Research Report
KTC-93-7

ENHANCEMENTS TO PROCEDURE FOR

ESTIMATING ESALS

by

John A. Deacon
Professor

Jerry G. Pigman
Research Engineer

Neil W. Tollner
Senior Scientific Programmer Analyst

and

David H. Cain
Engineering Technician II

Kentucky Transportation Center
College of Engineering
University of Kentucky
Lexington, Kentucky

in cooperation with

Kentucky Transportation Cabinet
Commonwealth of Kentucky

The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Kentucky or the Kentucky Transportation Cabinet. This report does not constitute a standard, specification, or regulation. The inclusion of manufacturer names and trade names is for identification purposes and is not to be considered an endorsement.

February 1993
INTRODUCTION

Kentucky's current procedure for estimating equivalent single axle loads (ESALs) was updated in 1990 to incorporate traffic data categorized by functional class rather than by statewide averages. This change resulted from the influx of data generated by automatic equipment used to classify and weigh vehicles in motion. A much wider range of geographic conditions and road conditions was sampled, and the expectation was that the data used in the estimation procedure would be more accurate as a result.

The 1990 revisions were quite extensive, and, although model calibrations using 1989 and 1990 data have proven useful, the Division of Planning has sought refinements which would improve the calibrations and make them more useful for specific needs. In addition, the continuing analysis of weight and classification data for coal trucks has identified potential improvements that could produce more representative data for these types of vehicles.

In response to these needs, a research study was proposed for FY 1992 with funds totaling $25,000 (Appendix A). Funding limitations delayed the study until FY 1993 and reduced the amount to $15,000. Although there was some decrease in scope, the study has been successful in 1) enhancing the accuracy of the calibration process; 2) improving the appearance, clarity, and utility of the output; and 3) potentially reducing year-to-year variations in the estimation of key quantities. In addition, a possible revision has been outlined which would eventually offer other benefits including a more definitive and accurate method for reflecting effects of coal movement.

The purpose of this report is to explain and document the progress that has been made toward improving the ESAL-estimation process and exploiting the wealth of data being generated by the new vehicle classification and weighing program.

WIM-TO-STATIC CONVERSION

Kentucky's load equivalency factors, on which ESAL-computations depend, are based on static truck weight measurements. Because of the dynamics of vehicles in motion, it is necessary to convert weigh-in-motion (WIM) measurements to their static equivalents. Factors for such conversions were developed in earlier work (1), and computer code was prepared for preliminary processing of all Kentucky WIM data. Incorporated in the code was the capability for classifying trucks into two "commodity" categories, normal and heavy/coal.

During preliminary phases of the current model-calibration process, the algorithm for commodity classification was found to be erroneous. Apparently, changes made following the 1990 model calibration had not been properly debugged. As a result one of the first of the current revisions was to correct this portion of the WIM computer code.

The second revision was to add a routine for validity checking. In the original ESAL programs, validity checking of the weight data was a part of the LOADMTR program. Because
programs, validity checking of the weight data was a part of the LOADMTR program. Because the WIM program precedes the LOADMTR program in the calibration sequence and because WIM program output is used directly for other purposes, it was desirable to move validity checking routines to the WIM program. Additional validity checks were added in response to specific error types observed in a few of the WIM data records. The following summarizes validity checks which are being applied to each WIM record:

- The gross vehicle weight must be within 10 percent of the sum of the individual axle weights;
- The wheelbase must be within 10 percent of the sum of the individual axle spacings;
- The number of individual axle weights must be exactly one more than the number of axle spacings;
- Each individual axle weight must be greater than zero;
- Each axle spacing must be greater than 1.5 feet; and
- Gross weight and wheelbase limits, identical to those used in earlier years, must be within the following limits:

1For convenience several of the validity checks were eventually added to the UNITEAL program instead of the WIM program.
<table>
<thead>
<tr>
<th>Vehicle Type</th>
<th>Gross Weight (Kips)</th>
<th>Wheelbase (Feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
<td>Upper</td>
</tr>
<tr>
<td>4</td>
<td>2.0</td>
<td>66</td>
</tr>
<tr>
<td>5</td>
<td>2.5</td>
<td>82</td>
</tr>
<tr>
<td>6</td>
<td>3.0</td>
<td>99</td>
</tr>
<tr>
<td>7</td>
<td>3.5</td>
<td>115</td>
</tr>
<tr>
<td>8</td>
<td>4.0</td>
<td>132</td>
</tr>
<tr>
<td>9</td>
<td>4.5</td>
<td>149</td>
</tr>
<tr>
<td>10</td>
<td>5.0</td>
<td>165</td>
</tr>
<tr>
<td>11</td>
<td>5.5</td>
<td>180</td>
</tr>
<tr>
<td>12</td>
<td>6.0</td>
<td>180</td>
</tr>
<tr>
<td>13</td>
<td>6.5</td>
<td>180</td>
</tr>
</tbody>
</table>

Weight records identified as erroneous by the above criteria are purged from the data set, and a summary of the extent of "erroneous" data is provided so that the integrity of the entire data set can be quickly ascertained.

Summary statistics resulting from the application of the validity checking process to 1989, 1990, and 1991 weight data are presented in Tables 1-3, respectively. In general, it appears that the databases are quite good and that the edit specifications are quite reasonable. At the same time, the number of vehicles with excessive wheelbases seems to be too large. A detailed examination of a sample of these records reveals that a relatively small relaxation in the upper wheelbase limit would greatly reduce the number of these rejections (Figure 1). As a result, each upper limit will be increased by 6 feet for future calibrations. In addition to the large number of rejections due to restrictive wheelbase limits, a very large number of trucks were classified as "921" vehicles. Detailed examination of this matter has resulted in modifications to the computer code which will significantly reduce the number of vehicles that are coded this way in the future.

Appendix B contains a Fortran source listing of the revised WIM program.

\[^2\] As noted in the text, each upper wheelbase limit will be increased for future work by 6 feet. The 90-foot cap will be increased to 100 feet.
Table 1. Summary of Rejected Weight Records in 1989

<table>
<thead>
<tr>
<th>Description</th>
<th>1</th>
<th>2</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>11</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIM PROGRAM</td>
<td></td>
</tr>
<tr>
<td>Axles without recorded weight</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axle spacing less than 1.5 feet</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mismatch between numbers of axle weights and spacings</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>More than 10 percent difference between gross weight and sum of axle weights</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>More than 10 percent difference between wheelbase and sum of axle spacings</td>
<td>10</td>
<td>5</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNITEAL PROGRAM</td>
<td></td>
</tr>
<tr>
<td>Excessive gross weight</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negligible gross weight</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excessive wheelbase</td>
<td>99</td>
<td>10</td>
<td></td>
<td></td>
<td>13</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negligible wheelbase</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle type "921"</td>
<td>202</td>
<td>91</td>
<td>19</td>
<td>94</td>
<td>185</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL NUMBER OF REJECTIONS</td>
<td>311</td>
<td>107</td>
<td>19</td>
<td>112</td>
<td>193</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL NUMBER OF RECORDS</td>
<td>18,744</td>
<td>3,652</td>
<td>777</td>
<td>9,899</td>
<td>4,868</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERCENT REJECTION</td>
<td>1.66</td>
<td>2.93</td>
<td>2.44</td>
<td>1.13</td>
<td>3.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Summary of Rejected Weight Records in 1990

<table>
<thead>
<tr>
<th>Description</th>
<th>Functional Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>WIM PROGRAM</td>
<td></td>
</tr>
<tr>
<td>Axles without recorded weight</td>
<td>0</td>
</tr>
<tr>
<td>Axle spacing less than 1.5 feet</td>
<td>0</td>
</tr>
<tr>
<td>Mismatch between numbers of axle weights and spacings</td>
<td>7</td>
</tr>
<tr>
<td>More than 10 percent difference between gross weight and sum of axle weights</td>
<td>0</td>
</tr>
<tr>
<td>More than 10 percent difference between wheelbase and sum of axle spacings</td>
<td>0</td>
</tr>
<tr>
<td>UNITEAL PROGRAM</td>
<td></td>
</tr>
<tr>
<td>Excessive gross weight</td>
<td>0</td>
</tr>
<tr>
<td>Negligible gross weight</td>
<td>0</td>
</tr>
<tr>
<td>Excessive wheelbase</td>
<td>174</td>
</tr>
<tr>
<td>Negligible wheelbase</td>
<td>0</td>
</tr>
<tr>
<td>Vehicle type "921"</td>
<td>644</td>
</tr>
<tr>
<td>TOTAL NUMBER OF REJECTIONS</td>
<td>825</td>
</tr>
<tr>
<td>TOTAL NUMBER OF RECORDS</td>
<td>40,912</td>
</tr>
<tr>
<td>PERCENT REJECTION</td>
<td>2.02</td>
</tr>
</tbody>
</table>
Table 3. Summary of Rejected Weight Records in 1991

<table>
<thead>
<tr>
<th>Description</th>
<th>Functional Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>WIM PROGRAM</td>
<td></td>
</tr>
<tr>
<td>Axles without recorded weight</td>
<td>35</td>
</tr>
<tr>
<td>Axle spacing less than 1.5 feet</td>
<td>0</td>
</tr>
<tr>
<td>Mismatch between numbers of axle weights and spacings</td>
<td>14</td>
</tr>
<tr>
<td>More than 10 percent difference between gross weight and sum of axle weights</td>
<td>0</td>
</tr>
<tr>
<td>More than 10 percent difference between wheelbase and sum of axle spacings</td>
<td>0</td>
</tr>
<tr>
<td>UNITEAL PROGRAM</td>
<td></td>
</tr>
<tr>
<td>Excessive gross weight</td>
<td>0</td>
</tr>
<tr>
<td>Negligible gross weight</td>
<td>0</td>
</tr>
<tr>
<td>Excessive wheelbase</td>
<td>170</td>
</tr>
<tr>
<td>Negligible wheelbase</td>
<td>0</td>
</tr>
<tr>
<td>Vehicle type "921"</td>
<td>865</td>
</tr>
<tr>
<td>TOTAL NUMBER OF REJECTIONS</td>
<td>1,084</td>
</tr>
<tr>
<td>TOTAL NUMBER OF RECORDS</td>
<td>77,305</td>
</tr>
<tr>
<td>PERCENT REJECTION</td>
<td>1.40</td>
</tr>
</tbody>
</table>
VEHICLES REJECTED FOR EXCESSIVE WHEELBASE
1991- ALL FUNCTIONAL CLASSES

<table>
<thead>
<tr>
<th>VEHICLE CLASS</th>
<th>NO. VEH. REJT.</th>
<th>AVG. DIFF.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>11.5</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Cumulative No. Of Rejected Vehicles (Total=248)
MODIFICATION OF EALCALC

The main program for model calibration is that named EALCALC. EALCALC merges weight data (previously processed by LOADMTR) with classification data (previously processed by CLASSUM) to produce the primary ESAL-model parameters (AADT, percent trucks, axles per truck, ESALs per truck axle, etc.).

During the 1990 model calibration last year, what should have been identical runs of EALCALC failed to produce duplicate output. After considerable searching, the error could not be definitively traced to its source. EALCALC is a rather large, complex program which has been continuously modified since its inception in response to new data sources and analysis requirements. As an expedient, it was decided to compute the unit ESALs, that is, the ESALs per truck axle, externally and to input them directly into EALCALC rather than to continue to try to locate and correct the internal error. As the code to compute the unit ESALs had been developed for other purposes, this correction required fairly small additional effort during the 1990 calibration.

The unit ESALs incorporated into the 1990 calibration were classified by commodity type and by functional classification but not by vehicle type. This departure from past calibrations yielded constant ESALs per axle for all classification sites within a given functional classification. Because this was neither necessary nor desirable, a change was made as part of the current study to reflect real differences in ESALs per axle as a function not only of commodity type and functional class but also vehicle type. The anticipated effects of this change include an increase in accuracy and the restoration of past conventions.

COMPUTATION OF UNIT ESALS

The ESALs for a given axle are very sensitive to the axle load. For example, the well known "fourth power law" suggests that the number of ESALs attributed to a given axle is approximately proportional to the fourth power of its weight. As a result, a handful of very heavily laden vehicles can have order-of-magnitude effects on the ESAL-loading of the traffic stream. To illustrate, 437 2-axle trucks were weighed at one 1991 site. The ESALs per axle averaged an enormous 8.09. By removing the single most damaging truck, however, the average dropped to 0.42 ESALs per axle. Recorded loads on this one truck included 9,400 pounds on the steering axle and 74,500 pounds on the remaining single axle: these resulted in an ESAL estimate totaling 6,700 for this one vehicle.

Although the new validity specifications for weight data attenuate such effects, additional care was required to assure that computations of damage factors for individual axles are not a result of extrapolations much beyond the range of historical data. The EALCALC program had limited the damage factors for very heavy loads--thus avoiding extreme estimates that may result from erroneous or spurious data. This practice was continued by modifying the UNLITEAL program to incorporate the following specification:

8
REVISED OUTPUT

Hard-copy output from the EALCALC program and, especially, the SMOOTH program is used extensively in site-specific forecasts of ESAL accumulations. As a result of improvements sought by the Division of Planning, significant revisions were made to the hard-copy output, and an experimental dBASE display was developed.

Driving changes to the hard-copy output was the desire to make the output not only more attractive but also more comprehensible. This was accomplished largely by eliminating unnecessary data, by reducing the number of years of displayed data to ten, and by careful attention to spacing and wording. In addition, historic data identifying the numbers of both classification and weigh stations\(^3\) were added to assist the analyst in evaluating the reliability of the measurements. The most recent 3-year averages that had been included in the EALCALC output were more carefully distinguished from the historical data, and the most recent single-year data were added. To assist the analyst in identifying abnormal growth estimates, entries in the SMOOTH output were tagged with ? ... ? brackets when incremental percentages were negative or when they exceeded 5 percent. The new formats are illustrated in Figures 2 and 3.

In response to a Division of Planning request to display the historic data trends graphically, an experimental dBASE routine was developed which provides computer access to the EALCALC and SMOOTH output and creates the desired graphical display. The 1991 output has been provided in this format (in addition to the traditional hard-copy output), and, as

\[^{3}\text{The annual number of weigh stations was not conveniently accessible by computer. To avoid reprocessing pre-1990 data, the number of weigh stations has been shown only for 1990 and 1991. As data for future years is processed, this number will automatically be added to the historical file.}\]

<table>
<thead>
<tr>
<th>Type of Axle</th>
<th>For Loads In Excess Of</th>
<th>Use Following Damage Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steering</td>
<td>22,500 lb.</td>
<td>5.39</td>
</tr>
<tr>
<td>Other Single</td>
<td>37,500 lb.</td>
<td>78.6</td>
</tr>
<tr>
<td>Tandem</td>
<td>75,000 lb.</td>
<td>63.0</td>
</tr>
<tr>
<td>Tridem</td>
<td>112,500 lb.</td>
<td>59.0</td>
</tr>
<tr>
<td>Quad</td>
<td>150,000 lb.</td>
<td>58.3</td>
</tr>
</tbody>
</table>

These limits are the same that have been used in past years.

