will vary greatly due to the geology, population density, types of building, and quality of construction.

For a given earthquake, effects at a given location are described by the Modified Mercalli Intensity (MMI) scale (2) which ranges from I (no damage and felt only by instruments) to XII (total destruction). Details of the MMI scale are given in Table 1. Values of MMI associated with the 1811-1812 earthquakes are shown in Figure 1. The potential for damage and destruction from earthquakes in the region is significant.

In 1982, the Governor's Task Force on Earthquake Hazards and Safety was created to evaluate Kentucky's earthquake risk and to make recommendations for responding to those risks. This task force recommended increased public awareness and education programs, improved emergency response planning and training, improved building codes and seismic restraint designs, evaluation of other mitigation measures, and participation in national and regional earthquake forums and funding programs.

In 1984, Governor Collins created the Governor's Earthquake Hazards and Safety Technical Advisory Panel (GEHSTAP) to analyze scientific and engineering data regarding seismic risks in Kentucky and to make specific recommendations on mitigation, public awareness, response planning, and policy development for public health and safety. The States are dependent on their highway systems for the movement of goods and services. Due to the possible adverse effects a major earthquake could have on this system, the Earthquake Stability and Transportation Subcommittee (ESTS) of GEHSTAP was formed.

ESTS has encouraged the Kentucky Transportation Cabinet to secure funding for generating and implementing an earthquake hazard mitigation plan in an attempt to safeguard the highway system against catastrophic earthquake failure. As a result, the Cabinet commissioned the Kentucky Transportation Center at the University of Kentucky to analyze and assess the possible effects of an earthquake on highway facilities. The study area includes the 26 western-most counties in Kentucky that are adjacent to the New Madrid seismic zone (Figure 1). To date, one of the results of that study has been the recommendation that over 1,000 miles of highways in the study area be utilized as emergency or "priority" routes. These would be the primary routes used for transporting emergency supplies and personnel after an earthquake. Also, it is anticipated that these would be the first routes repaired after an earthquake.

The initial task in identifying these priority routes was to decide where they should begin; that is, in the event of a major earthquake, the point at which the transport of goods and services would originate. Ideally, the city chosen should possess the following attributes:

1. Sufficient size to contain all necessary personnel, supplies, and facilities to respond quickly to a major emergency;
2. Proximity to the high hazard...
3. Easy access from other major cities in the State; and

4. Sufficient routes to provide relatively direct access to all 26 high-risk counties.

The city best fitting these criteria is Bowling Green. Located at the eastern edge of the earthquake zone in Warren County, Bowling Green meets both the size criterion (population 40,450) and the accessibility criterion (Louisville and Nashville via I 65 and Lexington via the Bluegrass Parkway). Bowling Green provides access to the 26-county area via US 68/KY 80; this road was chosen as the main east-west artery because it crosses Lake Barkley and Kentucky Lake upstream from the dams impounding those bodies of water.

As a first step towards establishing an overall policy for earthquake hazard mitigation in the highway system, these priority routes have been visually surveyed and all natural and man-made features along these routes that are considered seismically significant were cataloged. With this information, a realistic and cost-effective plan for "hardening" these routes against earthquakes can be established. Such efforts are currently under way.

PRIORITY ROUTE IN BUTLER COUNTY

Butler County is located approximately 142 miles east-northeast of the center of the New Madrid Seismic Zone. Figure 1 indicates that 85 percent of Butler County is located in the IX band of the MMI scale, and the other 15 percent is in the VIII band. This indicates considerable damage could occur in Butler County in the event of a major earthquake.

US 231 has been designated as the only priority route for Butler County. US 231 starts at the Butler County-Warren County line and continues north for 18.8 miles, ending at the Butler County-Ohio County line.

A number of features along the priority route could potentially hamper rescue and relief efforts. These features included bridges, soil fills, cut slopes, gas pipelines, power lines, geologic faults, large trees, underground mines, water impoundments, and swamps. These features are logged by their location on strip maps contained in Appendix A and a detailed listing of all potentially critical features is given in Appendix B.

BRIDGES

Bridges are the most significant and important features on the priority route. With few exceptions, existing highway bridges in the study area have not been designed to resist motions and forces that may be generated by earthquakes. Bridges located within the seismic zone could possibly be damaged, thus reducing their load-carrying ability. In some cases, damage could be sufficiently great to cause complete collapse. Several types of damage could occur:

1. A bridge could fail at the bearing which supports the main spans, causing the spans to fall from the bearings and possibly from the piers or
2. Failure could occur in the columns, piers, or footings which would reduce the load-carrying capacity of the bridge, if the bridge was still in place.

