Rutting and Longitudinal Cracking and Temperature Cracking: A Case Study (US 23, Greenup County, MP 6.0 to 28.8)

James H. Havens* \hspace{1cm} Gary W. Sharpe†
David L. Allen‡ \hspace{1cm} David Q. Hunsucker**

*University of Kentucky
†University of Kentucky, dallen@engr.uky.edu
‡University of Kentucky, david.hunsucker@uky.edu
**University of Kentucky, david.hunsucker@uky.edu
This paper is posted at UKnowledge.
https://uknowledge.uky.edu/ktc_researchreports/574
Research Report
UKTRP-86-25

RUTTING AND LONGITUDINAL CRACKING
AND TEMPERATURE CRACKING
A CASE STUDY

(US 23, Greenup County, MP 6.0 to 28.8)

by
James H. Havens
Associate Director
Gary W. Sharpe
Chief Research Engineer
David L. Allen
Chief Research Engineer
and
David Q. Hunsucker
Transportation Research Engineer Associate

Kentucky Transportation Research Program
College of Engineering
University of Kentucky

in cooperation with
Transportation Cabinet
Commonwealth of Kentucky
and the
Federal Highway Administration
U.S. Department of Transportation

The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Kentucky, the Kentucky Transportation Cabinet, or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

November 1986
US 23, Greenup County, Ashland-South Shore, developed rutting and transverse and longitudinal cracking. The pavement was about 14 years old and had served heavy trucks. Road Rater tests, crack surveys, and various inspections had been made prior to the fall of 1985. Inspection and a report by KTRP led to further evaluation, examination internally by trenching, and additional tests and surveys. This report combines pertinent facts and records. It includes recommendations for overlayment.
INTRODUCTION

On October 10, 1985, a familiarization trip to US 23, Ashland to South Shore (opposite Portsmouth) (a location map is shown in Figure 1), resulted in a memorandum report dated November 8, 1985 (1). The memorandum related the following: "Two types of defects were obvious: rutting and transverse cracking." Later, in regard to transverse cracking, it said: "It is theorized that the cracking interval is governed by the tensile strength of the pavement at the first onset of critical shrinkage. Shrinkage, here, is due mostly to thermal contractions."

Both rutting and cracking are systematic and may be analyzed. Rutting depths may be modeled by a computer program (2). The crack frequency ranged from 16 to 57 per mile (330- to 92.6-foot interval).

Road Rater tests had been made September 16, 1984. Overlay requirements to extend the service life 8 additional years were submitted November 30, 1984. Those analyses were extended to 20-year additional service life, and that information was forwarded with the memo report package of November 8, 1985.

The FHWA Pavement Rehabilitation and Design Team was invited to visit the site on November 13-14, 1985. All memoranda and reports mentioned above were available to members of the team at a briefing the evening before touring the roadway. Following receipt of the FHWA report (3), the pavement was trenched at two sites to examine the exposed cross section and to assess internal damage and deterioration.

Field CBR’s were determined, samples were obtained, and laboratory CBR’s and moduli and creep tests were performed. Six cores (4-inch diameter) were obtained from each of the ten design sections by the Division of Materials; four cores of each set were consigned to the Kentucky Transportation Research Program (KTRP). Later, a Road Rater survey was conducted; further crack frequency surveys were undertaken; and data were analyzed and assembled for this report.

Others had studied the pavement from the standpoint of roughness, overlay requirements, full-width patching, chip seals, and crack-filling. Parts of the project had received patching, and a large portion had been treated with one or more applications of an elastomeric...
Figure 1. Project Location Map.
asphalt and chip seal.

The section from KY 827 (MP 12.605) to KY 3116 (MP 17.520), southbound lanes only, were advertised for bids for bituminous resurfacing to be received September 19, 1986. The structural analysis indicated that 1.5 inches would suffice for a 20-year design \((7.2 \times 10^6\text{ EAL's})\).

The northbound section had been advertised earlier and was awarded to Standard Materials, Inc., on August 7, 1986. The initial paving contracts for this section of road were awarded in 1972, 1973, and 1974. The pavements are 12 to 14 years old.

FHWA PAVEMENT REHABILITATION AND DESIGN TEAM

The FHWA Pavement Rehabilitation and Design Team recommended that trenching be performed at two or more sites (3). This was in recognition of the procedure used effectively in Kentucky on several previous occasions (most recently on the southern portion of the Purchase Parkway) (4). Trenching was performed on December 12, 1985. Highway district forces did the sawing and excavations and otherwise assisted KTRP investigators.

FIELD AND LABORATORY TESTS

ROAD RATER TESTS

As mentioned previously, Road Rater tests had been performed on September 26, 1984; and overlay requirements to extend service life 8 additional years had been submitted November 30, 1984. Those analyses were extended to 20-year additional service life (based on traffic forecasts and estimates of EAL's furnished by the Division of Design) and submitted with the package report of November 8, 1985. New tests were ordered after the meeting with the FHWA team (November 13-14, 1985) and a tour of the project. Those Road Rater tests were performed on December 4-6, 1985. The results from analyses of those tests were reported on March 31, 1986 (5). Full advantage was made of resilient
moduli tests on cores obtained by the Division of Materials and in situ CBR's measured in the two trenched sites as the layers were uncovered. Samples of asphaltic concrete from the trenches and bag samples of dense-graded aggregate (DGA) and subgrade soil also had been obtained. Laboratory CBR's were determined. The report of March 31 remains final and unchanged. The procedures employed and the basis for the structural analysis of pavement structures are described subsequently under STRUCTURAL ANALYSES AND OVERLAY REQUIREMENTS.

TRANSVERSE INSPECTION TRENCHES

Two sites were trenched on December 12, 1985. The first was at MP 14.0 (Section E) (Figure 2), and the second was at MP 7.3 (Section A) (Figure 3). Both were on the outer northbound lane. Section E contained limestone throughout. Section A was slag. The slag DGA had set (weakly hydraulic) (see Figure 3e).

Saw cuts were made through the asphaltic concrete. A backhoe was used to remove the slabs and DGA.