Appendix C contains a Fortran source listing of the revised UNITEAL program.
SUMMARY OF AVERAGE VALUES FOR FUNCTIONAL CLASS 01 -- RURAL INTERSTATE

<table>
<thead>
<tr>
<th>YEAR AVG</th>
<th>91</th>
<th>90</th>
<th>89</th>
<th>88</th>
<th>87</th>
<th>86</th>
<th>85</th>
<th>84</th>
<th>83</th>
<th>82</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMBER OF WEIGH STA.</td>
<td>7</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UNCLASSIFIED ROADS
(ALL AVC LOCATIONS AND MANUAL LOCATIONS WITH LESS THAN 3% OF TRUCKS CLASSIFIED AS HEAVY/COAL)

<table>
<thead>
<tr>
<th>NO OF CLASSIFICATION STA.</th>
<th>46</th>
<th>13</th>
<th>23</th>
<th>10</th>
<th>9</th>
<th>14</th>
<th>10</th>
<th>14</th>
<th>9</th>
<th>8</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>AADT</td>
<td>22103</td>
<td>23609</td>
<td>21017</td>
<td>22643</td>
<td>20785</td>
<td>17661</td>
<td>16636</td>
<td>20837</td>
<td>19585</td>
<td>19132</td>
<td>18507</td>
</tr>
<tr>
<td>EAL’S PER TRUCK AXLE</td>
<td>0.177</td>
<td>0.189</td>
<td>0.186</td>
<td>0.142</td>
<td>0.159</td>
<td>0.166</td>
<td>0.167</td>
<td>0.157</td>
<td>0.154</td>
<td>0.136</td>
<td>0.135</td>
</tr>
</tbody>
</table>

CLASSIFIED ROADS
(MANUAL LOCATION WITH 3% OR MORE OF TRUCKS CLASSIFIED AS HEAVY/COAL)

<table>
<thead>
<tr>
<th>NO OF CLASSIFICATION STA.</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>AADT</td>
<td>12213</td>
<td>0</td>
<td>0</td>
<td>12213</td>
<td>18903</td>
<td>26386</td>
<td>20497</td>
<td>22128</td>
<td>23310</td>
<td>22627</td>
<td>21573</td>
</tr>
<tr>
<td>PERCENT TRUCKS</td>
<td>28.808</td>
<td>0.000</td>
<td>0.000</td>
<td>28.808</td>
<td>24.018</td>
<td>23.962</td>
<td>24.408</td>
<td>22.534</td>
<td>23.085</td>
<td>24.1955</td>
<td>24.270</td>
</tr>
<tr>
<td>PERCENT OF TRUCKS CLASSIFIED AS HEAVY/COAL</td>
<td>6.443</td>
<td>0.000</td>
<td>0.000</td>
<td>6.443</td>
<td>3.583</td>
<td>4.209</td>
<td>11.007</td>
<td>4.467</td>
<td>3.220</td>
<td>3.722</td>
<td>5.228</td>
</tr>
<tr>
<td>AXLES PER TRUCK NORMAL</td>
<td>4.432</td>
<td>0.000</td>
<td>0.000</td>
<td>4.432</td>
<td>4.311</td>
<td>4.404</td>
<td>4.247</td>
<td>4.249</td>
<td>4.313</td>
<td>4.376</td>
<td>4.365</td>
</tr>
<tr>
<td>AXLES PER TRUCK HEAVY/COAL</td>
<td>5.008</td>
<td>0.000</td>
<td>0.000</td>
<td>5.008</td>
<td>5.288</td>
<td>5.301</td>
<td>5.076</td>
<td>5.133</td>
<td>5.246</td>
<td>5.254</td>
<td>5.074</td>
</tr>
<tr>
<td>EAL’S PER TRUCK AXLE NORMAL</td>
<td>0.138</td>
<td>0.000</td>
<td>0.000</td>
<td>0.138</td>
<td>0.157</td>
<td>0.169</td>
<td>0.162</td>
<td>0.153</td>
<td>0.155</td>
<td>0.136</td>
<td>0.137</td>
</tr>
<tr>
<td>EAL’S PER TRUCK AXLE HEAVY/COAL</td>
<td>0.258</td>
<td>0.000</td>
<td>0.000</td>
<td>0.258</td>
<td>0.559</td>
<td>0.257</td>
<td>0.271</td>
<td>0.240</td>
<td>0.222</td>
<td>0.221</td>
<td>0.242</td>
</tr>
<tr>
<td>YEAR</td>
<td>91</td>
<td>90</td>
<td>89</td>
<td>88</td>
<td>87</td>
<td>86</td>
<td>85</td>
<td>84</td>
<td>83</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td></td>
</tr>
<tr>
<td>NO. OF WEIGH STA.</td>
<td>7</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UNCLASSIFIED ROADS
(ALL AVC LOCATIONS AND MANUAL LOCATIONS WITH LESS THAN 3% OF TRUCKS CLASSIFIED AS HEAVY/COAL)

<table>
<thead>
<tr>
<th>NO. OF CLASSIFICATION STA.</th>
<th>13</th>
<th>23</th>
<th>10</th>
<th>9</th>
<th>14</th>
<th>10</th>
<th>14</th>
<th>9</th>
<th>8</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>AADT</td>
<td>2.288</td>
<td>22304</td>
<td>21794</td>
<td>21284</td>
<td>20773</td>
<td>20263</td>
<td>19753</td>
<td>19243</td>
<td>18732</td>
<td>18222</td>
</tr>
<tr>
<td>PERCENT TRUCKS</td>
<td>0.114</td>
<td>28.088</td>
<td>28.056</td>
<td>28.024</td>
<td>27.992</td>
<td>27.960</td>
<td>27.928</td>
<td>27.896</td>
<td>27.864</td>
<td>27.832</td>
</tr>
<tr>
<td>EAL’S PER TRUCK AXLE</td>
<td>2.635</td>
<td>0.180</td>
<td>0.176</td>
<td>0.171</td>
<td>0.166</td>
<td>0.161</td>
<td>0.157</td>
<td>0.152</td>
<td>0.147</td>
<td>0.142</td>
</tr>
</tbody>
</table>

CLASSIFIED ROADS
(MANUAL LOCATION WITH 3% OR MORE OF TRUCKS CLASSIFIED AS HEAVY/COAL)

<table>
<thead>
<tr>
<th>NO. OF CLASSIFICATION STA.</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>AADT</td>
<td>?</td>
<td>-7.133</td>
<td>15099</td>
<td>16177</td>
<td>17254</td>
<td>18331</td>
<td>19408</td>
<td>20485</td>
<td>21562</td>
<td>22640</td>
</tr>
<tr>
<td>CLASSIFIED AS HEAVY/COAL</td>
<td></td>
</tr>
<tr>
<td>AXLES PER TRUCK HEAVY/COAL</td>
<td>?</td>
<td>-0.103</td>
<td>5.145</td>
<td>5.150</td>
<td>5.155</td>
<td>5.161</td>
<td>5.166</td>
<td>5.171</td>
<td>5.176</td>
<td>5.182</td>
</tr>
<tr>
<td>EAL’S PER TRUCK AXLE NORMAL</td>
<td>0.817</td>
<td>0.158</td>
<td>0.157</td>
<td>0.156</td>
<td>0.154</td>
<td>0.153</td>
<td>0.152</td>
<td>0.151</td>
<td>0.149</td>
<td>0.148</td>
</tr>
<tr>
<td>EAL’S PER TRUCK AXLE HEAVY/COAL</td>
<td>?</td>
<td>5.717</td>
<td>0.414</td>
<td>0.390</td>
<td>0.366</td>
<td>0.343</td>
<td>0.319</td>
<td>0.295</td>
<td>0.272</td>
<td>0.248</td>
</tr>
</tbody>
</table>
experience develops, an evaluation of its utility and, as appropriate, an identification of possible future enhancements can be made.

REVISED SMOOTHING ROUTINE

One of the criticisms of the ESAL modeling has been that incremental percentages, used in forecasting future ESAL accumulations, display excessive year-to-year variation. Such variation is thought to be largely due to sampling error (insufficient sample size) and, particularly in the last two years, to the transition to the new automated data collection program. Nevertheless, the variation can be significantly reduced by altering the nature of the regression fit that produces the incremental percentages. Past procedures have employed a weighted, least-squares process utilizing 15 years of data. Weights have been proportional to the number of stations contributing to the estimate and have emphasized recent data by assigning a weight of 15 to current-year data, 14 to the prior year data, etc.

The weighted regression routine in the SMOOTH program was modified to produce more stable estimates of incremental percentages. Only the most recent 10 years of data were used with weights ranging linearly from 2 for the present year to 1 for data collected 10 years earlier. No weighting was given to the number of stations. The net effect of this change is expected to be more stable estimates of the incremental percentages. Unfortunately these revised estimates will not respond as quickly to real changes in the character of the traffic stream as did past estimates. As experience with the new data collection program develops, it would seem prudent to reexamine the nature of the weighted regression.

To demonstrate the stability of the incremental percentages, a comparison was made between increments developed by a 1990 recalibration and by the new 1991 calibration. Complete results are summarized in the following table. Figures 4-11 provide example graphical comparisons of traffic parameter trends for unclassified roads on the rural interstate and principal arterial systems. Figure 12 indicates that more than half of the differences between the 111 1990 and 1991 estimates are less than 1 percent in magnitude. Thus, while there is generally good agreement between 1990 and 1991 estimates, the revisions that have been made do not eliminate the necessity for informed professional judgement when applying the ESAL model for traffic forecasts and evaluations. Although it's not clear that further change in the smoothing routine is desirable at this time, certainly additional comparisons must be made when 1992 data are processed.
<table>
<thead>
<tr>
<th>Functional Class</th>
<th>Highway Type</th>
<th>ESAL Parameter</th>
<th>Growth Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1990</td>
</tr>
<tr>
<td>1</td>
<td>Normal</td>
<td>AADT</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Trucks</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Truck</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Truck Axle</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Coal</td>
<td>AADT</td>
<td>-2.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Trucks</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Heavy/Coal Trucks</td>
<td>-0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Normal Truck</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Heavy/Coal Truck</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Normal Truck Axle</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Heavy/Coal Truck Axle</td>
<td>5.2</td>
</tr>
<tr>
<td>2</td>
<td>Normal</td>
<td>AADT</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Trucks</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Truck</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Truck Axle</td>
<td>-5.5</td>
</tr>
<tr>
<td></td>
<td>Coal</td>
<td>AADT</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Trucks</td>
<td>-1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Heavy/Coal Trucks</td>
<td>-4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Normal Truck</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Heavy/Coal Truck</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Normal Truck Axle</td>
<td>-2.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Heavy/Coal Truck Axle</td>
<td>-13.3</td>
</tr>
<tr>
<td>6</td>
<td>Normal</td>
<td>AADT</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Trucks</td>
<td>-3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Truck</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Truck Axle</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>Coal</td>
<td>AADT</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Trucks</td>
<td>-4.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Heavy/Coal Trucks</td>
<td>-1.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Normal Truck</td>
<td>-0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Heavy/Coal Truck</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Normal Truck Axle</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Heavy/Coal Truck Axle</td>
<td>5.7</td>
</tr>
</tbody>
</table>

13
<table>
<thead>
<tr>
<th>Functional Class</th>
<th>Highway Type</th>
<th>ESAL Parameter</th>
<th>1990</th>
<th>1991</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal</td>
<td>AADT</td>
<td>-0.4</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Trucks</td>
<td>-0.6</td>
<td>-0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Truck</td>
<td>0.7</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Truck Axle</td>
<td>5.6</td>
<td>7.5</td>
</tr>
<tr>
<td>7</td>
<td>Normal</td>
<td>AADT</td>
<td>1.5</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Trucks</td>
<td>-0.2</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Heavy/Coal Trucks</td>
<td>-2.0</td>
<td>-1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Normal Truck</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Heavy/Coal Truck</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Normal Truck Axle</td>
<td>6.7</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Heavy/Coal Truck Axle</td>
<td>8.3</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>Coal</td>
<td>AADT</td>
<td>-3.9</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Trucks</td>
<td>-2.8</td>
<td>-1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Truck</td>
<td>0.9</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Truck Axle</td>
<td>-2.9</td>
<td>-7.2</td>
</tr>
<tr>
<td>8</td>
<td>Normal</td>
<td>AADT</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Trucks</td>
<td>0.9</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Heavy/Coal Trucks</td>
<td>2.8</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Normal Truck</td>
<td>2.6</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Heavy/Coal Truck</td>
<td>2.2</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Normal Truck Axle</td>
<td>-3.2</td>
<td>-7.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Heavy/Coal Truck Axle</td>
<td>3.7</td>
<td>-1.7</td>
</tr>
<tr>
<td></td>
<td>Coal</td>
<td>AADT</td>
<td>-5.2</td>
<td>-0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Trucks</td>
<td>-31.0</td>
<td>-4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Truck</td>
<td>2.8</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Truck Axle</td>
<td>3.9</td>
<td>4.0</td>
</tr>
<tr>
<td>9</td>
<td>Normal</td>
<td>AADT</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Trucks</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Heavy/Coal Trucks</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Normal Truck</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Heavy/Coal Truck</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Normal Truck Axle</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Heavy/Coal Truck Axle</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Functional Class</td>
<td>Highway Type</td>
<td>ESAL Parameter</td>
<td>1990</td>
<td>1991</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------</td>
<td>----------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>11</td>
<td>Normal</td>
<td>AADT</td>
<td>1.6</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Trucks</td>
<td>1.4</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Truck</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Truck Axle</td>
<td>-0.3</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Coal</td>
<td>AADT</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Trucks</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Heavy/Coal Trucks</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Normal Truck</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Heavy/Coal Truck</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Normal Truck Axle</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Heavy/Coal Truck Axle</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>12</td>
<td>Normal</td>
<td>AADT</td>
<td>6.6</td>
<td>10.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Trucks</td>
<td>5.3</td>
<td>-0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Truck</td>
<td>2.3</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Truck Axle</td>
<td>1.0</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>Coal</td>
<td>AADT</td>
<td>3.2</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Trucks</td>
<td>-5.2</td>
<td>-5.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Heavy/Coal Trucks</td>
<td>-9.7</td>
<td>-9.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Normal Truck</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Heavy/Coal Truck</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Normal Truck Axle</td>
<td>0.5</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Heavy/Coal Truck Axle</td>
<td>-2.4</td>
<td>-1.2</td>
</tr>
<tr>
<td>14</td>
<td>Normal</td>
<td>AADT</td>
<td>7.1</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Trucks</td>
<td>-1.9</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Truck</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Truck Axle</td>
<td>4.6</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>Coal</td>
<td>AADT</td>
<td>3.1</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Trucks</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Heavy/Coal Trucks</td>
<td>-4.5</td>
<td>-6.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Normal Truck</td>
<td>2.1</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Heavy/Coal Truck</td>
<td>1.6</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Normal Truck Axle</td>
<td>2.2</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Heavy/Coal Truck Axle</td>
<td>6.0</td>
<td>2.3</td>
</tr>
<tr>
<td>Functional Class</td>
<td>Highway Type</td>
<td>ESAL Parameter</td>
<td>Growth Percentage</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>---------------------------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1990</td>
<td>1991</td>
</tr>
<tr>
<td>16</td>
<td>Normal</td>
<td>AADT</td>
<td>4.2</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Trucks</td>
<td>-1.4</td>
<td>-0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Truck</td>
<td>0.3</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Truck Axle</td>
<td>2.8</td>
<td>7.3</td>
</tr>
<tr>
<td></td>
<td>Coal</td>
<td>AADT</td>
<td>-1.6</td>
<td>-1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Trucks</td>
<td>2.3</td>
<td>-1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Heavy/Coal Trucks</td>
<td>-14.6</td>
<td>-24.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Normal Truck</td>
<td>1.3</td>
<td>-1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Heavy/Coal Truck</td>
<td>3.7</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Normal Truck Axle</td>
<td>6.0</td>
<td>9.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Heavy/Coal Truck Axle</td>
<td>-3.6</td>
<td>-4.4</td>
</tr>
<tr>
<td>17</td>
<td>Normal</td>
<td>AADT</td>
<td>5.9</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Trucks</td>
<td>2.8</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Truck</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Truck Axle</td>
<td>4.8</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>Coal</td>
<td>AADT</td>
<td>3.8</td>
<td>-6.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Trucks</td>
<td>2.5</td>
<td>12.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Heavy/Coal Trucks</td>
<td>6.1</td>
<td>-21.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Normal Truck</td>
<td>3.9</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Heavy/Coal Truck</td>
<td>1.8</td>
<td>-3.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Normal Truck Axle</td>
<td>3.4</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Heavy/Coal Truck Axle</td>
<td>9.0</td>
<td>9.5</td>
</tr>
<tr>
<td>19</td>
<td>Normal</td>
<td>AADT</td>
<td>11.6</td>
<td>13.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Trucks</td>
<td>8.6</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Truck</td>
<td>2.2</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Truck Axle</td>
<td>2.8</td>
<td>-1.3</td>
</tr>
<tr>
<td></td>
<td>Coal</td>
<td>AADT</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Trucks</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Heavy/Coal Trucks</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Normal Truck</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axles per Heavy/Coal Truck</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Normal Truck Axle</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESALs per Heavy/Coal Truck Axle</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Figure 4. Growth of AADT on Unclassified Roads of the Rural Interstate System
Figure 5. Growth of Percent Trucks on Unclassified Roads of the Rural Interstate System
Figure 6. Growth of Axles per Truck on Unclassified Roads of the Rural Interstate System
Rural Interstate
Unclassified Roads