3. An abutment could tilt allowing the entire span to fall.

4. Soil movement or slumping could affect the bridge approach fills, damaging the abutments or piers, or making the bridge inaccessible.

There are nine bridges located on US 231 in Butler County. The bridges are located over:

1. Little Muddy Creek,
2. Renfrow Creek,
4. Embrys Ditch,
5. Green River,
6. Indian Camp Creek,
7. West Fork of Indian Camp Creek, and

Research is currently under way studying the effects that an earthquake could have on these bridges and their approach fills.

FILLS

Highway fills are particularly important because of their tendency to fail from seismically induced motions. Fills fail in one of two major modes. The first is a generalized circular or wedge-shaped failure resulting in one or both traffic lanes moving down and out. If both lanes failed, this would certainly render the route impassable and immediate repairs would be necessary. The second mode of failure is a general slumping or settling of the embankment. The roadway would probably remain passable if settlement or slumping were not severe but reduced speed limits would be required for safety.

Large fills on US 231 in Butler County are located as follows:

1. Approach fills for the bridge over Little Muddy Creek,
2. Approach fills for the bridge over Renfrow Creek,
3. Approach fills for the bridge over Embrys Ditch,
4. 0.40 mile north of the junction of US 231 and KY 70,
5. Approach fills for the bridge over Green River,
6. Approach fills for the bridge over Indian Camp Creek, and
7. Approach fills for the bridge over the West Fork of Indian Camp Creek,
CUT SLOPES

Most cut slopes cataloged during surveys of US 231 were in soil and were less than 35 feet in height. Should any of these slopes fail, both lanes of the roadway probably would not be closed, thus permitting passage around the slide. Cut slopes that have a history of failure and those that have steep slopes should be considered as problem areas.

The most critical cut slope appears to be one located 0.29 mile north of the bridge that crosses the West Fork of Indian Camp Creek.

GAS PIPELINES

Three gas pipelines cross under US 231. It is possible that pipelines could fail under or near a priority route causing a temporary closure. If a pipeline failed, an explosion might destroy a section of the priority route. Repair could be delayed by further gas leaks, fire, and/or additional explosions.

It appears that most of the pipelines in Butler County were constructed with little or no seismic considerations. Gas pipelines cross under US 231 at the following locations:

1. 0.05 mile south of the junction of US 231 and KY 1435,
2. 0.50 mile north of the junction of US 231 and KY 70 heading west,
3. Gas line under Green River bridge, and
4. 0.80 mile north of the junction of US 231 and KY 70 heading east.

POWER LINES

High voltage power lines also were cataloged during the route surveys. The heights of the lines above the roadway were estimated visually. Power company officials speculated that a number of breaks along each power line would occur during a major earthquake. In most cases, fallen lines would not be transmitting power because power would be automatically cut off within a few seconds in the event of a break.

Additionally, power line support towers could potentially fall across a priority route.

Power lines cross at the following locations on US 231.

1. 1.10 miles north of the Butler County-Warren County line,
2. 0.05 mile north of the junction of US 231 and KY 1328 (heading east), and
3. 0.62 mile south of the Indian Camp Creek bridge.

GEOLOGIC FAULTS

There are numerous geologic faults (breaks in the bedrock where movement has occurred in the past) in the study area. The faults are seismically significant since a large earthquake could trigger additional movement along one or more old slip planes. There are no precautionary measures that can be taken to reduce hazards from faults except that construction of bridges and other facilities over or near such faults requires special consideration. The faults are included for informational purposes only. Faults
which cross under US 231 are listed below:

1. 0.98 mile south of the Little Muddy Creek bridge,
2. 0.07 mile south of the Renfrow Creek bridge, and
3. 0.26 mile north of the Indian Camp Creek bridge.

MINES

There are several types of mining-related activities in Butler County that could affect priority routes during a major earthquake. A large earthquake could collapse pillars in underground mines and cause rapid subsidence at the surface. Other potential hazards exist from strip mines that might have large spoil banks and/or possible water impoundments. An abandoned deep mine is located 0.24 mile south of the bridge over the West Fork of Indian Camp Creek.