There was a significant amount of fine material above the DGA base when the asphaltic concrete was removed. The origin of this material is not known. It may have been dust from the sawing, it may have existed at the time of construction, or it may have been generated in place by grinding (percussion and/or slippage) between the base aggregate and the bottom surface of the asphaltic concrete. The effect of such material on Road Rater deflections is magnifying -- that is, greater deflections signify less stiffness of the pavement and, therefore, lower moduli of the layers. A lower CBR of the soil would be deduced.

RUTTING MEASUREMENTS

At Sites 1 and 2 (MP 14.0 and 7.3, respectively), rutting measurements were made at the surface, at the asphalt-dense-graded aggregate interface, and at the dense-graded aggregate-subgrade interface. Offsets from stringlines were used to determine rut depths. Figure 4a shows the measured rutting at Site 1. Surface rutting in the inside wheel track was 1.4 inches. The asphalt layers in the inside wheel track had thinned to 5.5 inches. Rutting in the subgrade averaged approximately 1.0 inch.
Figure 4. Rutting Measured as Deviations from Stringline: (a) Site 1 and (b) Site 2.
At Site 2, surface rutting was less than 0.5 inch. However, the asphaltic concrete-dense-graded aggregate interface had rutted 0.8 inch in the outside wheel track, and the subgrade had rutted 0.6 inch in the inside wheel track. Figure 4b shows the measured rutting at Site 2.

IN SITU AND LABORATORY CBR’S

Field CBR values obtained on December 12, 1985 are as follows:

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>MATERIAL</th>
<th>CBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP 7.3</td>
<td>DGA</td>
<td>47</td>
</tr>
<tr>
<td>MP 7.3</td>
<td>Soil</td>
<td>14</td>
</tr>
<tr>
<td>MP 14.0</td>
<td>DGA</td>
<td>67</td>
</tr>
<tr>
<td>MP 14.0</td>
<td>Soil</td>
<td>7</td>
</tr>
</tbody>
</table>

Bag samples obtained on December 12, and stored at the laboratory until February 25, were recompacted at their natural moisture contents and penetrated according to CBR test procedures (without drying or soaking). The CBR’s obtained are as follows:

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>MATERIAL</th>
<th>CBR</th>
<th>NATURAL MOISTURE (%)</th>
<th>RECOMPACTED DRY DENSITY (lbs/cu ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP 7.3</td>
<td>DGA (Slag)</td>
<td>226</td>
<td>12.9</td>
<td>114.9</td>
</tr>
<tr>
<td>MP 7.3</td>
<td>Soil</td>
<td>34</td>
<td>12.1</td>
<td>121.4</td>
</tr>
<tr>
<td>MP 14.0</td>
<td>DGA (Limestone)</td>
<td>205</td>
<td>5.1</td>
<td>141.2</td>
</tr>
<tr>
<td>MP 14.0</td>
<td>Soil</td>
<td>19</td>
<td>12.6</td>
<td>122.6</td>
</tr>
</tbody>
</table>

CORES: UNIT WEIGHTS AND STABILITIES

Eight or nine cores were obtained from each design section. Two per set were tested for unit weight, stability, resilient modulus of
elasticity, and rutting potential. These data are shown in Table 1. Also shown are the similarity estimates of rut depths. Unfortunately, the real depths were measured only at the trenched sites (MP 7.3 and 14.0).

Unit weights in the all-slag sections were in the order of 135 pounds per cubic foot. Weights in the all-limestone sections were approximately 145 pounds per cubic foot. Stabilities were in the order of 3,000 pounds.

No deficiencies of the sections are attributable to the properties of materials shown in Table 1.

Other stability data are listed in Table 2. Specimens reported were cored from slabs of asphaltic concrete excavated from the trenched sites.

RUTTING SUSCEPTIBILITY AND DYNAMIC MODULUS

Resilient modulus and rutting potential were determined on 19 pavement cores. The cores were tested in compression at 1/2 cycle per second at 70°F. Results are summarized in Table 1.

In most cases, the modulus values are high. Four of the cores (A-3, A-5, E-3, and H-2) had a modulus value exceeding 1,000,000 psi. Only two specimens had moduli less than 480,000 psi (normally, the assumed value for asphaltic concrete at 70°F). These two specimens were I-4 and C-4.

It is assumed these high modulus values resulted from a highly oxidized and very stiff asphaltic cement. However, the viscosity of the asphaltic cement was not measured.

There was no apparent correlation between modulus and rutting potential. It would be expected that after 1,000 cycles of loading, the rutting strain for a normal asphalt mixture would be in the range of 0.04 to 0.06 inch per inch. However, 10 of the 19 specimens had greater values. It is possible these specimens were tested in a "post-failure" condition and that small shear surfaces were present in the material. However, this is not confirmed by other tests for rigidity and stability.

It should be noted that each test specimen was composed of surface, binder, and some base mixture. Therefore, it was not possible to
<table>
<thead>
<tr>
<th>TABLE</th>
<th>CRACK LENGTH (mm)</th>
<th>CRACK PROPERTIES</th>
<th>MATERIAL</th>
<th>BREAK- OFF</th>
<th>DETAIL</th>
<th>NOTCH</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.6</td>
<td>ELL</td>
<td>5.0</td>
<td>1.23</td>
<td>326.2</td>
<td>1.23</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>2.6</td>
<td>CIRC</td>
<td>5.0</td>
<td>1.23</td>
<td>326.2</td>
<td>1.23</td>
<td>1.50</td>
</tr>
<tr>
<td>3</td>
<td>3.6</td>
<td>TRIA</td>
<td>5.0</td>
<td>1.23</td>
<td>326.2</td>
<td>1.23</td>
<td>1.50</td>
</tr>
<tr>
<td>4</td>
<td>4.6</td>
<td>SQUARE</td>
<td>5.0</td>
<td>1.23</td>
<td>326.2</td>
<td>1.23</td>
<td>1.50</td>
</tr>
<tr>
<td>5</td>
<td>5.6</td>
<td>TRAPEZ</td>
<td>5.0</td>
<td>1.23</td>
<td>326.2</td>
<td>1.23</td>
<td>1.50</td>
</tr>
<tr>
<td>6</td>
<td>6.6</td>
<td>HEXAGON</td>
<td>5.0</td>
<td>1.23</td>
<td>326.2</td>
<td>1.23</td>
<td>1.50</td>
</tr>
<tr>
<td>7</td>
<td>7.6</td>
<td>OCTAGON</td>
<td>5.0</td>
<td>1.23</td>
<td>326.2</td>
<td>1.23</td>
<td>1.50</td>
</tr>
</tbody>
</table>