Figure 7. Growth of ESALs per Truck Axle on Unclassified Roads of the Rural Interstate System
Figure 8. Growth of AADT on Unclassified Roads of the Rural Principal Arterial System
Figure 9. Growth of Percent Trucks on Unclassified Roads of the Rural Principal Arterial System
Rural Principal Arterial
Unclassified Roads

Figure 10. Growth of Axles per Truck on Unclassified Roads of the Rural Principal Arterial System
Rural Principal Arterial
Unclassified Roads

Figure 11. Growth of ESALs per Truck Axle on Unclassified Roads of the Rural Principal Arterial System
Figure 12. Cumulative Frequency Distribution of Difference Between 1990 and 1991 ESAL-Parameter Growth Rates
1990 AND 1991 MODEL CALIBRATIONS

The aforedescribed activities encompass the major new developments of this quick-response study. In addition, the 1990 ESAL model was recalibrated, and the 1991 model was calibrated for the first time. The primary purpose for the 1990 recalibration was to determine the probable effect of the changes that had been made on the stability of the incremental percentages from year to year. The calibration process also uncovered several minor errors in the historical files that provide input to the SUMMARY program. These errors were easily corrected. When the calibration work was completed, a special effort was made to secure and document the files, programs, and procedures in order to minimize possible errors in future years.

POSSIBLE FUTURE REVISIONS

As mentioned earlier, the many modifications that have been made to EALCALC, the principal computer program of the ESAL series, have dimmed the prospects for its continued successful evolution. In addition, other approaches seem to offer more flexibility to the ESAL-modeling and other related efforts and may offer a more accurate reflection of coal-movement effects. Accordingly, the current study undertook the task of outlining one promising alternative.

dBASE

The proposed alternative, outlined in detail in Appendix D, is based on the replacement of EALCALC by a new dBASE program. The WIM and UNITEAL programs would essentially be retained but would be combined into a single program with the purposes of preliminary processing of vehicle weight records and the development of a new summary weight database of greatly reduced size. The CLASSUM program would be retained essentially intact since it currently produces the necessary kind of database. A new dBASE routine would process these data and produce the necessary output which would be similar in nature to the current output from the EALCALC and SMOOTH programs. The current LOADMTR, EALCALC, and SMOOTH programs would no longer be needed.

The current approach to ESAL forecasting would be retained including the current ESAL parameters (AADT, percent trucks, percent of trucks classified as heavy/coal, axles per normal truck, axles per heavy/coal truck, ESALs per normal truck axle, and ESALs per heavy/coal truck axle). The most significant change in methodology would be to use data from Kentucky’s annual coal-haulage statistics to identify the roads over which significant coal haulage occurs. Such a procedure is expected to produce more accurate ESAL estimates for both non-coal-haul and coal-haul roads alike.

A proposal to implement this approach will be considered among possible new FY 1994
initiatives.

OTHER MATTERS

Other changes which were considered during the current investigation but which were tabled for the present include the following:

- Stability in the estimates would be enhanced by limiting analysis to a fixed and constant group of locations (such as HPMS classification counts). However, the aforedescribed changes will yield more stable estimates than in the past, and potentially valuable data should not be excluded unless absolutely necessary. Change can be made later if desired.

- Putting lower and/or upper bounds on each parameter average would assure that, even with an inadequate sample, ESAL estimates would be reasonable. Currently the only constraint is a lower bound of two on the number of axles per truck. The most compelling current need may be for a minimum value for ESALs per heavy/coal truck axle on rural non-interstate roads. However, it was generally agreed that current programs should not be modified to include bounded averages until the current sample size is shown to be too small to yield reliable estimates for some functional classifications. However, it is certainly appropriate to set such limits manually in making forecasts for specific locations.

- The desirability of collecting more WIM and classification data as may be necessary to assure statistical reliability of the estimates for some functional classes was also considered. Although this is a key issue and one that has been raised in prior years, it was considered to be beyond the scope of the current investigation.

- Forecasters should limit incremental percentages for all parameters to some reasonable range (currently 0 to 5 percent). The refinements described herein should reduce the incidence of excessively large or excessively small increments and, hence, the frequency with which such restrictions would be necessary. Future study may define the reasonable ranges in the parameter estimates for the different functional classes of highways.

- The possibility for adding a future graphical display to the annual output which shows the growth incremental percentages as a time series could be explored.
REFERENCES

APPENDIX A

RESEARCH PROPOSAL
PROPOSAL FOR RESEARCH STUDY

ENHANCEMENTS TO PROCEDURE FOR ESTIMATING ESALS

The current procedure for estimating equivalent single axleloads was updated in 1990 to incorporate traffic data categorized by functional class rather than statewide averages. This change resulted from the influx of data generated by automatic equipment to classify and weigh vehicles in motion. A much wider range of geographic conditions and road conditions were sampled and the expectation was a more accurate representation of the data used in the estimation procedure. Significant revisions in the computer programs were required which produced data currently being used by the Division of Planning to estimate ESALs for the design of pavements. Use of the data during the past two years has resulted in requests from the Division of Planning for refinements which would make the data more usable for specific needs. In addition, the continuing analysis of weight and classification data for coal trucks has identified potential improvements that could produce more representative data for these types of vehicles.

Overall, there are several enhancements to the procedure for estimating ESALs which offer the potential for improved accuracy and optimization of use. Included are the following: 1) improvements in the procedures for processing weight and classification data for coal trucks; 2) analysis to determine how coal trucks could be identified when using automatic vehicle classification equipment; 3) production of graphs to visually display trends in parameters used to estimate ESALs; and 4) restructuring the format of the tabular output to enable prompt access to the data.

It is anticipated that approximately six months will be required to complete the tasks described.

Estimated Cost, FY 1992 $25,000
APPENDIX B

PROGRAM LISTING FOR WIM CONVERSION
SET "I ERR" TO DESIRED CODE TO PRINT REJECTED RECORDS
AXLES WITHOUT WEIGHT
AXLE SPACINGS LESS THAN 1.5 FEET
MISMATCH BETWEEN NUMBERS OF AXLE WEIGHTS AND SPACINGS
>10% DIFFERENCE BETWEEN GROSS WEIGHT AND SUM OF AXLE WEIGHT
>10% DIFFERENCE BETWEEN WHEELBASE AND SUM OF AXLE SPACINGS
ALL REJECTED RECORDS
NO REJECTED RECORDS
MISMATCH BETWEEN NUMBER!NIAXLE WEIGHTS JUII:SPACINGS - -
>10% DIFFERENCE BETWEEN GROSS WEIGHT AND SUM OF AXLE WEIGHT
>10% DIFFERENCE BETWEEN WHEELBASE AND SUM OF AXLE SPACINGS
ALL REJECTED RECORDS
NO REJECTED RECORDS
BLOCK DATA
COMMON/DAN/FAEQ(7),FBEQ(7),RAEQ(7),RBEQ(7)
COMMON/COL/C5A,C5B,C6A,C6B,C5NA,C5NB,C6NA,C6NB,C5S,C6S,C5NS,C6NS
DATA (FAEQ(I),I=1,7)/3557.2423,3076.3085,2939.1856,4890.9914,
 1.2926.9924,38041.8808,4947.4293/
DATA (FBEQ(I),I=1,7)/0.8932135,0.735836,0.720307,0.7463315,
 0.8693042,0.2044157,0.8634991/
DATA (RAEQ(I),I=1,7)/3864.2167,2972.9051,3503.9253,4055.0787,
 1611.5815,37421.673,15454.4434/
DATA (RBEQ(I),I=1,7)/0.8619752,0.7179301,0.7393744,0.8017253,
 0.9220579,0.2192902,0.6378718/
DATA C5A,C5B,C6A,C6B/01.0549759,0.0432813,0.85158123,0.05135361/
DATA C5NA,C5NB,C6NA,C6NB/0.0760435,0.0354375,0.7438038,0.0312612/
DATA C5S,C6S,C5NS,C6NS/0.4368124,1.3110553,0.9834733,0.9876060/
END
CHARACTER*64 FNAME,DATANM,FOUT2,A *80,AA *80
COMMON/DATl/ ITWRC,ISC,F,SIN,IYR,IAMO,I DAY,ICMOD,ITWT,JCONT
COMMON/DAT2/IAXS(70),IAXTOT,IRSNI1O),I TYPE,ICT(6)
COMMON/DAT3/IAW(70),ISW(70),BD(9),ICH(6),IDT,ITOTWT,CNVEQ,CV
IERR=9

VARIABLE NAME DEFINITIONS
ITYPE IS USED TO IDENTIFY PAVEMENT SURFACE MATERIAL, "1"=FLEXIBLE
AMD "2"=RIGID.
FAEQ AND FBEQ ARE CONSTANTS OF STRAIGHT LINE EQUATIONS TO CONVERT
WIM AXLELOADS TO STATIC AXLELOADS FOR FLEXIBLE PAVEMENTS.
RAEQ AND RBEQ ARE CONSTANTS OF STRAIGHT LINE EQUATIONS TO CONVERT
WIM AXLELOADS TO STATIC AXLELOADS FOR RIGID PAVEMENTS.
IAXS(1),IAXS(2),...IAXS(70), ARE AXLE SPACINGS.
IAW(1),IAW(2),...IAW(70), ARE DYNAMIC WIM AXLELOADS.
ISW(1),ISW(2),...ISW(70), ARE CALCULATED STATIC AXLELOADS.
I=1 CORRESPONDS TO A DRIVE SINGLE AXLE.
I=2 CORRESPONDS TO A DRIVK SINGLE AXLE.
I=3 CORRESPONDS TO A TRAILER SINGLE AXLE.
I=4 CORRESPONDS TO A DRIVE TANDEM AXLE GROUP IF AXLE SPACING IS
LESS THAN OR EQUAL TO 5.0 FEET.
I=5 CORRESPONDS TO A TRAILER TANDEM AXLE GROUP IF AXLE SPACING IS
LESS THAN OR EQUAL TO 5.0 FEET.
I=6 CORRESPONDS TO A DRIVE TRIDEM AXLE GROUP IF FIRST TO THIRD
AXLE-SPACING IS LESS THAN OR EQUAL TO 10.0 FEET.
I=7 CORRESPONDS TO A TRAILER TRIDEM AXLE GROUP IF FIRST TO THIRD
AXLE-SPACING IS LESS THAN OR EQUAL TO 10.0 FEET.