TREES

The behavior of trees during an earthquake depends upon many factors including their condition, type, height, and size. Local soil conditions, geometry of the ground surface, and characteristics of the earthquake can also be important. Violent ground motions accompanied by surface rupture and perhaps permanent displacement of the soil surface produce sudden surface accelerations of the ground which can snap and uproot large trees (3).

Trees are so numerous that, if many of them fell, US 231 could effectively be blocked for several hours or days before emergency crews could clear the debris. Groups of large trees are located near the road at the following sites:

1. 1.60 miles north of the Butler County - Warren County line;
2. 0.30 mile north of the junction of US 231 and KY 1435 (heading east);
3. 0.15 mile south of the Little Muddy Creek bridge;
4. 0.65, 1.27, 1.97, and 2.66 miles north of the Muddy Creek bridge;
5. 0.74 mile south of the Embrys Ditch bridge;
6. 0.08 and 0.62 mile north of the Embrys Ditch bridge;
7. 0.92 mile south of the Indian Camp Creek bridge;
8. 0.19 mile north of the West Fork of Indian Camp Creek bridge; and
9. 0.30 mile south of the Butler County - Ohio County line.

ALLUVIUM

Soil maps for Butler County indicate that there are moderate amounts of alluvium present throughout the county. Alluvium is a loose, fine-grain soil which is deposited by flowing water such as creeks and rivers. Due to the nature of the alluvium, ground motions at the surface of the soil can be many times greater than those within the underlying bedrock and temporary liquefaction can occur (Figure 2). An
CONCLUSIONS

In 1984, ESTS developed a fivefold plan of action for formulating and implementing a seismic mitigation policy for the western Kentucky seismic zone. To date, the Kentucky Transportation Center has established priority routes for all 26 counties in the western Kentucky seismic zone and developed seismic risk maps of all natural and man-made features that are susceptible to earthquake damage that could jeopardize the priority routes.

Current work is being conducted to analyze these features and make recommendations for hardening them against earthquake damage.

Future work involves training key personnel in the Transportation Cabinet in hazard mitigation and seismic safety; which includes bridge inspectors, district engineers, construction inspectors, designers, and maintenance personnel.

Following the education of key personnel, the mitigation plan proposed by the Kentucky Transportation Center will be reviewed by the Kentucky Transportation Cabinet and a program will be established for implementation. The final step involves the use of relevant seismic codes for all new construction, repair, and maintenance.

REFERENCES

1. Johnson, Arch C., "A Brief Overview of the Geology, Seismicity and Seismic Hazard of the Central Mississippi Valley Area,"

Additional Information

The Commonwealth of Kentucky has prepared a State Emergency Operations Procedures (State EOP) manual that is produced by the Division of Disaster and Emergency Services (DES), Department of Military Affairs, Frankfort, 40601. Annexes H. on Transportation and DD on Earthquakes give additional information on disaster preparedness and response.

A copy of the State EOP and information on local hazard mitigation activities and response preparedness are available from the AREA 4 Office of DES which is located in Bowling Green. The phone numbers at this office are (502) 564-8604 and (502) 782-1267.

Additional information about the study discussed in this report should be directed to David L. Allen, Project Director, at the Kentucky Transportation Center, (606) 257-4513. Requests to be placed on the mailing list for updated information should be submitted on your company or agency letterhead to the Kentucky Transportation Center at the University of Kentucky, Lexington Kentucky 40506-0043.
Figure 1: The twenty-six counties included in this study area.
Table 1: MODIFIED MERCALLI INTENSITY SCALE

Modified Mercalli Intensity Scale, 1956 Version

The following comments by Dr. Richter precede the published statement of the intensity scale:

Each effect is named at the level of intensity at which it first appears frequently and characteristically. Each effect may be found less strongly, or in fewer instances, at the next lower grade of intensity, more strongly or more often at the next higher grade. A few effects are named at two successive levels to indicate a more gradual increase.