Notes:
- ELL: Elliptical
- CIRC: Circular
- TRIA: Triangular
- SQUARE: Square
- TRAPEZ: Trapezoidal
- HEXAGON: Hexagonal
- OCTAGON: Octagonal
TABLE 2. OTHER STABILITY TESTS

<table>
<thead>
<tr>
<th>IDENTIFICATION</th>
<th>TYPE</th>
<th>STABILITY (pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site 1 (Sample A)</td>
<td>Surface & Binder</td>
<td>2,372</td>
</tr>
<tr>
<td>Site 1 (Sample B)</td>
<td>Surface & Binder</td>
<td>2,142</td>
</tr>
<tr>
<td>Site 1 (Sample B)</td>
<td>Base</td>
<td>2,200</td>
</tr>
<tr>
<td>Site 2 (Sample A)</td>
<td>Binder</td>
<td>3,402</td>
</tr>
<tr>
<td>Site 2 (Sample A)</td>
<td>Base</td>
<td>1,931</td>
</tr>
<tr>
<td>Site 2 (Sample B)</td>
<td>Binder</td>
<td>3,311</td>
</tr>
<tr>
<td>Site 2 (Sample B)</td>
<td>Base</td>
<td>1,692</td>
</tr>
</tbody>
</table>

TABLE 3. SUMMARY OF CRACK INTERVAL SURVEY

<table>
<thead>
<tr>
<th>DESIGN</th>
<th>SECTION TERMINI</th>
<th>AVERAGE CRACK INTERVALS</th>
<th>DESIGN</th>
<th>SECTION TERMINI</th>
<th>AVERAGE CRACK INTERVALS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BEGINNING MILEPOINT</td>
<td>ENDING MILEPOINT</td>
<td>BEGINNING MILEPOINT</td>
<td>ENDING MILEPOINT</td>
<td>NUMBER OF CRACKS (ft)</td>
</tr>
<tr>
<td>A</td>
<td>3.1</td>
<td>7.7</td>
<td>7.000</td>
<td>7.189</td>
<td>18</td>
</tr>
<tr>
<td>B</td>
<td>7.7</td>
<td>10.7</td>
<td>9.000</td>
<td>9.189</td>
<td>16</td>
</tr>
<tr>
<td>C</td>
<td>10.7</td>
<td>12.6</td>
<td>12.000</td>
<td>12.189</td>
<td>12</td>
</tr>
<tr>
<td>D</td>
<td>12.6</td>
<td>14.7</td>
<td>14.000</td>
<td>14.189</td>
<td>15</td>
</tr>
<tr>
<td>E</td>
<td>14.7</td>
<td>17.7</td>
<td>16.000</td>
<td>16.189</td>
<td>16</td>
</tr>
<tr>
<td>F</td>
<td>17.7</td>
<td>20.3</td>
<td>19.000</td>
<td>19.189</td>
<td>—</td>
</tr>
<tr>
<td>G</td>
<td>20.3</td>
<td>22.4</td>
<td>21.000</td>
<td>21.189</td>
<td>—</td>
</tr>
<tr>
<td>H</td>
<td>22.4</td>
<td>25.1</td>
<td>23.000</td>
<td>23.189</td>
<td>18</td>
</tr>
<tr>
<td>I</td>
<td>25.1</td>
<td>26.8</td>
<td>26.000</td>
<td>26.189</td>
<td>30</td>
</tr>
<tr>
<td>J</td>
<td>26.8</td>
<td>28.8</td>
<td>28.000</td>
<td>28.189</td>
<td>27</td>
</tr>
</tbody>
</table>

Note:
a) based on 500-foot sample interval
b) based on 650-foot sample interval
determine which of those layers was weakest. Consequently, modulus and rutting values are for a composite of all the asphalt layers.

Cores obtained from Site 1 (MP 14.0) and Site 2 (MP 7.3) were separated at the interface between the binder and the base mixtures. Marshall stability tests were performed on the combined surface and binder layers and on the base layer at Site 1. Stability values ranged from 2,142 pounds to 2,500 pounds.

At Site 2, the surface mixture was not tested; however, the binder mixture and the base mixture were tested separately. The binder mixture at Site 2 had stability values over 3,300 pounds for both specimens. However, the two base specimens averaged just over 1,800 pounds. A summary of these Marshall stability data is in Table 2 (Note: Compare with Table 3). Rutting susceptibility was translated into an estimate of total rut depth according to a computer program designated PAVERUT (2). Those estimates are listed in Table 1 also.

ANALYSES OF CRACKING

No deficiencies of materials or structural strengths were discovered. The pavement performed adequately. Susceptibility to temperature cracking may be an insidious freak of nature. Other cracking is considered to be more or less normal for a spent or exhausted pavement. "Other cracking" alludes to the longitudinal load-associated cracks along the edges of wheelpaths (sometimes in the wheelpaths). This pattern of cracking was first observed on the Watterson Expressway (6, 7) before the first resurfacing. Those cracks were not due to reverse bending outside the wheelpaths, but were at the very edge of the depressed wheelpath. They seemed to portray a direct punching-shearing situation. The wheelpath was more-or-less flat but depressed and was about 30 inches across. This pattern has been recognized elsewhere (Purchase Parkway, I 64 at MP 164, and US 60 from Olive Hill eastward) (see Figure 5) (8, 9).

The shear mode is evident. Maximum shear tends to occur at a depth equal to one-third the radius of the loaded area. Assuming the diameter to be 30 inches (the approximate width of the rutted wheelpaths), the
Figure 5. Typical Cracking Pattern Accompanying Rutting in Wheelpath on I 64, MF 164, December 4, 1979 (8, 9).
depth of maximum shear would be 5 inches. Punching shear may suffice to explain longitudinal cracking at the edges of the wheelpaths. Maximum shear may explain eventual checkering and map cracking within the wheelpaths. Kneading shear in the wheelpaths together with punching shear at the edges progresses little by little. These concepts are illustrated diagrammatically in Figure 6. A crushed rock base may be as strong after deformation as it was before deformation, and the foundation soil may not be critically weakened until slip planes develop or swelling due to water infiltration occurs. An example of early failure exhibiting a longitudinal crack pattern is shown in Figure 7.