ITYPE=1
IFORM=1
NERRORS1=0
NERRORS2=0
NERRORS3=0
NERRORS4=0
NERRORS5=0
NGOOD=0
IAPC=0
22 CALL INIT
C *
C READ DATA FROM WIM FILE
C *
READ(5,4,END=1234) AA

4 FORMAT(A80)
 IF(AA(1:1).EQ.'2') THEN
 WRITE(8,4)AA
 WRITE(6,4)AA
 GOTO 22
ELSE IF(IFORM.EQ.1) THEN
 READ(AA,1000)ITWRC,ISC,FC,SIN,IDT,IYR,IAMO,IDAY,IHOUR,
 1 (BD(J),J=1,9),(ICH(J),J=1,6),ICMOD,ITWT,(IAW(L),L=1,5),
 2 (IAXS(M),M=1,4),ITXTOT,IRSN,ICONTN(JCONT)
1000 FORMAT(I1,I2,A3,I1,4I2,9A1,6I1,3X,16,I4,9I3,I4,I3,I1)
ELSE
 READ(AA,1002)ITWRC,ISC,FC,SIN,IDT,IYR,IAMO,IDAY,IHOUR,
 1 (BD(J),J=1,9),(ICH(J),J=1,6),ICMOD,ITWT,(IAW(L),L=1,5),
 2 (IAXS(M),M=1,4),ITXTOT,IRSN,ICONTN(JCONT)
1002 FORMAT(I1,I2,A3,I1,4I2,9A1,6I1,3X,17,I4,9I3,I4,I3,I1)
END IF
16 IF(IAXS(2).EQ.0.AND.IAXS(1).LE.120) GOTO 22
IF(ICONTN(JCONT).EQ.0.OR.ICONTN(JCONT).LE.9) GOTO 19
IF(ICONTN(JCONT).GE.1.AND.ICONTN(JCONT).LE.8) THEN
 LRT=JCONT*8-2
 LOP=JCONT*8+5
 MRT=JCONT*8-3
 MOP=JCONT*8+4
 JCONT=JCONT+1
15 READ(5,1001)ITWRC,ISC,FC,SIN,IYR,IAMO,IDAY,IHOUR,(BD(J),J=1,6),
 1 (IAW(I),I=LRT,LOP),(IAXS(M),M=MRT,MOP),IRSN,ICONTN(JCONT)
1001 FORMAT(I1,I2,A2,A3,1X,4I2,6A1,5X,17I3,I1)
IF(ICONTN(JCONT).GE.1.AND.ICONTN(JCONT).LE.8) GOTO 16
END IF
19 CONTINUE
IAFC=IAFC+1
IF (IAFC.EQ.1) WRITE (8,2222) FC,IYR
2222 FORMAT(5X,'FUNCTIONAL CLASS=',A2,5X,'YEAR=',I2)
C THE FOLLOWING SECTION PERFORMS EDIT CHECKS ON THE WEIGHT DATA
C AND REPORTS THE RESULTS. 1/93
C **
C NERRORS1 = NO. OF ERRORS: AXLE WITHOUT WEIGHT
C NERRORS2 = NO. OF ERRORS: AXLE SPACING LESS THAN 1.5 FEET
C NERRORS3 = NO. OF ERRORS: MISMATCH BETWEEN NUMBERS OF AXLE
C WEIGHTS AND SPACINGS
C NERRORS4 = NO. OF ERRORS: 10+ PERCENT DIFFERENCE BETWEEN GROSS
C WEIGHT AND SUM OF AXLE WEIGHTS
C NERRORS5 = NO. OF ERRORS: 10+ PERCENT DIFFERENCE BETWEEN
C WHEELBASE AND SUM OF AXLE SPACINGS
C SUMW=0.0
SUMS=0.0
NA=0
NB=0
IWMAX=0
ISMAX=0
DO 11 I=1,15
 IF (IAW(I).GT.0) NA=NA+1
 IF (IAW(I).GT.0) IWMAX=I
SUMW=SUMW+IAW(I)
11 IF (IAXS(I).GT.0) NB=NB+1
IF (IAXS(I).GT.0) ISMAX=I
SUMS=SUMS+IAXS(I)
CONTINUE
DO 121 I=1, IWMAX
IF (IAW(I) .EQ. 0) THEN
 NERRORS1 = NERRORS1 + 1
ELSE
END IF
CONTINUE
DO 121 I=1, ISMAX
IF (IAXS(I) .LT. 15) THEN
 NERRORS2 = NERRORS2 + 1
 IF (IERR.EQ. 1 .OR. IERR.EQ. 9) THEN
 WRITE(8, 1111) ITWRC, ISC, FC, SIN, IDT, IYR, IAMO, IDAY, IHOUR,
 (BD(J), J=1,9), (IAX(J), J=1,6), ICMOD, ITWT, (IAW(L), L=1,5),
 2 (IAXS(M), M=1,4), IAXTOT, IRSN, ICONTN(JCONT)
 1111 FORMAT(I1, I2, A2, A3, I1, 4 I2, 9 A1, 6 I1, 3 X, I6, I4, 9 I3, I4, I3, I1, 2 X, 'E1')
 GO TO 22
 ELSE
 END IF
 CONTINUE
 IF (NA .NE. (NB+1)) THEN
 NERRORS3 = NERRORS3 + 1
 IF (IERR.EQ. 1 .OR. IERR.EQ. 9) THEN
 WRITE(8, 1113) ITWRC, ISC, FC, SIN, IDT, IYR, IAMO, IDAY, IHOUR,
 (BD(J), J=1,9), (IAX(J), J=1,6), ICMOD, ITWT, (IAW(L), L=1,5),
 2 (IAXS(M), M=1,4), IAXTOT, IRSN, ICONTN(JCONT)
 1113 FORMAT(I1, I2, A2, A3, I1, 4 I2, 9 A1, 6 I1, 3 X, I6, I4, 9 I3, I4, I3, I1, 2 X, 'E3')
 GO TO 22
 ELSE
 END IF
 END IF
 TWT = ITWT
 AXTOT = IAXTOT
 IF (SUMW .LT. (TWT* .9) .OR. SUMW .GT. (TWT*1.1)) THEN
 NERRORS4 = NERRORS4 + 1
 IF (IERR.EQ. 4 .OR. IERR.EQ. 9) THEN
 WRITE(8, 1114) ITWRC, ISC, FC, SIN, IDT, IYR, IAMO, IDAY, IHOUR,
 (BD(J), J=1,9), (IAX(J), J=1,6), ICMOD, ITWT, (IAW(L), L=1,5),
 2 (IAXS(M), M=1,4), IAXTOT, IRSN, ICONTN(JCONT)
 1114 FORMAT(I1, I2, A3, I1, 4 I2, 9 A1, 6 I1, 3 X, I6, I4, 9 I3, I4, I3, I1, 2 X, 'E4')
 GO TO 22
 ELSE
 END IF
 END IF
 IF (SUMS .LT. (AXTOT* .9) .OR. SUMS .GT. (AXTOT*1.1)) THEN
 NERRORS5 = NERRORS5 + 1
 IF (IERR.EQ. 5 .OR. IERR.EQ. 9) THEN
 WRITE(8, 1115) ITWRC, ISC, FC, SIN, IDT, IYR, IAMO, IDAY, IHOUR,
 (BD(J), J=1,9), (IAX(J), J=1,6), ICMOD, ITWT, (IAW(L), L=1,5),
 2 (IAXS(M), M=1,4), IAXTOT, IRSN, ICONTN(JCONT)
 1115 FORMAT(I1, I2, A3, I1, 4 I2, 9 A1, 6 I1, 3 X, I6, I4, 9 I3, I4, I3, I1, 2 X, 'E5')
 GO TO 22
 ELSE
 END IF
 END IF
 NGOOD = NGOOD + 1
C ***
C END OF DATA EDIT SECTION
C ***
C IF (IAXS(1) .GT. 55) GOTO 245
C THE FOLLOWING SECTION TO 245 APPLIES TO TRUCKS HAVING 2 STEERING
AXLES (EX: CRANES, DRILL RIGS, TRANSIT MIXERS, EUROPEAN DUMPS)

*********** ******** ***

IF (IAXS(1) .LE. 55 .AND. IAXS(2) .LE. 55 .AND. IAXS(3) .GT. 55) GOTO 241
IF (IAXS(1) .LE. 55 .AND. IAXS(2) .GT. 55) GOTO 243

DO 242 J=4,13
IF (IAXS(J) .EQ. 0) GOTO 244
CONTINUE

ICT(1)=2
ICT(2)=J
CALL TRTRI(1,2,3)
IF (J .EQ. 5) CALL DRTAN(4,5)
IF (J .EQ. 6) CALL DRTRI(4,5,6)
IF (J .EQ. 7) CALL DQUAD(4,5,6,7)
GOTO 100

DO 246 J=3,13
IF (IAXS(J) .EQ. 0) GOTO 247
CONTINUE

ICT(1)=2
ICT(2)=J
CALL TRTAN(1,2)
IF (J .EQ. 4) CALL DRTAN(3,4)
IF (J .EQ. 5) CALL DRTRI(3,4,5)
IF (J .EQ. 6) CALL DQUAD(3,4,5,6)
GOTO 100

* *
C CHECK AXLE SPACING TO DETERMINE AXLE CONFIGURATION *
* *

AS=0
DO 24 I=1,13
IF (IAXS(I) .EQ. 0) GOTO 25
AS=AS+0.1*IAXS(I)
AI=I
AV=AS/AI
CONTINUE

25 J=I-1
IF (J .EQ. 0) GOTO 28
ACK=12.5*AV
ICK=ACK
DO 29 K=1,J
IF (IAXS(K) .GT. ICK) GOTO 28
CONTINUE

29 IF (IAXS(2) .EQ. 0) GOTO 28
ICT(1)=9
ICT(2)=2
CALL STEER
CALL DRTRING
DO 26 L=3,I
M=L
ICT(M)=0
CALL TRSING(M)
CONTINUE

26 IF (I .LE. 4) THEN
ICT(1)=3
ELSE
ICT(1)=5
END IF
IF (I .EQ. 3 .OR. I .EQ. 5) THEN
ICT(3)=1
ELSE
ICT(3)=2
END IF
IF (I .GE. 5) THEN
ICT(4)=2
END IF
GOTO 100
28 IF(IAXS(2).EQ.0) GOTO 21
IF(IAXS(3).EQ.0) GOTO 31
IF(IAXS(4).EQ.0) GOTO 41
IF(IAXS(5).EQ.0) GOTO 51
IF(IAXS(6).EQ.0) GOTO 61
IF(IAXS(7).EQ.0) GOTO 71
IF(IAXS(8).EQ.0) GOTO 81
GOTO 91
C * * * * * * 2-AXLE TRUCK * * *
21 CALL STEER
CALL DRSING
IWT=ISW(1)+ISW(2)
IF(IAXS(1).GE.200) THEN
ICT(1)=1
ICT(2)=9
GOTO 100
ELSE IF(IAXS(2).EQ.0.AND.IAXS(1).GE.88.AND.IAXS(1).LE.145.AND.
IWT.GT.30.AND.IWT.LE.66) THEN
ICT(1)=2
ICT(2)=0
GOTO 100
ELSE IF(IAXS(2).EQ.0.AND.IAXS(1).LT.115.AND.IWT.GT.66.AND.
IWT.LE.90) THEN
ICT(1)=2
ICT(2)=1
GOTO 100
ELSE IF(IWT.GT.90) THEN
ICT(1)=2
ICT(2)=2
GOTO 100
ELSE
ICT(1)=2
ICT(2)=2
GOTO 100
END IF
C * * * * * * 3-AXLE TRUCK * * *
31 CALL STEER
IF(IAXS(1).GE.190.AND.IAXS(2).LE.50) THEN
ICT(1)=3
ICT(2)=9
CALL STEER
CALL DRTAN(2,3)
GOTO 100
ELSE
END IF
IF(IAXS(2).LE.50) GOTO 33
ICT(1)=3
ICT(2)=2
ICT(3)=1
CALL DRSING
CALL TRSING(3)
GOTO 100
33 CALL DRTAN(2,3)
ICT(1)=2
ICT(2)=3
GOTO 100
C * * * * * * 4-AXLE TRUCK * * *
41 CALL STEER
IF((IAXS(2)+IAXS(3)).LE.100) GOTO 43
IF(IAXS(2).LE.55) GOTO 42
CALL DRSING
ICT(1)=3
ICT(2)=2
IF(IAXS(3).LE.50) THEN
 CALL TRTAN(3,4)
 ICT(3)=2
 GOTO 100
ELSE
 CALL TRSING(3)
 CALL TRSING(4)
 IF (IAXS(3).LE.80) THEN
 ICT(3)=2
 ELSE
 ICT(3)=7
 END IF
 GOTO 100
END IF

42 CALL DRTAN(2,3)
CALL TRSING(4)
ICT(1)=3
ICT(2)=3
ICT(3)=1
GOTO 100

43 CALL DRTRI(2,3,4)
ICT(1)=2
ICT(2)=4
GOTO 100

C * * * * * * * 5-AXLE TRUCK * * *

51 CALL STEER
 IAX23=IAXS(2)+IAXS(3)
 IAX24=IAXS(2)+IAXS(3)+IAXS(4)
 IAX34=IAXS(3)+IAXS(4)
 IF(IAX24.LE.150) GOTO 52
 IF(IAX23.LE.100) GOTO 58
 IF(IAXS(2).LE.55.AND.IAXS(4).LE.55) GOTO 53
 IF(IAXS(2).LE.55.AND.IAXS(4).GT.55) GOTO 55
 IF(IAXS(2).GT.55.AND.IAX34.LE.100) GOTO 56
C IF ABOVE 5 IF STATEMENTS ARE FALSE, THEN HAVE 5-AXLE DOUBLE BOTTOM
 ICT(1)=5
 ICT(2)=2
 ICT(3)=1
 ICT(4)=2
 CALL DRSING
 CALL TRSING(3)
 CALL TRSING(4)
 CALL TRSING(5)
 GOTO 100

52 CALL DQUAD(2,3,4,5)
 ICT(1)=2
 ICT(2)=5
 GOTO 100

53 CALL DRTAN(2,3)
CALL TRTAN(4,5)
ICT(1)=3
ICT(2)=3
ICT(3)=2
GOTO 100

55 CALL DRTAN(2,3)
CALL TRSING(4)
CALL TRSING(5)
ICT(1)=3
ICT(2)=3
 IF (IAXS(4).LE.80) THEN
 ICT(3)=2
 ELSE
 ICT(3)=7
 END IF
GOTO 100
GOTO 100
END IF

56 CALL DRSING
 CALL TRTRI(3,4,5)
 ICT(1)=3
 ICT(2)=2
 ICT(3)=3
 GOTO 100

58 CALL DRTRI(2,3,4)
 CALL TRSING(5)
 ICT(1)=1
 ICT(2)=4
 ICT(3)=1
 GOTO 100

C * * * * * * * 6-AXLE TRUCK * * *

61 CALL STEER
 IAXTR=IAXS(4)+IAXS(5)
 IAXD=IAXS(2)+IAXS(3)+IAXS(4)
 IF(IAXS(2).GT.55) GOTO 66
 IF(IAXS(2).LE.100.AND.IAXS(5).LE.55) GOTO 64
 IF(IAXS(2).LE.100.AND.IAXS(5).GT.55.AND.IAXS(5).LT.120) GOTO 65
 IF(IAXS(2).LE.55.AND.IAXTR.LE.100) GOTO 62
 IF(IAXS(2).LE.50.AND.IAXS(3).GT.50) GOTO 63
C IF ALL OF ABOVE ARE FALSE, THEN HAVE 5-AXLE TRACTOR + TRL. SNGL.
 CALL TRSING(6)
 CALL DQUAD(2,3,4,5)
 ICT(1)=3
 ICT(2)=5
 ICT(3)=1
 GOTO 100

62 CALL DRTAN(2,3)
 CALL TRTRI(4,5,6)
 ICT(1)=3
 ICT(2)=3
 ICT(3)=3
 GOTO 100

63 CALL DRTAN(2,3)
 CALL TRSING(4)
 CALL TRSING(5)
 CALL TRSING(6)
 ICT(1)=5
 ICT(2)=3
 ICT(3)=1
 ICT(4)=2
 GOTO 100

64 CALL DRTRI(2,3,4)
 CALL TRTAN(5,6)
 ICT(1)=3
 ICT(2)=4
 ICT(3)=2
 GOTO 100

65 CALL DRTRI(2,3,4)
 CALL TRSING(5)
 CALL TRSING(6)
 ICT(1)=3
 ICT(2)=4
 ICT(3)=7
 GOTO 100

66 CALL DRSING
 IF(IAXS(4).GT.55.AND.IAXS(4).LT.100) THEN
 CALL TRTAN(3,4)
 CALL TRSING(5)
 CALL TRSING(6)
 ICT(1)=5
ELSE
 CALL TQUAD(3,4,5,6)
 ICT(1)=3
 ICT(2)=2
 ICT(3)=4
 GOTO 100
END IF

C * * * * * * 7-Axle Truck * * *

CALL STEER
IAXD23=IAXS(2)+IAXS(3)
IAXD24=IAXS(2)+IAXS(3)+IAXS(4)
IAXD26=IAXS(2)+IAXS(3)+IAXS(4)+IAXS(5)+IAXS(6)
IAXT46=IAXS(4)+IAXS(5)+IAXS(6)
IAXT56=IAXS(5)+IAXS(6)

IF(IAXS(2).GT.55.AND.IAXD26.LE.250) THEN
 CALL SEXTET(2,3,4,5,6,7)
 ICT(1)=2
 ICT(2)=7
 GOTO 100
ELSE IF(IAXS(2).GT.55.AND.IAXS(3).GT.50.AND.IAXS(4).GT.50.AND.