<table>
<thead>
<tr>
<th>Masonry A, B, C, D</th>
<th>To avoid ambiguity of language, the quality of masonry, brick or otherwise, is specified by the following lettering.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masonry A</td>
<td>Good workmanship, mortar, and design; reinforced, especially laterally, and bound together by using steel, concrete, etc.; designed to resist lateral forces.</td>
</tr>
<tr>
<td>Masonry B</td>
<td>Good workmanship and mortar, reinforced by not designed in detail to resist lateral forces.</td>
</tr>
<tr>
<td>Masonry C</td>
<td>Ordinary workmanship and mortar; no extreme weakness like failing to tie corners, but neither reinforced nor designed against horizontal forces.</td>
</tr>
<tr>
<td>Masonry D</td>
<td>Weak materials, such as adobe; poor mortar; low standards of workmanship; weak horizontally.</td>
</tr>
</tbody>
</table>

The following list represents the twelve grades of the scale.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Not felt. Marginal and long-period effects of large earthquakes.</td>
</tr>
<tr>
<td>2</td>
<td>Felt by persons at rest, on upper floors, or favorable placed.</td>
</tr>
<tr>
<td>5</td>
<td>Felt outdoors; direction estimated. Sleepers awakened. Liquids disturbed.</td>
</tr>
<tr>
<td>6</td>
<td>Felt by all. Many frightened and run outdoors. Windows, dishes, glassware broken.</td>
</tr>
<tr>
<td>8</td>
<td>Steering of motor cars affected. Damage to masonry C; partial collapse.</td>
</tr>
<tr>
<td>9</td>
<td>General panic. Masonry D destroyed; masonry C heavily damaged, sometimes with complete collapse; masonry B seriously damaged.</td>
</tr>
<tr>
<td>10</td>
<td>Most masonry and frame structures destroyed with their foundations. Underground pipelines completely out of service.</td>
</tr>
<tr>
<td>11</td>
<td>Damage nearly total. Large rock masses displaced. Lines of sight and level distorted. Objects thrown in the air.</td>
</tr>
</tbody>
</table>
AMPLIFICATION OF SHAKING
AND
DAMAGE DUE TO SHAKING

Figure 2: Amplification of shaking in softer rock & soil during an earthquake.
Figure 3. Alluvium map for Butler County.
APPENDIX A

STRIP MAP FOR BUTLER COUNTY

US 231
APPENDIX B

SEISMICALLY SIGNIFICANT FEATURES
Report by Road and Milepoint for Butler County - Kentucky

US 231

<table>
<thead>
<tr>
<th>Milepoint</th>
<th>Feature</th>
<th>Data</th>
</tr>
</thead>
</table>
| 0.00 | Other | Butler Co - Warren Co Boundary
Road Surface Type - Flexible |
| 1.10 | Power Line | Electrical Power Line 6 Lines
Height 30 feet
Steel Support Structure Unknown
Volts |
| 1.40 | Other | Junction KY 1083 Heading South
Road Surface Type - Flexible |
| 1.60 | Trees | Number of Trees 50
Height 40 feet
Diameter 20 in.
Ending Milepoint 1.80
Distance From Road 10 feet
Road Surface Type - Flexible |
| 3.15 | Pipeline | Pipeline Type - Gas
Road Surface Type - Flexible |
| 3.20 | Other | Junction KY 1435 Heading East
Road Surface Type - Flexible |
| 3.50 | Trees | Number of Trees 20
Height 45 feet
Diameter 24 in.
Ending Milepoint 3.55
Distance From Road 20 feet
Road Surface Type - Flexible |
| 3.65 | Fault | Fault
Road Surface Type - Flexible |
| 4.48 | Trees | Number of Trees 50
Height 40 feet
Diameter 28 in.
Ending Milepoint 4.73
Distance From Road 15 feet
Road Surface Type - Flexible |
Report by County and Milepoint
for Butler County - Kentucky

Milepoint 4.63

Feature: Bridge
Number of Spans: 5
Over Stream: Concrete T-Beam
End 1 Fixed Pier: 1 Fixed Pier 2 Fixed
Pier 3 Fixed Pier 4 Fixed End 2 Fixed:
Deck Type: Concrete
Length: 240 feet
Width: 19 feet
Pier Type: Solid
SPC Rating: B
Surface Type: Flexible
Expansion Type: Other
End 1 Substructure: Full
End 2 Substructure: Full
Foundation Type: Unknown

Milepoint 5.28

Feature: Trees
Number of Trees: 50
Height: 40 feet
Diameter: 30 in.
Ending Milepoint: 5.53
Distance From Road: 15 feet
Road Surface Type: Flexible

Milepoint 5.90

Feature: Trees
Number of Trees: 35
Height: 35 feet
Diameter: 18 in.
Ending Milepoint: 6.05
Distance From Road: 15 feet
Road Surface Type: Flexible