There, failure occurred within a few months of service, it was attributed to gelled clay in the foundation (site was trenched and evaluated). Subsequent overlayment hid and adequately bridged over the short section involved. Heavy hauling may have abated also.

Some witnesses at the trenched sites on US 23 expected to find the transverse cracks at the surface also extending through the DGA base. If a crack had existed in the slag DGA, it would not have escaped notice because the slag base was somewhat monolithic and came up in slabs and chunks. None of the edges showed signs of staining or darkening due to infiltration.

Further explanation of the temperature cracking phenomena is contained in the memorandum report, November 8, 1985, which was presented as part of a package report to the FHWA review team (1). It is theorized that the crack interval is governed by the tensile strength of the pavement at the first onset of critical shrinkage. Shrinkage, here, is due to thermal contraction. Temperature cracking is probably more the rule than the exception in Kentucky. The spacing varies from place to place, and the widths of cracks vary.

The horizontal tensile force in a pavement is \(F_T = \sigma A \), where \(\sigma \) = tensile stress, \(A \) = say 1 square foot or 144 square inches. The resistance to sliding (that is the force of friction) is given by \(F_f = fWL \), where \(W \) is the weight in pounds of cubic foot of pavement, \(f \) is approximately 1, and \(L \) is the length of pavement. Equating forces and substituting:

\[
\sigma A = fWL
\]
Figure 6. Schematic Diagram Illustrating Conceptual Modes of Shear Failure Accompanying Rutting. Punching shear occurs across the wheelpath. Kneading shear occurs within the wheelpath and eventually leads to checkering and blocking out.
Figure 7. US 62, Harrison County, SP 19-112-10C1, September 19, 1979, Wheelpaths Cracking (Longitudinal), 8.5 Inches of Asphaltic Concrete. Cracking occurred about 6 months after construction. There was heavy hauling in both directions. Section shown above was trenched later in 1979. The soil underneath was a gelled clay that gave only spongy support. Cracks were recognized as the punching-shear mode of failure.
or

\[L = \sigma \text{(numerically)} \]

Therefore, the maximum crack spacing is 2L, and L, in feet, is numerically equal to the tensile strength of the pavement in pounds per square inch (psi).

Wide cracks indicate either permanent shrinkage or infilling and reclosure. Reclosure on debris would tend to crush material or cause buckling. There was a strong tendency for necking down at joints otherwise well filled. This is illustrated in Figure 2a. A few neat, sharp-edged, narrow cracks were observed. They may have formed much more recently than others.

A general thesis may be stated as follows: the interval (distance) between cracks is determined (governed) by the tensile strength of the asphaltic concrete at the time of critical contraction and (or) shrinkage. Usually, temperature cracks are not very wide or obvious. The widths of the cracks, if they could be ascertained truly, could be summed over a mile section of roadway and an estimate of shrinkage could be obtained.

The crack intervals (see Table 3) are not sufficiently discrete to distinguish between slag and limestone sections.

STRUCTURAL ANALYSES AND OVERLAY REQUIREMENTS

Four-inch diameter bituminous cores were obtained by the Division of Materials for evaluation by the KTRP staff. Six cores were obtained from each design section. The cores were measured for thickness and then sawed to approximately 2-1/2 x 2-1/2 inch squares and varying lengths, depending upon the constructed thickness of the sections. Elastic moduli were obtained for each prism at 70°F by fundamental frequency method (ASTM C 215) and adjusted to reflect a Poisson's ratio of 0.4 for the bituminous material.

The 2-1/2-inch prisms were then cored to a nominal diameter of 2 inches. Resilient moduli were obtained for two cores for each design.
section at 70°F and a frequency of one-half Hertz. A semi-log relationship (see Figure 8) between elastic modulus and frequency was then developed for each design section using the moduli obtained from fundamental frequency and resilient modulus tests. Elastic moduli at 25 Hertz were estimated from the graphical relationship.

Road Rater deflections were obtained for the various design sections, and field CBR's were obtained on the dense-graded aggregate (DGA) base and the soil subgrade in two trenched areas (Design Sections A and D.) The measured CBR's were compared to and confirmed by in-place CBR's. Corrections for deflection readings were made on the basis of temperatures measured during trenching operations and the five-day air temperatures obtained prior to the dates deflection readings were taken.

During trenching operations, temperatures were measured on the surface with an infrared temperature sensing device. Holes were drilled to approximately 2, 4, and 6 inches in depth and filled with water and allowed to stabilize. The temperature in the holes were measured with a standard thermometer. However, water in the drilled holes appeared to stabilize at air temperature. Another method to measure the temperature gradient for the pavement also was employed. As workers lifted the asphalt slabs from the trenches, the infrared thermometer was used to measure the temperature at various depths. Using the later method, the temperature gradient in the asphalt was very similar to the temperature gradients observed by Southgate in 1974 (10) and could be directly related to the surface temperature and air temperature. Using the temperature gradient of the asphaltic concrete and the five-day air temperatures prior to the deflection survey, the surface temperatures measured during the deflection survey were adjusted. The adjusted temperatures were used in calculation of the effective layer moduli for each design section.

Elastic layer theory was used to evaluate measured deflections for the purpose of back calculation of effective pavement conditions. Average estimated elastic moduli at 25 Hz were determined for each design section. The Chevron N-layer computer program was used to compute theoretical deflections for the Road Rater loading (600 pounds force) and configuration of the velocity transducers (11) associated with the estimated elastic modulus for the asphaltic concrete.
Figure 8. Graphical Translation of Moduli of Elasticity across Frequency Range.
(determined by laboratory analyses) and a range of elastic moduli for the subgrade layer. The modulus of the crushed stone layer was varied as a function of the moduli of layers above and below the crushed stone (12). Simulated deflection measurements were used to determine relationships (for each sensor) describing the change in deflection associated with varying the modulus for the subgrade and also incorporating the previously referenced variation in modulus for the crushed stone layer. Measured deflections were applied to the relationships of simulated deflections to estimate the effective subgrade modulus indicated by each sensor. Estimated subgrade modulus corresponding to each sensor were averaged to estimate a mean subgrade modulus for each test site in terms of the estimated elastic modulus at 25 Hz determined from laboratory analysis. These values were compared to measured CBR's determined in place and from samples in the laboratory. The elastic modulus of the crushed stone was estimated on the same basis as previously referenced. Thus, the effective pavement conditions were determined for each of the ten design sections.