IAXS(5).GT.50.AND.IAXS(6).GT.50) THEN
 CALL DRING
 CALL TRSING(3)
 CALL TRSING(4)
 CALL TRSING(5)
 CALL TRSING(6)
 CALL TRSING(7)
 ICT(1)=7
 ICT(2)=2
 ICT(3)=1
 ICT(4)=2
 ICT(5)=2
 GOTO 100
ELSE IF(IAXS(2).GT.55.AND.IAXS(3).LE.50.AND.IAXS(4).GT.50.AND.

IAXS(5).GT.50.AND.IAXS(6).GT.50) THEN
 CALL TRTAN(3,4)
 CALL TRSING(5)
 CALL TRSING(6)
 CALL TRSING(7)
 ICT(1)=7
 ICT(2)=2
 ICT(3)=2
 ICT(4)=2
 GOTO 100
ELSE IF(IAXS(2).GT.55.AND.IAXS(3).GT.50.AND.IAXS(4).GT.50.AND.

IAXS(5).GT.50.AND.IAXS(6).LE.50) THEN
 CALL TRSING(3)
 CALL TRSING(4)
 CALL TRSING(5)
 CALL TRTAN(6,7)
 ICT(1)=7
 ICT(2)=2
 ICT(3)=1
 ICT(4)=2
 ICT(5)=2
 GOTO 100
ELSE
END IF

IF(IAXS(2).LE.55.AND.IAXS(3).GT.50) GOTO 72
IF(IAXD23.LE.100.AND.IAXS(4).GT.50) GOTO 73
IF (IAXD24 .LE. 150) GOTO 74

72 CALL DRTAN(2,3)
 ICT(1)=3
 ICT(2)=3

IF (IAXT46 .LE. 150) GOTO 77
 IF (IAXT46 .GT. 150 .AND. IAXS(6) .LE. 80) THEN
 CALL TRTRI(5,6,7)
 CALL TRSING(4)
 ICT(3)=9
 GOTO 100
 ELSE IF (IAXT46 .GT. 150 .AND. IAXS(6) .GT. 80) THEN
 CALL TRTRI(4,5,6)
 CALL TRSING(7)
 ICT(3)=9
 GOTO 100
 ELSE
 CALL TRTRI(4,5)
 CALL TRSING(6)
 CALL TRSING(7)
 ICT(1)=5
 ICT(2)=3
 ICT(3)=3
 ICT(4)=1
 GOTO 100
 ENDIF

77 CALL TQUAD(4,5,6,7)
 ICT(1)=3
 ICT(2)=3
 ICT(3)=4
 GOTO 100

73 CALL DRTRI(2,3,4)
 IF (IAXT56 .GT. 100) GOTO 731
 CALL TRTRI(5,6,7)
 ICT(1)=3
 ICT(2)=4
 ICT(3)=3
 GOTO 100

731 CALL TRSING(5)
 CALL TRSING(6)
 CALL TRSING(7)
 ICT(1)=5
 ICT(2)=4
 ICT(3)=1
 ICT(3)=2
 GOTO 100

74 CALL DQUAD(2,3,4,5)
 IF (IAXS(6) .LE. 50) GOTO 741
 CALL TRSING(6)
 CALL TRSING(7)
 IF (IAXS(6) .GT. 80) THEN
 ICT(1)=3
 ICT(2)=5
 ICT(3)=7
 GOTO 100
 ELSE
 ICT(1)=4
 ENDIF

741
ICT(2) = 5
ICT(3) = 7
GOTO 100

741 CALL TRTAN(6,7)
ICT(1) = 3
ICT(2) = 5
ICT(3) = 2
GOTO 100

C * * * * * * * 8-AXLE TRUCK * * *
81 CALL STEER
IAXD23 = IAXS(2) + IAXS(3)
IAXD24 = IAXS(2) + IAXS(3) + IAXS(4)
IAXD37 = IAXS(3) + IAXS(5) + IAXS(6) + IAXS(7)
IAXD27 = IAXS(2) + IAXS(3) + IAXS(4) + IAXS(5) + IAXS(6) + IAXS(7)
IAXT34 = IAXS(3) + IAXS(4)
IAXT57 = IAXS(5) + IAXS(6) + IAXS(7)
IAXT67 = IAXS(6) + IAXS(7)

IF (IAXD27 .LE. 300) THEN
CALL DRTAN(2,3)
CALL DRTAN(4,5)
CALL DRTRI(6,7,8)
ICT(1) = 2
ICT(2) = 8
GOTO 100
ELSE
END IF
IF (IAXS(2) .GT. 55) GOTO 815
IF (IAXD23 .LE. 100 .AND. IAXS(4) .GT. 50) GOTO 83
IF (IAXD24 .LE. 150) GOTO 84

815 CALL DRSING
IF (IAXD37 .LE. 300) THEN
CALL TRTAN(3,4)
CALL TRTAN(5,6)
CALL TRTAN(7,8)
ICT(1) = 3
ICT(2) = 2
ICT(3) = 6
GOTO 100
ELSE IF (IAXT34 .LE. 100 .AND. IAXT67 .LE. 100 .AND. IAXS(5) .GT. 80) THEN
CALL TRTRI(3,4,5)
CALL TRTRI(6,7,8)
ICT(1) = 5
ICT(2) = 2
ICT(3) = 3
ICT(4) = 3
GOTO 100
ELSE IF (IAXS(2) .GT. 80 .AND. IAXS(4) .GT. 80 .AND. IAXS(6) .GT. 80 .AND. IAXS(3) .LE. 50 .AND. IAXS(7) .LE. 50) THEN
CALL TRTAN(3,4)
CALL TRTAN(5,6)
CALL TRTAN(7,8)
ICT(1) = 5
ICT(2) = 2
ICT(3) = 2
ICT(4) = 4
GOTO 100
ELSE
END IF
82 CALL DRTAN(2,3)
IF (IAXS(4) .LE. 50 .AND. IAXS(5) .GT. 50 .AND. IAXS(6) .GT. 80 .AND. IAXS(7) .LE. 50) GOTO 88
IF (IAXS(4) .LE. 50 .AND. IAXS(5) .LE. 50 .AND. IAXS(6) .GT. 80 .AND. IAXS(7) .LE. 50) GOTO 89
CALL TQUINT(4,5,6,7,8)
ICT(1)=3
ICT(2)=3
ICT(3)=5
GOTO 100
89 CALL TRTRI(4,5,6)
 IF(IAXS(7).GT.50) GOTO 891
 CALL TRTAN(7,8)
 ICT(1)=5
 ICT(2)=3
 ICT(3)=3
 ICT(4)=2
 GOTO 100
891 CALL TRSING(7)
 CALL TRSING(8)
 ICT(1)=5
 ICT(2)=3
 ICT(3)=3
 ICT(4)=7
 GOTO 100
88 CALL TRTAN(4,5)
 CALL TRTAN(7,8)
 ICT(1)=5
 ICT(2)=3
 ICT(3)=2
 ICT(4)=3
 GOTO 100
83 CALL DRTRI(2,3,4)
 IF(IAXT57.LT.150) THEN
 CALL TQUAD(5,6,7,8)
 ICT(1)=3
 ICT(2)=4
 ICT(3)=4
 GOTO 100
 ELSE IF(IAXT67.LE.100.AND.IAXS(7).GT.50) THEN
 CALL TRTRI(5,6,7)
 CALL TRSING(8)
 ICT(1)=5
 ICT(2)=4
 ICT(3)=3
 ICT(4)=1
 GOTO 100
 END IF
832 CALL TRTAN(5,6)
 IF(IAXS(7).LE.50) THEN
 CALL TRTAN(7,8)
 ICT(1)=5
 ICT(2)=4
 ICT(3)=2
 ICT(4)=2
 GOTO 100
 ELSE
 CALL TRSING(7)
 CALL TRSING(8)
 ICT(1)=5
 ICT(2)=4
 ICT(3)=2
 ICT(4)=7
 GOTO 100
 END IF
 END IF
84 CALL DQUAD(2,3,4,5)
 IF(IAXT67.LE.100) GOTO 841
IF (IAXS(6).GT.80.AND.IAXS(7).LE.50) THEN
CALL TRSING(6)
CALL TRTAN(7,8)
ICT(1)=4
ICT(2)=5
ICT(3)=3
GOTO 100
ELSE
CALL TRSING(6)
CALL TRSING(7)
CALL TRSING(8)
ICT(1)=5
ICT(2)=5
ICT(3)=1
ICT(4)=2
GOTO 100
END IF
841 CALL TRTRI(6,7,8)
ICT(1)=3
ICT(2)=5
ICT(3)=3
GOTO 100

C * * * * * * * 9-AXLE TRUCK * * *
91 CALL STEER
IA23=IAXS(2)+IAXS(3)
IA24=IAXS(2)+IAXS(3)+IAXS(4)
IA25=IAXS(2)+IAXS(3)+IAXS(4)+IAXS(5)
IA245=IAXS(4)+IAXS(5)
IA256=IAXS(5)+IAXS(6)
IA267=IAXS(6)+IAXS(7)
IA278=IAXS(7)+IAXS(8)
IA268=IAXS(6)+IAXS(7)+IAXS(8)
IA258=IAXS(5)+IAXS(6)+IAXS(7)+IAXS(8)
IA248=IAXS(4)+IAXS(5)+IAXS(6)+IAXS(7)+IAXS(8)
IF (IAXS(2).LE.55.AND.IAXS(3).GT.80.AND.IAXS(4).LE.250) THEN
CALL DRTAN(2,3)
CALL TRTRI(4,5,6)
CALL TRTRI(7,8,9)
ICT(1)=3
ICT(2)=3
ICT(3)=6
GOTO 100
ELSE IF (IAXS(2).LE.55.AND.IAXS(3).GT.80.AND.IAXS(4).LE.100.AND.
IAXS(6).GT.80.AND.IAXS(7).GT.80.AND.IAXS(8).LE.50) THEN
CALL DRTAN(2,3)
CALL TRTRI(4,5,6)
CALL TRSING(7)
CALL TRTAN(8,9)
ICT(1)=5
ICT(2)=3
ICT(3)=3
ICT(4)=8
GOTO 100
ELSE
CALL DRTAN(2,3)
CALL TRTAN(4,5)
IF (IAXS(5).GT.80.AND.IAXS(6).GT.80) THEN
CALL TRSING(6)
CALL TRSING(7)
CALL TRSING(8)
CALL TRSING(9)
ICT(1)=7
ICT(2)=3
ICT(3)=2

43
ICT(4)=2
ICT(5)=2
GOTO 100

ELSE IF (IAXS(5).GT.80.AND.IAXS(6).LE.50.AND.IAXS(7).GT.80.AND.
IAXS(8).LE.50) THEN
CALL TRTAN(6,7)
CALL TRTAN(8,9)
ICT(1)=5
ICT(2)=3
ICT(3)=2
ICT(4)=9
GOTO 100

END IF

ELSE IF (IAXS(5).GT.80.AND.IAXS(6).LE.50.AND.IAXS(7).GT.80.AND.
IAXS(8).GT.80) THEN
CALL TRTAN(6,7)
CALL TRTAN(8,9)
ICT(1)=5
ICT(2)=3
ICT(3)=2
ICT(4)=9
GOTO 100

END IF

ELSE if(IAX23.LE.100.AND.IAXS(4).GT.80.AND.IAXT58.LE.200) THEN
CALL DRTRI(2,3,4)
CALL TRTAN(5,6)
CALL TRTRI(7,8,9)
ICT(1)=3
ICT(2)=4
ICT(3)=5
GOTO 100

ELSE IF (IAX23.LE.100.AND.IAXS(4).GT.80.AND.IAXT58.LE.200) THEN
CALL DRTRI(2,3,4)
CALL TRTAN(5,6)
CALL TRTAN(8,9)
ICT(1)=5
ICT(2)=3
ICT(3)=2
ICT(4)=9
GOTO 100

END IF

ELSE IF (IAX23.LE.100.AND.IAXS(4).GT.80.AND.IAXT56.LE.100.AND.
IAXS(7).GT.80.AND.IAXS(8).GT.80) THEN
CALL DRTRI(2,3,4)
CALL TRTAN(5,6)
CALL TRSING(7)
CALL TRSING(8)
CALL TRSING(9)
ICT(1)=7
ICT(2)=4
ICT(3)=2
ICT(4)=1
ICT(5)=7
GOTO 100

ELSE IF (IAX23.LE.100.AND.IAXS(4).GT.80.AND.IAXT56.LE.100.AND.
IAXS(7).GT.80.AND.IAXS(8).GT.80) THEN
CALL DRTRI(2,3,4)
CALL TRTAN(5,6)
CALL TRTAN(8,9)
ICT(1)=5
ICT(2)=3
ICT(3)=2
ICT(4)=9
GOTO 100

ELSE IF (IAX23.LE.100.AND.IAXS(4).GT.80.AND.IAXS(5).LE.50.AND.
IAXS(6).GT.80.AND.IAXS(7).GT.80.AND.IAXS(8).LE.80) THEN
CALL DRTRI(2,3,4)
CALL TRTAN(5,6)
CALL TRSING(7)
CALL TRTAN(8,9)
ICT(1)=5
ICT(2)=4
ICT(3)=2
ICT(4)=8
GOTO 100

ELSE
END IF

ELSE IF (IAX24.LE.150.AND.IAXS(5).GT.80.AND.IAXT68.LE.150) THEN
CALL DQUAD(2,3,4,5)
CALL TQUAD(6,7,8,9)
ICT(1)=3
ICT(2)=5
ICT(3)=4
ICT(4)=8
GOTO 100