Milepoint 6.60

Feature: Trees
Number of Trees: 50
Height: 35 feet
Diameter: 18 in.
Ending Milepoint: 7.00
Distance From Road: 12 feet
Road Surface Type: Flexible

Milepoint 7.29

Feature: Trees
Number of Trees: 3
Height: 50 feet
Diameter: 30 in.
Ending Milepoint: 7.30
Distance From Road: 15 feet
Road Surface Type: Flexible

Milepoint 7.93

Feature: Fault
Road Surface Type: Flexible
Milepoint 8.00
Feature Data
- **Bridge**
 - Number of Spans: 1
 - Type: Unknown
 - Deck Type: Concrete
 - Length: 24 feet
 - Pier Type: Unknown
 - SPC Rating: B
 - Surface Type: Flexible
 - Expansion Type: Other
 - Pier Type: Fixed

Milepoint 8.20
Other
- **Feature Data**
 - KY 79 Joins US 231 Heading South
 - Road Surface Type: Flexible

Milepoint 8.60
Other
- **Feature Data**
 - Junction Ky 1468 Heading West
 - Road Surface Type: Flexible

Milepoint 8.80
Bridge
- Number of Spans: 3
- Overpass
- Deck Type: Concrete
- Length: 150 feet
- Pier Type: Open
- SPC Rating: B
- Surface Type: Flexible
- Expansion Type: Poured Compression
- Pier Type: Neoprene
- Pier Type: Neoprene

Milepoint 8.80
Other
- **Feature Data**
 - Two Bridges - Same Data For Both
 - Road Surface Type: Flexible