The effective elastic modulus at 1/2 Hertz was then used in combination with estimated subgrade modulus determined from deflection tests as input parameters to the Chevron N-layer computer program. The program was used to compute stresses and strains associated with an 18,000-pound axleload for each design section.

Thickness design procedures used in Kentucky for flexible pavements are based on a criterion of limiting strain versus repetitions of an 18,000-pound axle. Critical strains are the tensile strain at the bottom of the asphaltic concrete layer and the vertical compressive strain at the top of the subgrade layers. Critical (design) strains corresponding to the design number of repetitions of an 18,000-pound axle were determined for each design section for both the asphaltic concrete and the subgrade layers.

The Chevron N-layer computer program was used to compute stresses and strains at critical locations (top of subgrade, bottom of asphaltic concrete) for each design section corresponding to the effective pavement condition combined with a range of thicknesses of overlay with asphaltic concrete. The overlay thickness design requirement for each section was determined by matching limiting strain requirements with
computed strains for the effective condition plus overlays. This process involved a dual comparison of limiting strain versus computed strain for each critical location — tensile vertical compressive strain at the top of the subgrade. This procedure is diagrammed in the style of a flow chart in Figure 9.

CONCLUSIONS AND RECOMMENDATIONS

1. Transverse temperature cracks are somewhat benign and innocuous unless they create a bump in the road. Many of the cracks on US 23 have existed a long time — perhaps from the first year or two after construction. Only recently have they become intolerable. Nominal rutting is rather inoffensive, more rutting becomes less tolerable. Neither of these flaws has devastated the pavement with dips and potholes. Considerable life remains. Overlaying is recommended. Overlays proved successful on the Watterson Expressway (6, 7), Purchase Parkway (4), I-64 (eastern end) (9), and in other similar cases (13, 14). Overlay recommendations were submitted in March (5).

2. Temperature (transverse) cracks probably should not be sealed. The overlay will suffice structurally, but the transverse cracks will reflect through and be unnoticed for a time.

3. Wheelpath cracking has been documented for further analysis by theoreticians.

4. Few, if any, asphaltic concrete pavements are free of (or immune to) temperature cracking (4, 14).

5. Rutting will eventually lead to longitudinal cracking at the edges of and in the wheelpaths (1, 4, 14).

REFERENCES

Figure 9. Flow Chart Showing Process of Analyzing Pavement Structures from Road Rater Measurements.
REHABILITATION NEEDS AND STRATEGIES

DETERMINATION OF FAILURE MECHANISM

VISUAL DISTRESS IDENTIFICATION

ENVIRONMENTAL (NON-LOAD RELATED)

UPGRADE FOR FUTURE FATIGUE NEEDS OR PAVEMENT DETERIORATION

MAINTENANCE

SURFACE REHABILITATION

TRAFFIC

FATIGUE

STRUCTURAL (LOAD RELATED)

Figure 9. (Continued)
Figure 9. (Continued)

3. Thomas, R. S., Teng, Paul, and Everett, Tom, Field Trip Report, Pavement Rehabilitation and Design Team, November 18, 1985.

8. Memo report by D. C. Newberry to James H. Havens, Director of Research, Kentucky Department of Transportation; Subject: Rutting Investigations, I 64 and US 60, December 8, 1978. (I 64, Boyd Co., MP 186.227, and US 60, MP 8.139, at Sumit)

13. Memo to W. B. Drake, Assistant State Highway Engineer for Research, from James H. Havens, Director of Research, Kentucky Department of Transportation; Subject: Rutting, Asphaltic Concrete Pavements, September 5, 1978 (Research File P-3-1) (First trenching into full-depth asphaltic concrete, Daniel Boone Parkway, near Thousand Sticks).

Mr. C. S. Layson, P.E.
Assistant State Highway Engineer
Bureau of Highways
Department of Transportation
Frankfort, Kentucky 40622

Subject: Pavement Inspection Team; C. S. Layson,
A. B. Magee, R. B. Drake, J. H. Havens,

Dear Mr. Layson:

Two types of defects were obvious: rutting and transverse cracking.
The rutting was directly and irrefutably caused by extremely heavy
trucks hauling coal to Portsmouth (and beyond). The hauling extends
from Louisa and points in Martin, Johnson, and perhaps Floyd Counties.
Hauling here was interrupted only by closure of the suspension bridge
(for re-cabling, in 1978-1979) at South Shore. The transverse cracking
is not associated with loading. A highway bridge crossing Greenup Dam
will be opening soon, and coal truck traffic may cross the River at that
point rather than at South Shore.

The rutting is systematic and can be modeled by computer programs
presently at hand. The pavement structures were tested last year and
processed through other programs to determine overlay requirements.
Those requirements were in the order of 1.5 inches to extend the service
life another eight years. Milling or leveling and wedging would be
required to correct the rutting.

Rutting varies along the road and is a maximum of about 1.5 inches.
Numerous coal-hauling trucks have plied the road. Each truck makes the
rut a little deeper. The deformation (non-recoverable shear) occurs in
the upper 3 to 5 inches of the asphaltic concrete. This has been
demonstrated by trenching and inspecting exposed cross sections of the
pavements. The most recent case was the Purchase Parkway (Ref. Research
Report UKTRP-84-28). Just previous to that was US23, just north of
Louisa ((Research Report UKTRP-84-1; "Rutting: A Case Study (US23; 1.5
miles north of Louisa)), January 1984. Prior histories are given there
also. Coal trucks now are reportedly hauling 60 to 80 tons (payload)
per trip. Most recently they caused rutting on a new section of US23,
between Lowmansville and Louisa.

Transverse cracking persisted throughout. The frequency ranged between
16 and 57 per mile; thus, the interval ranged between 330 feet and 92.6 feet. It is theorized that the interval is governed by the tensile strength of the pavement at the first onset of critical shrinkage. Shrinkage, here, is due to thermal contraction. Temperature cracking is probably more the rule than the exception in Kentucky. A case in point is the Purchase Parkway (reported in 1984). Of course, the spacing varies from place to place, and the width of the cracks varies.