END IF
GOTO 100
ELSE IF (IAX24 .LE. 150 .AND. IAXS(S) .GT. 80 .AND. IAXT67 .LE. 100 .AND. IAXS(8) .GT. 80) THEN
 CALL DQUAD(2,3,4,5)
 CALL TRTRI(6,7,8)
 CALL TRSING(9)
 ICT(1)=5
 ICT(2)=5
 ICT(3)=3
 ICT(4)=1
 GOTO 100
ELSE IF (IAX24 .LE. 150 .AND. IAXS(S) .GT. 80 .AND. IAXS(6) .LE. 50 .AND. IAXS(7) .GT. 80 .AND. IAXS(8) .GT. 80) THEN
 CALL DQUAD(2,3,4,5)
 CALL TRTAN(6,7)
 CALL TRSING(8)
 CALL TRSING(9)
 ICT(1)=5
 ICT(2)=5
 ICT(3)=2
 ICT(4)=7
 GOTO 100
ELSE
 END IF
ENDIF
IF (IAX25 .LE. 200 .AND. IAXT78 .LE. 100) THEN
 CALL DQUINT(2,3,4,5,6)
 CALL TRTRI(7,8,9)
 ICT(1)=3
 ICT(2)=6
 ICT(3)=3
 GOTO 100
ELSE
 END IF
100 CALL SUM
 CALL COAL
200 CALL PRN
 GOTO 22
1234 CONTINUE
WRITE (8,551) NERRORS1
WRITE (8,552) NERRORS2
WRITE (8,553) NERRORS3
WRITE (8,554) NERRORS4
WRITE (8,555) NERRORS5
WRITE (8,556) NGOOD
551 FORMAT (I6,'AXLE(S) WITHOUT WEIGHT')
552 FORMAT (I6,'AXLE SPACING(S) LESS THAT 1.5 FEET')
553 FORMAT (I6,'MISMATCHES BETWEEN NUMBERS OF AXLE WEIGHTS AND SPACINGS')
554 FORMAT (I6,'>10 PERCENT DIFFERENCE BETWEEN GROSS WEIGHT AND SUM OF AXLE WEIGHT')
555 FORMAT (I6,'>10 PERCENT DIFFERENCE BETWEEN WHEELBASE AND SUM OF AXLE SPACINGS')
556 FORMAT (I6,'SUCCESSFUL ENTRIES')
RETURN
END
SUBROUTINE INIT
COMMON/DAN/FAEQ(7),FBEQ(7),RAEQ(7),RBEQ(7)
COMMON/COL/C5A,C5B,C6A,C6B,C5NA,C5NB,C6NA,C6NB,C5S,C6S,C5NS,C6NS
COMMON/DAT1/ITWRC,ISC,FC,SIN,IYR,IAMO,IDAY,ICMOD,ITWT,JCONT
COMMON/DAT2/IAW(70),IAXTOT,IRSN,ICONTN(10),ITYPE,ICT(6)
COMMON/DAT3/IAW(70),ISW(70),BD(9),ICH(6),IDT,ITOTWT,CNVEQ,CV
DO 10 I=1,13
IAW(I)=0
10 CONTINUE
CONTINUE
DO 11 K=1,6
 ICT(K)=0
11 CONTINUE
DO 12 IK=1,10
 ICONTN(IK)=0
12 CONTINUE
ITWRC=0
 AV=0.
 ICK=0
 ISC=0
 FC=0
 SIN=0
 IYR=0
 IDT=0
 IAMO=0
 IDAY=0
 IHOUR=0
 IVTC=0
 ITWT=0
 ITOTWT=0
 IAXTOT=0
 ICMOD=99999
 CNVEQ=0
 CV=0
 IAX2=0
 IAX3=0
 IAXD=0
 IAXTR=0
 IAXD4=0
 IAXT4=0
 IAXD3=0
 IAXT3=0
 IAXT6=0
 IAX5=0
 IAXT5=0
 IAXTOT=0
 JCONT=1
 IAFS=0
 RETURN
END
SUBROUTINE STEER
COMMON/DAN/FAEQ(7),FBEQ(7),RAEQ(7),RBEQ(7)
COMMON/COL/C5A,C5B,C6A,C6B,C5NA,C5NB,C6NA,C6NB,C5S,C6S,C5NS,C6NS
COMMON/DAT1/ITWRC,ISC,FC,SIN,IYR,IAMO,IDAY,IHOUR,ICMOD,ITWT,JCONT
COMMON/DAT2/IAXS(70),IAXTOT,IRSN,ICONTN(10),ITYPE,ICT(6)
COMMON/DAT3/IAW(70),ISW(70),BD(9),ICH(6),IDT,ITOTWT,CNVEQ,CV
 IF(ITYPE.EQ.2) GOTO 20
 A=FAEQ(1)
 B=FBEQ(1)
 GOTO 25
20 A=RAEQ(1)
 B=RBEQ(1)
25 CONTINUE
 W=100*IAW(1)
 S=0.01*(A+B+W)
 ISW(1)=S
SUBROUTINE DRSING

COMMON/DAN/FAEO(7),FBEQ(7),RAEO(7),RBEQ(7)
COMMON/COL/C5A,C5B,C6A,C6B,C5NA,C5NB,C6NA,C6NB,C5S,C6S,C5NS,C6NS
COMMON/DAT1/ITWRC,ISC,FC,SIN,IYR,IMAO,IDAY,IHOUR,ICMOD,ITWT,JCONT
COMMON/DAT2/IAXS(70),IAXTOT,IRSN,ICONTN(10),ITYPE,ICT(6)
COMMON/DAT3/IAW(70),ISW(70),BD(9),ICH(6),IDT,ITOTWT,CNVEQ,CV
IF (ITYYPE.EQ.2) GOTO 20
A=FAEO(2)
B=FBEQ(2)
GOTO 25
20 A=RAEQ(2)
B=RBEQ(2)
25 CONTINUE
W=100*IAW(2)
S=0.01*(A+B*W)
ISW(2)=S
RETURN
END

SUBROUTINE TRSING(I1)

COMMON/DAN/FAEO(7),FBEQ(7),RAEO(7),RBEQ(7)
COMMON/COL/C5A,C5B,C6A,C6B,C5NA,C5NB,C6NA,C6NB,C5S,C6S,C5NS,C6NS
COMMON/DAT1/ITWRC,ISC,FC,SIN,IYR,IMAO,IDAY,IHOUR,ICMOD,ITWT,JCONT
COMMON/DAT2/IAXS(70),IAXTOT,IRSN,ICONTN(10),ITYPE,ICT(6)
COMMON/DAT3/IAW(70),ISW(70),BD(9),ICH(6),IDT,ITOTWT,CNVEQ,CV
IF (ITYYPE.EQ.2) GOTO 20
A=FAEO(3)
B=FBEQ(3)
GOTO 25
20 A=RAEQ(3)
B=RBEQ(3)
25 CONTINUE
C 3 FORMAT(' TRSING =',I5,' IAW(I1) =',I5,' ISW(I1) =',I5)
W=100*IAW(I1)
S=0.01*(A+B*W)
ISW(I1)=S
WRITE(*,C)I1,IAW(I1),ISW(I1)
RETURN
END

SUBROUTINE DRTAN(I1,I2)

COMMON/DAN/FAEO(7),FBEQ(7),RAEO(7),RBEQ(7)
COMMON/COL/C5A,C5B,C6A,C6B,C5NA,C5NB,C6NA,C6NB,C5S,C6S,C5NS,C6NS
COMMON/DAT1/ITWRC,ISC,FC,SIN,IYR,IMAO,IDAY,IHOUR,ICMOD,ITWT,JCONT
COMMON/DAT2/IAXS(70),IAXTOT,IRSN,ICONTN(10),ITYPE,ICT(6)
COMMON/DAT3/IAW(70),ISW(70),BD(9),ICH(6),IDT,ITOTWT,CNVEQ,CV
IF (ITYYPE.EQ.2) GOTO 20
A=FAEO(4)
B=FBEQ(4)
GOTO 25
20 A=RAEQ(4)
B=RBEQ(4)
25 CONTINUE
P1=100*IAW(I1)
P2=100*IAW(I2)
W=P1+P2
WT=(A+B*W)
ISW(I1)=0.01*WT*P1/W
ISW(I2)=0.01*WT*P2/W
RETURN
END

SUBROUTINE TRTAN(I1,I2)

COMMON/DAN/FAEO(7),FBEQ(7),RAEO(7),RBEQ(7)
COMMON/COL/C5A,C5B,C6A,C6B,C5NA,C5NB,C6NA,C6NB,C5S,C6S,C5NS,C6NS

47
COMMON/DAT1/ITWRC, ISC, FC, SIN, IYR, IAMO, IDAY, IHOUR, ICMOD, ITWT, JCONT
COMMON/DAT2/IAXS(70), IAXTOT, IRSN, ICONTN(10), ITYPE, ICT(6)
COMMON/DAT3/IAW(70), ISW(70), BD(9), ICH(6), IDT, ITOTWT, CNVEQ, CV
IF (ITYPE.EQ.2) GOTO 20
A=FAEQ(5)
B=FBEQ(5)
GOTO 25
20 A=RAEQ(5)
 B=RBEQ(5)
25 CONTINUE
 P1=100*IAW(I1)
P2=100*IAW(I2)
 W=P1+P2
 WT=(A+B*W)
 ISW(I1)=0.01*WT*P1/W
 ISW(I2)=0.01*WT*P2/W
RETURN
END
SUBROUTINE DRTRI(I1,I2,I3)
COMMON/DAN/FAEQ(7), FBEQ(7), RAEQ(7), RBEQ(7)
COMMON/COL/C5A, C5B, C6A, C6B, C5NA, C5NB, C6NA, C6NB, CSS, C6S, C5NS, C6NS
COMMON/DAT1/ITWRC, ISC, FC, SIN, IYR, IAMO, IDAY, IHOUR, ICMOD, ITWT, JCONT
COMMON/DAT2/IAXS(70), IAXTOT, IRSN, ICONTN(10), ITYPE, ICT(6)
COMMON/DAT3/IAW(70), ISW(70), BD(9), ICH(6), IDT, ITOTWT, CNVEQ, CV
IF (ITYPE.EQ.2) GOTO 20
A=FAEQ(6)
B=FBEQ(6)
GOTO 25
20 A=RAEQ(6)
 B=RBEQ(6)
25 CONTINUE
 P1=100*IAW(I1)
P2=100*IAW(I2)
P3=100*IAW(I3)
 W=P1+P2+P3
 WT=(A+B*W)
 ISW(I1)=0.01*WT*P1/W
 ISW(I2)=0.01*WT*P2/W
 ISW(I3)=0.01*WT*P3/W
RETURN
END
SUBROUTINE TRTRI(I1,I2,I3)
COMMON/DAN/FAEQ(7), FBEQ(7), RAEQ(7), RBEQ(7)
COMMON/COL/C5A, C5B, C6A, C6B, C5NA, C5NB, C6NA, C6NB, CSS, C6S, C5NS, C6NS
COMMON/DAT1/ITWRC, ISC, FC, SIN, IYR, IAMO, IDAY, IHOUR, ICMOD, ITWT, JCONT
COMMON/DAT2/IAXS(70), IAXTOT, IRSN, ICONTN(10), ITYPE, ICT(6)
COMMON/DAT3/IAW(70), ISW(70), BD(9), ICH(6), IDT, ITOTWT, CNVEQ, CV
IF (ITYPE.EQ.2) GOTO 20
A=FAEQ(7)
B=FBEQ(7)
GOTO 25
20 A=RAEQ(7)
 B=RBEQ(7)
25 CONTINUE
 P1=100*IAW(I1)
P2=100*IAW(I2)
P3=100*IAW(I3)
 W=P1+P2+P3
 WT=(A+B*W)
 ISW(I1)=0.01*WT*P1/W
 ISW(I2)=0.01*WT*P2/W
 ISW(I3)=0.01*WT*P3/W
RETURN
END
SUBROUTINE DQUAD(I1, I2, I3, I4)
COMMON/DAN/FAEQ(7), FBEQ(7),RAEQ(7), RBEQ(7)
COMMON/COL/C5A,C5B,C6A,C6B,C5NA,C5NB,C6NA,C6NB,C5S,C6S,C5NS,C6NS
COMMON/DAT1/ITWRC, ISC, FC, SIN, IYR, IAMO, IDAY, I_HOUR, ICMOD, ITWT, JCONT
COMMON/DAT2/IAXS(70), IAXTOT, IRSN, ICONTN(10), I_TYPE, ICT(6)
COMMON/DAT3/IAW(70), ISW(70), BD(9), ICH(6), IDT, ITOTWT, CNVEQ, CV
CALL DRTAN(I1, I2)
CALL DRTAN(I3, I4)
RETURN
END

SUBROUTINE TQUAD(I1, I2, I3, I4)
COMMON/DAN/FAEQ(7), FBEQ(7),RAEQ(7), RBEQ(7)
COMMON/COL/C5A,C5B,C6A,C6B,C5NA,C5NB,C6NA,C6NB,C5S,C6S,C5NS,C6NS
COMMON/DAT1/ITWRC, ISC, FC, SIN, IYR, IAMO, IDAY, I_HOUR, ICMOD, ITWT, JCONT
COMMON/DAT2/IAXS(70), IAXTOT, IRSN, ICONTN(10), I_TYPE, ICT(6)
COMMON/DAT3/IAW(70), ISW(70), BD(9), ICH(6), IDT, ITOTWT, CNVEQ, CV
CALL TRTAN(I1, I2)
CALL TRTAN(I3, I4)
RETURN
END

SUBROUTINE DQUINT(I1, I2, I3, I4, I5)
COMMON/DAN/FAEQ(7), FBEQ(7),RAEQ(7), RBEQ(7)
COMMON/COL/C5A,C5B,C6A,C6B,C5NA,C5NB,C6NA,C6NB,C5S,C6S,C5NS,C6NS
COMMON/DAT1/ITWRC, ISC, FC, SIN, IYR, IAMO, IDAY, I_HOUR, ICMOD, ITWT, JCONT
COMMON/DAT2/IAXS(70), IAXTOT, IRSN, ICONTN(10), I_TYPE, ICT(6)
COMMON/DAT3/IAW(70), ISW(70), BD(9), ICH(6), IDT, ITOTWT, CNVEQ, CV
CALL DRTAN(I1, I2)
CALL DRTAN(I3, I4)
RETURN
END

SUBROUTINE TQUINT(I1, I2, I3, I4, I5)
COMMON/DAN/FAEQ(7), FBEQ(7),RAEQ(7), RBEQ(7)
COMMON/COL/C5A,C5B,C6A,C6B,C5NA,C5NB,C6NA,C6NB,C5S,C6S,C5NS,C6NS
COMMON/DAT1/ITWRC, ISC, FC, SIN, IYR, IAMO, IDAY, I_HOUR, ICMOD, ITWT, JCONT
COMMON/DAT2/IAXS(70), IAXTOT, IRSN, ICONTN(10), I_TYPE, ICT(6)
COMMON/DAT3/IAW(70), ISW(70), BD(9), ICH(6), IDT, ITOTWT, CNVEQ, CV
CALL TRTAN(I1, I2)
CALL TRTAN(I3, I4)
RETURN
END