Milepoint 9.18
Trees
- Number of Trees: 20
- Height: 40 feet
- Distance From Road: 10 feet
- Road Surface Type: Flexible
<table>
<thead>
<tr>
<th>Milepoint</th>
<th>Feature</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.92</td>
<td>Bridge</td>
<td>Number of Spans 1 Type Unknown Concrete T-Beam End 1 Fixed End 2 Fixed Deck Type - Concrete Length 24 feet Width 20 feet Pier Type - Unknown SPC Rating - B Surface Type - Flexible Expansion Type - Other End 1 Substructure - Full End 2 Substructure - Full Foundation Type - Unknown</td>
</tr>
<tr>
<td>10.00</td>
<td>Trees</td>
<td>Number of Trees 10 Height 40 feet Diameter 30 in. Ending Milepoint 10.00 Distance From Road 10 feet Road Surface Type - Flexible</td>
</tr>
<tr>
<td>10.54</td>
<td>Trees</td>
<td>Number of Trees 30 Height 35 feet Diameter 20 in. Ending Milepoint 10.60 Distance From Road 10 feet Road Surface Type - Flexible</td>
</tr>
<tr>
<td>10.80</td>
<td>Other</td>
<td>City of Morgantown Road Surface Type - Flexible</td>
</tr>
<tr>
<td>10.80</td>
<td>Other</td>
<td>Junction KY 403 Heading East Road Surface Type - Flexible</td>
</tr>
<tr>
<td>10.90</td>
<td>Building</td>
<td>Urban Location Masonary Building Floors 4 Area/Floor 50,000 square feet Road Surface Type - Flexible Other Use</td>
</tr>
<tr>
<td>11.50</td>
<td>Other</td>
<td>Junction KY 403 Heading West Road Surface Type - Flexible</td>
</tr>
<tr>
<td>11.60</td>
<td>Other</td>
<td>Junction KY 70 Heading East Road Surface Type - Flexible</td>
</tr>
<tr>
<td>12.00</td>
<td>Fill</td>
<td>Material Type - Soil Height 60 feet Side slope 2:1 Length 500 feet Crest 30 feet Type Fill - Other Road Surface Type - Flexible</td>
</tr>
<tr>
<td>Milepoint</td>
<td>Feature</td>
<td>Data</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>------</td>
</tr>
</tbody>
</table>
| 12.10 | Pipeline | Pipeline Type - Natural Gas
Road Surface Type - Flexible |
| 12.10 | Other | Gas Line Under Bridge - Runs Entire Length
Road Surface Type - Flexible |
| 12.26 | Bridge | Number of Spans 12
Steel Girder I-Beam
Bridge Type - Over Stream
Bridge Bearing Type Unknown
Deck Type - Concrete
Length 1,483 feet
Width 24 feet
Pier Type - Solid
SPC Rating - B
Surface Type - Flexible
Expansion Type - Sliding Plate
End 1 Substructure - Stub
End 2 Substructure - Stub
Foundation Type - Unknown |
| 13.30 | Other | US 231 Leaves KY 79 Heading North
Road Surface Type - Flexible |
| 13.55 | Other | Junction KY 1328 Heading East
Road Surface Type - Flexible |
| 13.60 | Power Line | Electrical Power Line
3 Lines
Height 30 feet
Wood Support Structure - Unknown
Volts
Road Surface Type - Flexible |
| 14.30 | Other | Junction KY 70 Heading East
Road Surface Type - Flexible |
| 15.10 | Pipeline | Pipeline Type - Gas
Road Surface Type - Flexible |
| 15.40 | Trees | Number of Trees 40
Height 35 feet
Diameter 24 in.
Ending Milepoint 15.48
Distance From Road 10 feet
Road Surface Type - Flexible |
<table>
<thead>
<tr>
<th>Milepoint</th>
<th>Feature</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.70</td>
<td>Power Line</td>
<td>Electrical Power Line 3 Lines Height 35 feet Wood Support Structure Unknown Volts Road Surface Type - Flexible</td>
</tr>
<tr>
<td>16.30</td>
<td>Fill</td>
<td>Material Type - Soil Height 50 feet Side slope 2:1 Length 2,000 feet Crest 30 feet Type Fill - Other Road Surface Type - Flexible</td>
</tr>
<tr>
<td>16.32</td>
<td>Bridge</td>
<td>Number of Spans 6 Steel Girder I-Beam Bridge Type - Over Stream End 1 Fixed Pier 1 Fixed Pier 2 Fixed Pier 3 Fixed Pier 4 Fixed Pier 5 Fixed End 2 Fixed Deck Type - Concrete Length 203 feet Width 24 feet Pier Type - Open SPC Rating - B Surface Type - Flexible Expansion Type - Sliding Plate End 1 Substructure - Stub End 2 Substructure - Stub Foundation Type - Unknown</td>
</tr>
<tr>
<td>16.58</td>
<td>Fault</td>
<td>Fault Road Surface Type - Flexible</td>
</tr>
<tr>
<td>16.70</td>
<td>Other</td>
<td>Junction KY 1118 Heading North Road Surface Type - Flexible</td>
</tr>
<tr>
<td>16.87</td>
<td>Other</td>
<td>Caved Adits Road Surface Type - Flexible</td>
</tr>
<tr>
<td>17.11</td>
<td>Bridge</td>
<td>Number of Spans 5 Over Stream Steel Girder Bridge Type - Over Stream End 1 Fixed Pier 2 Fixed Pier 3 Fixed Pier 4 Fixed Pier 5 Fixed Pier 6 Fixed Pier 7 Fixed Deck Type - Concrete Length 251 feet Width 24 feet Pier Type - Open SPC Rating - B Surface Type - Flexible Expansion Type - Other End 1 Substructure - Stub End 2 Substructure - Stub Foundation Type - Unknown</td>
</tr>
<tr>
<td>Milepoint</td>
<td>Feature</td>
<td>Data</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>17.30</td>
<td>Trees</td>
<td>Number of Trees 5 Height 40 feet Diameter 24 in. Ending Milepoint 17.31 Distance From Road 12 feet Road Surface Type - Flexible</td>
</tr>
<tr>
<td>17.40</td>
<td>Cut Slope</td>
<td>Cut Slope Type - Rock Height 30 feet Length 1,000 feet Backslope 1:1 Road Surface Type - Flexible</td>
</tr>
<tr>
<td>17.76</td>
<td>Bridge</td>
<td>Number of Spans 2 Overpass Concrete I-Beam End 1 Neoprene Pier 1 Neoprene End 2 Neoprene Deck Type - Concrete Length 299 feet Width 24 feet Pier Type - Open SPC Rating - A Surface Type - Flexible Expansion Type - Poured Compression End 1 Substructure - Stub End 2 Substructure - Stub Foundation Type - Unknown</td>
</tr>
<tr>
<td>18.50</td>
<td>Trees</td>
<td>Number of Trees 150 Height 40 feet Diameter 28 in. Ending Milepoint 18.70 Distance From Road 20 feet Road Surface Type - Flexible</td>
</tr>
<tr>
<td>18.80</td>
<td>Other</td>
<td>Ohio Co - Butler Co Boundary Road Surface Type - Flexible</td>
</tr>
</tbody>
</table>