The horizontal tensile force in a pavement is \(F_t = \sigma A \), where \(\sigma \) = tensile stress, \(A \) = say 1 sq. ft. or 144 sq. ins. The resistance to sliding (that is the force of friction) is given by \(F_s = fWL \), where \(W \) is the weight in pounds of a 1-ft cube of pavement and \(L \) is the length of pavement. Equating forces:

\[
\sigma A = fWL
\]

\(A = 144 \text{ sq. ins.} \)
\(W = 144 \text{ lbs/cu.ft.} \)
\(f = \text{approximately } 1 \)
\(L = \sigma \)

Therefore, the maximum crack spacing is 2L; and L, in feet, is numerically equal to the tensile strength of the pavement in pounds per square inch (psi).

Sixteen cracks per mile gives a spacing of 330 ft.; \(L = 165 \) ft. and \(\sigma \), therefore, would be 165 psi. Sixty cracks per mile gives a spacing of 88 ft.; \(L = 44 \) ft., and \(\sigma = 44 \) psi.

Why is there such a great difference in tensile strength? Shouldn't these pavements have about the same tensile strength? Yes, they have about the same strengths at low temperatures; but that strength (about 400 psi) is greater than these strengths. Consequently these cracks occurred at more moderate temperatures -- perhaps well above moderate temperatures -- perhaps even warmer temperatures.

It is believed that close-spaced cracks occurred during daily cycling of temperatures in the fall season. The longer-spaced cracks occurred during a cooler period. Differences in properties of the pavements surely influenced the patterns.

Some cracks seemed older and wider than others. The pavements are old enough to present mature crack patterns, but the development of them is lost history.

The pavement is not failing at the cracks. This means that the structure has not been greatly weakened by them or that it needs more overlayment over the cracks. The most significant consideration, therefore, seems to be the problem of reflection cracking of any overlayment. It seems unlikely that any way will be found to prevent the cracks from reflecting through. They might be routed and sealed later if they are considered to be offensive and unsightly. It is important to keep in mind that the purposes of overlayment are to correct for rutting and to extend the service life according to projected traffic.

We could have entitled this report "The Reality of Cracks." Temperature cracking is the principal subject. Expounding further: Are cracks predictable? Yes, they occur almost everywhere unless very soft asphalts are used. Is the spacing of the cracks predictable? Yes, if the tensile strength is known, the equation already cited applies very well. A single reference suffices as an independent, state-of-the-art treatise. It is: "Prediction of Temperature Cracking at Low
Temperatures;" by B. E. Ruth, L. A. K. Bloy, and A. A. Avital;
The section from Sta. 440 to 687 + 48.76 (equals 580 + 73.93 ahead) and
to Sta. 851 contains limestone aggregate in the bituminous concretes and
in the DGA bases. This appears to be the area where the crack interval
was 88 ft. All other sections contained slag in the bituminous base and
surface. This is where the close-spacing occurred. Why does slag cause
the difference? It has been known for a long time that slags tending to
be vesicular absorb oils from the asphalt binder, and that causes drying
and hardening of the asphalt. It is not known how much shrinkage
accompanies the process. It is possible that some warm temperature
fracturing ensues and weakens the tensile properties of the pavement.
Otherwise, the crack spacing would or should be about the same as in the
limestone sections.

At some cracks, it appeared that "necking down," a phenomenon
accompanying ductile fracture, had occurred.

Illustrative photographs are attached hereto.

The all-limestone sections run from Ky 827, down river to Sta. 440.
There are two sections downstream (to Sta. 206) which contain limestone
in the DGA. Also, there are two sections upstream which contain
limestone in the DGA. If these sections are found to have crack-spacing
similar to the all-limestone sections, the influence could be attributed
commonly to the DGA bases. On the other hand, if the spacings differ,
the difference could be attributed altogether to the slag aggregate as
described previously.

If the all-slag sections differ from the sections with limestone DGA
bases, those differences would be attributable to the slag DGA. Slag is
known to have some cementitious qualities and could act somewhat like a
weak, cementated aggregate base or "soil-cement" base (tend to crack at
fairly close spacing).

Detailed surveys are needed to resolve the foregoing questions.
Sealcoats and overlays may now obscure the data.

Road Rater deflection tests were made September 26, 1984. Traffic
estimates were made 8 years forward, and overlay requirements were
determined and reported (by Gary Sharpe, Nov. 30, 1984). Copies of
those items are appended and made a part hereof. (Note: EWL's/32Z
EAL's)

Meanwhile, double and perhaps triple chip seals have been applied over
portions of the road, and full-width overlayment (patching) were being
marked for immediate lay-down on other portions farther toward South
Shore. The thicknesses of these overlayments would surely exceed one
inch and probably equal 1.5 inches in the wheel paths. These overlays,
therefore, could approach the thicknesses of overlay required by the
analyses of Road Rater data, as reported by Sharpe.

As present, there seems to be both advantages and disadvantages to
re-doing Road Rater tests (winter approaching). Design has new
estimates of traffic (EWL's) to extend service life 20 years hence.
Although overlay requirements could be read from Sharpe's graphs (attached); Sharpe, at this writing, has been requested to submit a proposal for the additional work. His proposal will precede or accompany this report.

Respectfully submitted,

James H. Havens, P.E.
Associate Director

cc: E. B. Drake
 A. B. Magee

Attachments
Rutting: Section Chip-Sealed Previously; Depth Nominally 1.5 inches; Inner Lane not Rutted; Facing South Shore (10-10-85)

Cracking: Example of Prominent Crack; Section Chip-Sealed; Not Bleeding (10-10-85)
Section toward South Shore; Chip-Sealed Aggregate Loss Seems Extensive (10-10-85)
September 25, 1985

Mr. R. E. Johnson, Division Administrator
Federal Highway Administration
P. O. Box 536
Frankfort, Kentucky 40601

Dear Mr. Johnson:

SUBJECT: Pavement Rehabilitation and Design Team

In May 1984, your office made available assistance of a pavement rehabilitation and design team out of the Washington office, and this team was utilized to a significant advantage on a portion of the Purchase Parkway.