SUBROUTINE SEXTET(I1, I2, I3, I4, I5, I6)
COMMON/DAN/FAEQ(7), FBEQ(7),RAEQ(7), RBEQ(7)
COMMON/COL/C5A,C5B,C6A,C6B,C5NA,C5NB,C6NA,C6NB,C5S,C6S,C5NS,C6NS
COMMON/DAT1/ITWRC, ISC, FC, SIN, IYR, IAMO, IDAY, I_HOUR, ICMOD, ITWT, JCONT
COMMON/DAT2/IAXS(70), IAXTOT, IRSN, ICONTN(10), I_TYPE, ICT(6)
COMMON/DAT3/IAW(70), ISW(70), BD(9), ICH(6), IDT, ITOTWT, CNVEQ, CV
CALL TRTRI(I1, I2, I3)
CALL TRTRI(I4, I5, I6)
RETURN
END

SUBROUTINE SUM
COMMON/DAN/FAEQ(7), FBEQ(7),RAEQ(7), RBEQ(7)
COMMON/COL/C5A,C5B,C6A,C6B,C5NA,C5NB,C6NA,C6NB,C5S,C6S,C5NS,C6NS
COMMON/DAT1/ITWRC, ISC, FC, SIN, IYR, IAMO, IDAY, I_HOUR, ICMOD, ITWT, JCONT
COMMON/DAT2/IAXS(70), IAXTOT, IRSN, ICONTN(10), I_TYPE, ICT(6)
COMMON/DAT3/IAW(70), ISW(70), BD(9), ICH(6), IDT, ITOTWT, CNVEQ, CV
ITOTWT=0
DO ITOTWT=ITOTWT+ISW(J)
CONTINUE
END
C SUBROUTINE COAL FOLLOWS
SUBROUTINE COAL
COMMON/DAN/FAEQ(7),FBEQ(7),RAEQ(7),RBEQ(7)
COMMON/COL/C5A,C5B,C6A,C6B,C5NA,C5NB,C6NA,C6NB,C5S,C6S,C5NS,C6NS
COMMON/DAT/ITWRC,ISC,FC,SIN,IYR,IAMO,IDAY,IHOUR,ICMOD,ITWT,JCONT
COMMON/DAT2/IAXS(70),IAXTOT,IRSN,ICONTN(10),ITYPE,ICT(6)
COMMON/DAT3/IAM(70),ISW(70),BD(9),ICH(6),IDT,ITOTWT,CNVEQ,CV
ICMOD=99999
ATOTWT=ITOTWT*.1
AX3=IAXS(3)*.1
IF(ICNT(1).EQ.3.AND.ICNT(2).EQ.3.AND.ICNT(3).EQ.2.AND.ITOTWT
 GT.800) THEN
 CNVEQ=C5NA+C5NB*ATOTWT+C5NS
 GOTO 10
ELSE IF(ICNT(1).EQ.3.AND.ICNT(2).EQ.3.AND.ICNT(3).EQ.0.AND.ITOTWT
 GT.900) THEN
 CNVEQ=C6NA+C6NB*ATOTWT+C6NS
 GOTO 10
ELSE IF(ICNT(1).EQ.2.AND.ICNT(2).EQ.3.AND.ICNT(3).EQ.0
 AND.ITOTWT.GT.600) THEN
 ICMOD=11200
 GO TO 15
ELSE IF(ICNT(1).EQ.2.AND.ICNT(2).EQ.4.AND.ICNT(3).EQ.0
 AND.ITOTWT.GT.750) THEN
 ICMOD=11200
 GO TO 15
ELSE
 END IF
 GO TO 15
10 CONTINUE
CV=ATOTWT/AX3
IF(CV.GE.CNVEQ) THEN
 ICMOD=11200
ELSE
 END IF
15 CONTINUE
RETURN
END
SUBROUTINE PRN
COMMON/DAN/FAEQ(7),FBEQ(7),RAEQ(7),RBEQ(7)
COMMON/COL/C5A,C5B,C6A,C6B,C5NA,C5NB,C6NA,C6NB,C5S,C6S,C5NS,C6NS
COMMON/DAT/ITWRC,ISC,FC,SIN,IYR,IAMO,IDAY,IHOUR,ICMOD,ITWT,JCONT
COMMON/DAT2/IAXS(70),IAXTOT,IRSN,ICONTN(10),ITYPE,ICT(6)
COMMON/DAT3/IAM(70),ISW(70),BD(9),ICH(6),IDT,ITOTWT,CNVEQ,CV
1103 WRITE(6,1100) ITWRC,ISC,FC,SIN,IDT,IYR,IAMO,IDAY,IHOUR,ICMOD,ITWT,JCONT(1),
 1 I=1,6), (BD(J),J=7,9), (ICH(J),J=1,6),ICMOD,ITWT,(ISW(L),L=1,5),
 2 (IAXS(M),M=1,4),IAXTOT,IRSN,ICONTN(1)
IF(ICONTN(1).EQ.0) GOTO 20
DO 55 KK=1,JCNT
LRT=KK*8-2
LOP=KK*8+5
MRT=KK*8-3
MOP=KK*8+4
55 CONTINUE
WRITE(6,1101)ITWRC,ISC,FC,SIN,IDT,IYR,IAMO,IDAY,IHOUR,(ICT(I),
 1 I=1,6),(ISW(L),L=LRT,LOP),(IAXS(M),M=MRT,MOP),IRSN,ICONTN(KK+1)
IF(ICONTN(KK+1).EQ.9) GOTO 20
55 CONTINUE
1100 FORMAT(11,12,A2,A3,I1,412,611,3A1,611,3X,I5,1X,I4,913,I4,I3,I1)
1101 FORMAT(I1,12,A2,A3,I1,412,611,5X,1713,I1)
20 RETURN
END
APPENDIX C

PROGRAM LISTING FOR UNIT ESALS
C *
C SET "I ERR" TO DESIRED CODE TO PRINT REJECTED RECORDS
C 1 = EXCESSIVE GROSS WEIGHT
C 2 = NEGLIGIBLE GROSS WEIGHT
C 3 = EXCESSIVE WHEELBASE
C 4 = NEGLIGIBLE WHEELBASE
C 9 = ALL REJECTED RECORDS
C 0 = NO REJECTED RECORDS
C *
INTEGER NERRORS,NN,VEHTYPE,CARDC,NCT,NA,NB,IVEH(3,14),
+NVT,NAR,COMMOD,VEHT
CHARACTER*64 ALL*80
DIMENSION SEAL(3,14),EALPAXLE(3,14),EALPVEH(3,14),AXLEPVEH(3,14),
+W(20),S(20),AXLE(3,14),VEH(3,14)
IERR=9
CST1 = -3.540112
CST2 = 2.72886
CST3 = .289133
CSI1 = -3.439501
CSI2 = .423747
CSI3 = 1.846657
CTA1 = -2.979479
CTA2 = -1.265144
CTA3 = 2.007989
CTR1 = -2.740987
CTR2 = -1.873428
CTR3 = 1.964442
CQU1 = -2.589482
CQU2 = -2.224981
CQU1 = 1.923512
NERRORS1=0
NERRORS2=0
NERRORS3=0
NERRORS4=0
NERRORS5=0
NGOOD=0
NN=0
DO 20 I=1,3
 DO 10 J=1,14
 SEAL(I,J)=0.0
 AXLE(I,J)=0.0
 VEH(I,J)=0.0
 EALPAXLE(I,J)=0.0
 EALPVEH(I,J)=0.0
 AXLEPVEH(I,J)=0.0
 IFC=1
10 CONTINUE
20 CONTINUE
100 CONTINUE
 DO 30 K=1,20
 W(K)=0.0
 S(K)=0.0
30 CONTINUE
READ(5,1000,END=888) FC,VEHTYPE,COMMOD,TW,(W(L),L=1,5),(S(L),L=1,4
+)T5,CARDC,ALL,IYR
1000 FORMAT(T4,I2,T18,I4,T36,I5,T42,F4.1,T46,9F3.1,T73,F4.1,T80,I1,I1,
+T80,T10,I12)
IF (IFC.EQ.1) WRITE (8,99) FC,IYR
99 FORMAT (5X,'FUNCTIONAL CLASS= ',I2,5X,'YEAR= ',I2,5X,'I2,5X,'I2,12,/)
IFC=IFC+1
IF (CARDC.EQ.9) GO TO 100
NV=0
NN=NN+1
IF (VEHTYPE.EQ.1900) NVT=4
IF (VEHTYPE.EQ.2200) NVT=5
IF (VEHTYPE.EQ.2300) NVT=6
IF (VEHTYPE.EQ.2400) NVT=7
IF (VEHTYPE.EQ.2500) NVT=7
IF (VEHTYPE.EQ.3210) NVT=8
IF (VEHTYPE.EQ.3310) NVT=8
IF (VEHTYPE.EQ.3220) NVT=8
IF (VEHTYPE.EQ.3270) NVT=8
IF (VEHTYPE.EQ.3230) NVT=9
IF (VEHTYPE.EQ.3320) NVT=9
IF (VEHTYPE.EQ.3410) NVT=9
IF (VEHTYPE.EQ.3370) NVT=9
IF (VEHTYPE.EQ.3330) NVT=10
IF (VEHTYPE.EQ.3350) NVT=10
IF (VEHTYPE.EQ.3510) NVT=10
IF (VEHTYPE.EQ.3340) NVT=10
IF (VEHTYPE.EQ.3240) NVT=10
IF (VEHTYPE.EQ.3430) NVT=10
IF (VEHTYPE.EQ.3440) NVT=10
IF (VEHTYPE.EQ.3450) NVT=10
IF (VEHTYPE.EQ.3390) NVT=10
IF (VEHTYPE.EQ.3520) NVT=10
IF (VEHTYPE.EQ.3540) NVT=10
IF (VEHTYPE.EQ.5212) NVT=11
IF (VEHTYPE.EQ.5222) NVT=12
IF (VEHTYPE.EQ.5312) NVT=12
IF (VEHTYPE.EQ.5329) NVT=13
IF (VEHTYPE.EQ.5400.AND.VEHTYPE.LE.5499) NVT=13
IF (VEHTYPE.EQ.5531) NVT=13
VEHT=VEHTYPE/100
IF (VEHT.EQ.92.AND.CARDC.NE.9) NERRORS5=NERRORS5+1
IF (NVT.NE.0) GO TO 110
IF (NVT.EQ.0) GO TO 100
CONTINUE
IF (COMMOD.EQ.99999) THEN
 NCT=1
ELSE
 NCT=2
END IF
IF (CARDC.EQ.1) READ (5,1100) (W(L),L=6,13),(S(L),L=5,12),ALL2
1100 FORMAT(T29,8F3.1,T53,8F3.1,T1,A80)
 SUMW=0.0
 SUMS=0.0
 NA=0
 NB=0
 DO 40 I=1,15
 IF (W(I).GT.0.0) NA=NA+1
 SUMW=SUMW+W(I)
 IF (S(I).GT.0.0) NB=NB+1
 SUMS=SUMS+S(I)
40 CONTINUE
C**
C THE FOLLOWING SECTION CHECKS FOR ERRORS
C**
C NERRORS1 = NO. OF ERRORS: EXCESSIVE GROSS WEIGHT
C NERRORS2 = NO. OF ERRORS: NEGLIGIBLE GROSS WEIGHT
C NERRORS3 = NO. OF ERRORS: EXCESSIVE WHEELBASE
C NERRORS4 = NO. OF ERRORS: NEGLIGIBLE WHEELBASE
C NERRORS5 = NO. OF ERRORS: VEHICLE TYPE "921"
C**
ALW=(20+(NVT-4)*45/9)/10.0
UW=(660+(NVT-4)*1000/6)/10.0
ALS=(20+(NVT-4)*104/9)/10.0
US=(460+(NVT-4)*540/9)/10.0
IF (TW.GT.UW.OR.TW.GT.180) THEN
 NERRORS1=NERRORS1+1
IF (IERR.NE.1.AND.IERR.NE.9) GO TO 100
WRITE (8,1111) ALL

1111 FORMAT(T1,A80)
WRITE (8,11111) NVT,TW,UW, NERRORS1
1111 FORMAT(5X,'NVT=',I2,5X,'TW=',F5.1,5X,'UW=',F5.1,5X,'EXCESSIVE GR
+OSS WT ERROR NO.',I5)
GO TO 100
ELSE
END IF
IF (TW.LT.ALW) THEN
 NERRORS2=NERRORS2+1
IF (IERR.NE.2.AND.IERR.NE.9) GO TO 100
WRITE (8,1112) ALL

1112 FORMAT(T1,A80)
WRITE (8,2222) NVT,TW,ALW,NERRORS2
2222 FORMAT(5X,'NVT=',I2,5X,'TW=',F5.1,5X,'LW=',F4.1,5X,'NEGLIGIBLE G
+ROSS WT ERROR NO.',I5)
GO TO 100
ELSE
END IF
IF (TS.GT.US.OR.TS.GT.100) THEN
 NERRORS3=NERRORS3+1
IF (IERR.NE.3.AND.IERR.NE.9) GO TO 100
WRITE (8,1113) ALL

1113 FORMAT(T1,A80)
WRITE (8,3333) NVT,TS,US,NERRORS3
3333 FORMAT(5X,'NVT=',I2,5X,'TS=',F5.1,5X,'US=',F4.1,5X,'EXCESSIVE WH
+HEELBASE ERROR NO.',I5)
GO TO 100
ELSE
END IF
IF (TS.LT.ALS) THEN
 NERRORS4=NERRORS4+1
IF (IERR.NE.4.AND.IERR.NE.9) GO TO 100
WRITE (8,1114) ALL

1114 FORMAT(T1,A80)
WRITE (8,4444) NVT,TS,ALS,NERRORS4
4444 FORMAT(5X,'NVT=',I2,5X,'TS=',F5.1,5X,'LS=',F4.1,5X,'NEGLIGIBLE W
+HEELBASE ERROR NO.',I5)
GO TO 100
ELSE
END IF
IF (CARDC.NE.9.) NGOOD=NGOOD+1
NAR=NA
EAL=0.0
C**
C THE NEXT STATEMENT LIMITS THE EALS FOR STEERING AXLE LOADS IN
C EXCESS OF 22,500 LBS.
C**
IF (W(I).GT.22.5) THEN
 EAL=EAL+5.39
ELSE
 EAL=EAL+10.0**(CST1+CST2*ALOG10(W(I))+CST3*ALOG10(W(I))**2)
END IF
NAR=NAR-1
DO 50 I=1,14
 W(I)=W(I+1)
 S(I)=S(I+1)
50 CONTINUE
DO 200
 CONTINUE
200 CONTINUE
IF (NAR.EQ.0) GO TO 300
C**
THE NEXT STATEMENT LIMITS THE EALS FOR QUAD AXLE GROUPS WITH LOADS IN EXCESS OF 150,000 LBS.