The purpose of this letter is to request assistance from this same team of people on a portion of US 23 in Greenup County between Ashland, Kentucky and Portsmouth, Ohio. This section of road is showing significant distress and various measures have been taken to retard this deterioration. Previous contacts with your office by phone indicate that this team is available and can come to Kentucky on October 21 and 22, 1985. If this is correct, would you please confirm in writing these dates, and we will be gathering preliminary data anticipating this visit.

Thank you for your cooperation in this area in the past. I trust this visit to this project will be fruitful.

Sincerely,

R. K. Capito, P.E.
State Highway Engineer

By: L. S. Blevins, P.E.
Division of Design

cc: C. S. Layson
 J. H. Havens
 J. A. Brown

ERD: cjh
<table>
<thead>
<tr>
<th>ROUTE</th>
<th>DISTRICT</th>
<th>TYPICAL SITE</th>
<th>TRAFFIC</th>
<th>PAYMENT</th>
<th>DATE</th>
<th>ST & ET</th>
<th>ST MILES</th>
<th>ET MILES</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 28</td>
<td>GREENUP</td>
<td>17.54</td>
<td>17.98</td>
<td>SP</td>
<td>FAP</td>
<td>7235</td>
<td>1985</td>
<td>1975</td>
</tr>
<tr>
<td>US 28</td>
<td>GREENUP</td>
<td>16.94</td>
<td>17.08</td>
<td>SP</td>
<td>FAP</td>
<td>7340</td>
<td>1985</td>
<td>1975</td>
</tr>
<tr>
<td>US 28</td>
<td>GREENUP</td>
<td>18.11</td>
<td>18.78</td>
<td>SP</td>
<td>FAP</td>
<td>7400</td>
<td>1985</td>
<td>1975</td>
</tr>
<tr>
<td>US 28</td>
<td>GREENUP</td>
<td>18.75</td>
<td>19.54</td>
<td>SP</td>
<td>FAP</td>
<td>7410</td>
<td>1985</td>
<td>1975</td>
</tr>
<tr>
<td>US 28</td>
<td>GREENUP</td>
<td>19.78</td>
<td>20.01</td>
<td>SP</td>
<td>FAP</td>
<td>7440</td>
<td>1985</td>
<td>1975</td>
</tr>
<tr>
<td>US 28</td>
<td>GREENUP</td>
<td>20.46</td>
<td>23.50</td>
<td>SP</td>
<td>FAP</td>
<td>7490</td>
<td>1985</td>
<td>1975</td>
</tr>
<tr>
<td>US 28</td>
<td>GREENUP</td>
<td>23.60</td>
<td>25.26</td>
<td>SP</td>
<td>FAP</td>
<td>7500</td>
<td>1985</td>
<td>1975</td>
</tr>
<tr>
<td>US 28</td>
<td>GREENUP</td>
<td>27.93</td>
<td>29.11</td>
<td>SP</td>
<td>FAP</td>
<td>7520</td>
<td>1985</td>
<td>1975</td>
</tr>
<tr>
<td>US 28</td>
<td>GREENUP</td>
<td>29.21</td>
<td>29.95</td>
<td>SP</td>
<td>FAP</td>
<td>7570</td>
<td>1985</td>
<td>1975</td>
</tr>
<tr>
<td>US 28</td>
<td>GREENUP</td>
<td>29.53</td>
<td>29.95</td>
<td>SP</td>
<td>FAP</td>
<td>7580</td>
<td>1985</td>
<td>1975</td>
</tr>
<tr>
<td>Route</td>
<td>County</td>
<td>District</td>
<td>Year</td>
<td>Type</td>
<td>Damage</td>
<td>Age</td>
<td>Condition</td>
<td>Final Report</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>-----</td>
<td>-----------</td>
<td>--------------</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Table 10: District B Page 9
<table>
<thead>
<tr>
<th>DATE</th>
<th>AC</th>
<th>DUA</th>
<th>8-YEAR EAL's</th>
<th>RECOMMENDATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-26-84</td>
<td>5.50</td>
<td>8.00</td>
<td>680,000</td>
<td>2.41</td>
</tr>
<tr>
<td>5-3-84</td>
<td>5.50</td>
<td>8.00</td>
<td>548,000</td>
<td>2.25*</td>
</tr>
<tr>
<td>9-26-84</td>
<td>6.50</td>
<td>12.00</td>
<td>2,300,000</td>
<td>2.35</td>
</tr>
<tr>
<td>9-26-84</td>
<td>6.50</td>
<td>12.00</td>
<td>2,300,000</td>
<td>2.68</td>
</tr>
<tr>
<td>9-26-84</td>
<td>6.50</td>
<td>12.00</td>
<td>2,200,000</td>
<td>1.79</td>
</tr>
<tr>
<td>9-26-84</td>
<td>6.50</td>
<td>12.00</td>
<td>2,200,000</td>
<td>2.15</td>
</tr>
<tr>
<td>9-26-84</td>
<td>6.50</td>
<td>12.00</td>
<td>1,400,000</td>
<td>0.39</td>
</tr>
<tr>
<td>9-26-84</td>
<td>6.50</td>
<td>12.00</td>
<td>1,400,000</td>
<td>1.45</td>
</tr>
<tr>
<td>9-26-84</td>
<td>6.50</td>
<td>12.00</td>
<td>1,300,000</td>
<td>1.76</td>
</tr>
<tr>
<td>9-26-84</td>
<td>6.50</td>
<td>12.00</td>
<td>1,300,000</td>
<td>1.84</td>
</tr>
</tbody>
</table>
COUNTY: GREENUP

MILE POINTS
BEGIN: 3.08
END: 3.63

DIRECTION: SOUTH

CRUSHED STONE: 12.00

DATE OF DEFLECTION EVALUATION: 9-26-84

EIGHT YEAR EARLY: 2.3 x 10^6
COUNTY: GREENUP
MILEPOSTS:
BEGIN: 12.61
END: 17.52
DIRECTION: NORTH

ASPHALTIC CONCRETE: 6.50
CRUSHED STONE: 12.00

DATE OF DEFLECTION EVALUATION: 3-26-84
EIGHT YEAR EAR'S: 1.40 X 10^6
October 29, 1984

Dr. Robert C. Deen, Director
Kentucky Transportation Research Program
College of Engineering
University of Kentucky
533 South Limestone Street
Lexington, KY 40506-0043

Subject: Greenup County - US 23
From MP 3.076 to 20.2
Nicholas County - US 68
From MP 10.42 to Robertson Co. Line (MP 12.211)

Dear Bob:

In August 1984, you were requested to perform structural evaluation of the subject AC pavements. The applicable EAL estimates for the 8-year load life are summarized on the attached tabulations. The calculation sheets are also attached.