\[
\text{IF } (S(1) \geq 0.0 \text{ AND } S(2) \geq 0.0 \text{ AND } S(3) \geq 0.0 \text{ AND } (S(1)+S(2)+S(3) \geq 15.0) \leq 15.0 \text{ AND } (W(1)+W(2)+W(3)+W(4)) \leq 150.0) \text{ THEN}
\]
EAL=EAL+10.0**(CQ01+CQ02*ALOG10(W(1)+W(2)+W(3)+W(4))+CQ03*
+ALOG10(W(1)+W(2)+W(3)+W(4))**2)
ELSE IF (S(1) \geq 0.0 \text{ AND } S(2) \geq 0.0 \text{ AND } (S(1)+S(2)+S(3)) \leq 15.0 \text{ AND } (W(1)+W(2)+W(3)+W(4)) \gt 150.0) \text{ THEN}
EAL=EAL+58.3
NAR=NAR-4
DO 55 I=1,14
W(I)=W(I+4)
S(I)=S(I+4)
55 CONTINUE
GO TO 200
END IF

THE NEXT STATEMENT LIMITS THE EALS FOR TRIDEM AXLE GROUPS WITH LOADS IN EXCESS OF 112,500 LBS.

\[
\text{IF } (S(1) \geq 0.0 \text{ AND } S(2) \geq 0.0 \text{ AND } (S(1)+S(2)) \leq 10.0 \text{ AND } (W(1)+W(2)+W(3)) \leq 112.5) \text{ THEN}
\]
EAL=EAL+10.0**(CTR1+CTR2*ALOG10(W(1)+W(2)+W(3))+CTR3*
+ALOG10(W(1)+W(2)+W(3))**2)
ELSE IF (S(1) \geq 0.0 \text{ AND } S(2) \geq 0.0 \text{ AND } (S(1)+S(2)) \leq 10.0 \text{ AND } (W(1)+W(2)+W(3)) \gt 112.5) \text{ THEN}
EAL=EAL+59.0
NAR=NAR-3
DO 60 I=1,14
W(I)=W(I+3)
S(I)=S(I+3)
60 CONTINUE
GO TO 200
END IF

THE NEXT STATEMENT LIMITS THE EALS FOR TANDEM AXLE GROUPS WITH LOADS IN EXCESS OF 75,000 LBS.

\[
\text{IF } (S(1) \geq 0.0 \text{ AND } S(1) \leq 0.0 \text{ AND } (W(1)+W(2)) \gt 75.0) \text{ THEN}
\]
EAL=EAL+63.0
ELSE IF (S(1) \geq 0.0 \text{ AND } S(1) \leq 0.0 \text{ AND } (W(1)+W(2)) \leq 75.0) \text{ THEN}
EAL=EAL+10.0**(CTA1+CTA2*ALOG10(W(1)+W(2))+CTA3*ALOG10(W(1)+W(2))**2)
NAR=NAR-2
DO 70 I=1,14
W(I)=W(I+2)
S(I)=S(I+2)
70 CONTINUE
GO TO 200
END IF

IF (W(1) \neq 0.0) WRITE (7,1170) NN
C1170 FORMAT (T5,'NN=' ,I5)

THE NEXT STATEMENT LIMITS THE EALS FOR OTHER SINGLE AXLES WITH LOADS IN EXCESS OF 37,500 LBS.

\[
\text{IF } (W(1) \geq 0.0) \text{ WRITE (7,1170) NN}
\]
C1170 FORMAT (T5,'NN=',I5)

THE NEXT STATEMENT LIMITS THE EALS FOR OTHER SINGLE AXLES WITH LOADS IN EXCESS OF 37,500 LBS.

\[
\text{IF } (W(1) \geq 0.0) \text{ WRITE (7,1170) NN}
\]
C1170 FORMAT (T5,'NN=',I5)
DO 80 I=1,14
W(I)=W(I+1)
S(I)=S(I+1)
80 CONTINUE
GO TO 200

300 CONTINUE
SEAL(NCT,NVT)=SEAL(NCT,NVT)+EAL
AXLE(NCT,NVT)=AXLE(NCT,NVT)+NA
VEH(NCT,NVT)=VEH(NCT,NVT)+1
GO TO 100

888 CONTINUE
DO 90 J=1,13
SEAL(3,J)=SEAL(1,J)+SEAL(2,J)
AXLE(3,J)=AXLE(1,J)+AXLE(2,J)
VEH(3,J)=VEH(1,J)+VEH(2,J)
90 CONTINUE
DO 92 I=1,3
DO 91 J=1,13
SEAL(I,14)=SEAL(I,14)+SEAL(I,J)
AXLE(I,14)=AXLE(I,14)+AXLE(I,J)
VEH(I,14)=VEH(I,14)+VEH(I,J)
91 CONTINUE
92 CONTINUE
DO 94 I=1,3
DO 93 J=1,14
IF (AXLE(I,J) .GT. 0.) THEN
EALPAXLE(I,J)=SEAL(I,J)/AXLE(I,J)
ELSE
EALPAXLE(I,J)=0.0
ENDIF
IF (VEH(I,J) .GT. 0.0) THEN
EALPVEH(I,J)=SEAL(I,J)/VEH(I,J)
ELSE
EALPVEH(I,J)=0.0
ENDIF
IF (VEH(I,J) .GT. 0.0) THEN
AXLEPVEH(I,J)=AXLE(I,J)/VEH(I,J)
ELSE
AXLEPVEH(I,J)=0.0
ENDIF
93 CONTINUE
94 CONTINUE
WRITE (6,1172) FC,IYR
1172 FORMAT (TS, 'FUNCTIONAL CLASS ',I2,5X,'YEAR 19',I2)
WRITE (6,1173)
1173 FORMAT (TS, 'NUMBER OF VEHICLES WEIGHED')
WRITE (6,1174)
1174 FORMAT (TS, 'VEH TYPE',5X,'NON-COAL',5X,'COAL',5X,'ALL')
DO 95 J=4,14
IVEH(1,J)=VEH(1,J)
IVEH(2,J)=VEH(2,J)
IVEH(3,J)=VEH(3,J)
WRITE (6,1180) J,IVEH(1,J),IVEH(2,J),IVEH(3,J)
95 CONTINUE
WRITE (6,1200)
1200 FORMAT (TS,'EALS PER AXLE')
WRITE (6,1210)
1210 FORMAT (TS,'EALS PER VEHICLE')
96 CONTINUE
WRITE (6,1230)
WRITE (6, 1174)
DO 97 J = 4, 14
WRITE (6, 1210) J, EALPVEH(1, J), EALPVEH(2, J), EALPVEH(3, J)
CONTINUE
WRITE (6, 1400)
1400 FORMAT (T5, 'AXLES PER VEHICLE')
WRITE (6, 1174)
DO 98 J = 4, 14
WRITE (6, 1210) J, AXLEPVEH(1, J), AXLEPVEH(2, J), AXLEPVEH(3, J)
CONTINUE
WRITE (8, 556) NERRORS1
WRITE (8, 557) NERRORS2
WRITE (8, 558) NERRORS3
WRITE (8, 559) NERRORS4
WRITE (8, 555) NERRORSS
WRITE (8, 560) NGOOD
556 FORMAT ('/I6,5X, 'EXCESSIVE GROSS WEIGHT(S)'
557 FORMAT ('/I6,5X, 'NEGLIGIBLE GROSS WEIGHT(S)'
558 FORMAT ('/I6,5X, 'EXCESSIVE WHEELBASE(S)'
559 FORMAT ('/I6,5X, 'NEGLIGIBLE WHEELBASE(S)'
555 FORMAT ('/I6,5X, 'VEHICLE TYPE "921"'
560 FORMAT ('/I6,5X, 'SUCCESSFUL ENTRIES'
RETURN
END
APPENDIX D

POSSIBLE FUTURE REVISION
USING dBASE
POSSIBLE REVISION OF ESAL SUMMARIES

Revised: February 5, 1993

The process for annually calibrating Kentucky ESAL models has lost some of its original convenience and reliability as modifications have been made to accommodate changes to the traffic monitoring program and, especially, its data-collection component. An alternative is proposed herein as a relatively inexpensive way to modify the current process to restore its convenience and reliability as well as to enhance its capabilities. Modified versions of current programs, LOADMTR and CLASSUM, would continue to be used. For weight data, each station would be processed independently (functional class summations would be eliminated), and output data would be stored by station. The current WIM and UNITEAL programs would be added to LOADMTR. CLASSUM processing and output would remain essentially unchanged. EALCALC and SMOOTH would be replaced by a dBASE program which would merge the necessary databases and produce the output reports.

REVISIONS TO MORE ACCURATELY TREAT COAL MOVEMENTS

Because coal movements place such a large burden on Kentucky's highway system, special emphasis is placed on them in the ESAL models. Current procedures suffer, however, in two very important respects. First, a highway segment can be identified as a coal-haul highway only when a manual classification count has been taken there. Segments not included within the classification count program and those for which automatic classifiers are used cannot be identified as coal-haul highways and, hence, cannot be treated as such in the ESAL estimations. Second, the separation of weight data into normal and heavy/coal categories (without regard for the type of highway on which it was collected) has screened overloaded and coal trucks from the traffic loading applied to non-coal highways. This results in an underestimate of the ESAL accumulations on these facilities.

Proposed herein is a modification that uses annual coal-haul-road data to identify coal-haul highways. Weight data would be summarized 1) for both classified vehicles (normal and heavy/coal) and unclassified vehicles and 2) for both non-coal-haul highways and coal-haul highways. Its use in the ESAL models would be as follows:

4These two programs remain both functional as well as convenient to use.
Heavy/coal trucks would be identified as they are at present. In the WIM data, gross weight is the primary factor. In the manual classification data, truck body style and commodity are used. Coal trucks are not identified at automatic classifier sites.

FILE STRUCTURE AND CONTENTS

The following files, on PC media, provide the necessary input to a new dBASE program:

File 1 - Weight Data

Source: Produced by LOADMTR
Structure: Read-only file with input data processed and output records grouped by station
Contents: Year
Station
County
Route
Milepoint
ESALs per axle by vehicle type by commodity type (normal, heavy/coal, and unclassified)
Number of axles per vehicle by vehicle type by commodity type
Number of vehicles weighed by vehicle type by commodity type
Code: LOADMTR code must be changed to 1) add WIM processing, 2) add/modify edit specifications, 3) add ESAL computations, 4) produce new output file, and 5) remove old file output if desired
Comments: Would no longer have full capacity to obtain alternate axle load distributions by backward searches and alternate axle types. However, the dBASE program could merge as much historical data as required. A separate program--inputting LOADMTR output and producing required output--has already been written (last year).
File 2 - Classification Data

Source: Produced by CLASSUM
Structure: Read-only file with output records grouped by station
Contents: Year
Station
County
Route
Milepoint
AADT (as supplied by Kentucky Transportation Cabinet)
Percentages by vehicle type
Percentage of coal trucks (manual counts only)
Code: Code must be changed only to produce file output and possibly to remove any previous file output
Comments: None

File 3 - Volume Data (TVS)
Comments: The separate volume file could be accessed later. For now, volumes would be taken from classification data.

File 4 - Station Identification

Source: New file created and maintained manually
Structure: One record for each WIM or classification station
Contents: Station
County
Route
Milepoint
Functional classification
Geographical area
???

File 5 - Coal-Haul Road System (YR_COAL_SEG)

Source: File produced annually from coal-haul report database
Structure: ???
Contents: County
Route
Start milepoint
End milepoint
File 6 - Summary File

A read-only summary file--similar to that currently used--might be desirable for the purpose of conveniently developing "smoothed" estimates.

dBASE PROGRAM

1. We need to address how coal trucks (identified on classification records) would be distributed to the various truck types. In the past we have used weight data and could continue to do so. However, the algorithm may require modification.

2. Need to be able to process weight and classification data as averages or moving averages.

3. Consideration must be given to how best to classify roads. Certainly one element will be functional classification. Another must relate to the extent of coal haulage. (Will this be determined from weight data, classification data, coal-haul road designation, a combination of all, or ...?) The Division of Planning needs great flexibility for classifying roads. For example, the capacity should be provided to generate reports on various ESAL parameters for volume groups or geographical areas within a functional class (with the appropriate statistical level of confidence specified).

4. The process would continue to be driven largely by classification data. Average weight data (for each highway category) would be integrated with site-specific vehicle classification data to produce site-specific traffic parameters.

5. Output (similar to current output)
 a. Traffic parameters for classification station within most recent three years (weight data accumulated and averaged at level of highway class)
 b. Traffic parameters by highway class (averaged for three most recent years) without time series data
 c. Traffic parameter regression by highway class with current incremental percentages without time series data
 d. Growth increments as a time series

OVERALL PROCESS

1. Run modified versions of current programs LOADMTR and CLASSUM with hard-copy output similar to present. NOTE: LOADMTR has been run as a summary program adding together data for stations of the same functional class.
Future runs would handle each station individually: the printed output would be excessive unless some of it was suppressed.

2. Edit data using those modifications currently under development

COMMENTS AND QUESTIONS

1. Thus far no consideration has been given to such questions as: 1) is available data being fully exploited, 2) should the data collection program be modified, 3) how reliable is the data and the estimates, 4) whether truck classification data could or should be developed from the weight database, etc.

Response from Division of Planning: Classification data is developed by KYTC from the WIM data.

2. What kind of documentation would be necessary if this revision were made?

Response from Division of Planning: A report would be needed.

3. How much reprocessing of prior-year data would be necessary?

Response from Division of Planning: No reprocessing of data should be needed prior to 1989. Our WIM program started then and our classification data was significantly upgraded due to the implementation of the three-year HPMS cycle.

4. Should classification data be processed by functional class? In any case must CLASSUM be changed with respect to the sample factoring process (page 40)?

Response from Division of Planning: Sample factoring will ultimately be tied to the new Traffic Monitoring Standards recommendations. ASTM E 1442-91 (attached) calls for use of permanent classification data to factor short counts.

5. Is additional investigation of adequacy of WIM-to-static conversions necessary?

Response from Division of Planning: WIM data has been rightfully alluded to in every ESAL revision discussion. As you know, we have four different types of WIM devices (Golden River, PAT, IRD, Toledo Scale) which have not been linked exhaustively to a static standard or each other. This is a fertile area for improvement.

6. It is assumed that all subsequent weight data will require WIM-to-static conversions.

Response from Division of Planning: WIM-to-static conversions are necessary
until more accuracy is shown by WIM equipment.

7. Recent data seem to be inflating "winter" volumes. Should we reexamine this situation, perhaps considering better use of multi-seasonal classification counts to develop the expansion factors?

Response from Division of Planning: Please explain how winter volumes are inflated since we are unaware of this trend. As mentioned above, multi-season and continuous data must be used in the future.

8. Should dBASE output be hard copy, computer accessible, or both?

Response from Division of Planning: dBASE output should be both computer accessible and hard copy.