If you have any questions, please let me know.

Sincerely,

R. L. Rizenbergs, P.E.
Associate Assistant State Highway Engineer for Pavement Management
State Highway Engineer's Office

RLR:JSD:kss

Attachments

c: A. R. Romine
Cy Layson
Bennie Wheat
Traffic Volume Group 3000

Road Name: Ashland-St. Petersburg
Route No.: 1523

<table>
<thead>
<tr>
<th>TRAFFIC LIMITS (281)</th>
<th>900</th>
<th>300</th>
<th>150</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAFFIC VOLUME GROUP</td>
<td>3000</td>
<td>I</td>
<td>M</td>
<td>L</td>
</tr>
<tr>
<td>ROAD NAME</td>
<td>Ashland- St. Petersburg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDU'E NO.</td>
<td>L/S Z3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L/MITS</td>
<td>51'EC1AttUmNr ZJ,.rA-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STATION REFERENCE</td>
<td>Street/ Before Date- Greenup C Sta. 004 (76)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERCENT OF TRUCKS</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVERAGE AXLES PER TRUCK</td>
<td>3.575</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVERAGE 24 HOUR TRAFFIC</td>
<td>13,900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVERAGE 24 HOUR TRUCK TRAFFIC x (1) x (3)</td>
<td>970</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVERAGE AXLES PER TRUCK AT END OF 8 YEAR PERIOD = (2) / 0.08</td>
<td>3.675</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL AXLES IN 8 YEARS = (5) x (6) x 365 x 8</td>
<td>10,469,070</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(B)</th>
<th>(C)</th>
<th>(D)</th>
<th>(E)</th>
<th>(F)</th>
<th>(G)</th>
<th>(H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Axles (77)</td>
<td>15,125</td>
<td>0.04</td>
<td>15,125</td>
<td>1,578,535</td>
<td>2</td>
<td>1,578,535</td>
</tr>
<tr>
<td></td>
<td>7,647</td>
<td>0.05</td>
<td>7,709</td>
<td>302,435</td>
<td>2</td>
<td>1,604,870</td>
</tr>
<tr>
<td></td>
<td>8,333</td>
<td>0.11</td>
<td>8,449</td>
<td>878,338</td>
<td>4</td>
<td>3,515,352</td>
</tr>
<tr>
<td></td>
<td>8,719</td>
<td>0.06</td>
<td>8,779</td>
<td>913,812</td>
<td>8</td>
<td>7,310,496</td>
</tr>
<tr>
<td></td>
<td>4,857</td>
<td>0.04</td>
<td>4,857</td>
<td>595,549</td>
<td>16</td>
<td>8,089,104</td>
</tr>
<tr>
<td></td>
<td>2,262</td>
<td>0.02</td>
<td>2,262</td>
<td>247,298</td>
<td>12</td>
<td>9,533,056</td>
</tr>
<tr>
<td></td>
<td>2,914</td>
<td>0.02</td>
<td>2,914</td>
<td>235,661</td>
<td>64</td>
<td>15,082,904</td>
</tr>
<tr>
<td></td>
<td>1,927</td>
<td>0.01</td>
<td>1,927</td>
<td>200,516</td>
<td>128</td>
<td>25,674,624</td>
</tr>
</tbody>
</table>

TOTAL EWL for 8 year period (two directions): 10,469,070

Notes:
- This estimate does not assume the amount before across the Greenup Dam or the Renonement A.A. Army.
<table>
<thead>
<tr>
<th>(B)</th>
<th>(C)</th>
<th>(D)</th>
<th>(E)</th>
<th>(F)</th>
<th>(G)</th>
<th>(H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Axles (7)</td>
<td>% of Total Axles from Load Sta.</td>
<td>Correction</td>
<td>Corrected % of Total Axles (C)</td>
<td>Total Axles by Weight Class of Total Axles (B) x (E)</td>
<td>EWL Factor</td>
<td>EWL for Two Direction (F) x (G)</td>
</tr>
<tr>
<td>10,087,140</td>
<td>15.185</td>
<td>0.04</td>
<td>15.145</td>
<td>1,529,715</td>
<td>1</td>
<td>1,529,715</td>
</tr>
<tr>
<td>"</td>
<td>7.657</td>
<td>0.05</td>
<td>7.707</td>
<td>777,618</td>
<td>2</td>
<td>1,555,236</td>
</tr>
<tr>
<td>"</td>
<td>3.333</td>
<td>0.11</td>
<td>3.445</td>
<td>851,657</td>
<td>4</td>
<td>3,406,628</td>
</tr>
<tr>
<td>"</td>
<td>8.719</td>
<td>0.06</td>
<td>8.779</td>
<td>885,550</td>
<td>8</td>
<td>7,084,400</td>
</tr>
<tr>
<td>"</td>
<td>4.617</td>
<td>0.04</td>
<td>4.657</td>
<td>489,932</td>
<td>26</td>
<td>7,838,912</td>
</tr>
<tr>
<td>"</td>
<td>2.142</td>
<td>0.02</td>
<td>2.162</td>
<td>233,674</td>
<td>32</td>
<td>7,838,208</td>
</tr>
<tr>
<td>1</td>
<td>2.264</td>
<td>0</td>
<td>2.264</td>
<td>222,373</td>
<td>64</td>
<td>14,635,972</td>
</tr>
<tr>
<td>1</td>
<td>1.927</td>
<td>0</td>
<td>1.927</td>
<td>194,377</td>
<td>128</td>
<td>24,885,572</td>
</tr>
</tbody>
</table>

TOTAL EWL for 8 year period (two directions): 70,149,483

\[
\frac{70,149,483}{20} \times 0.497 - (1.14 + 1.42 x 0.08) \times 10^7 \times 1,529,715
\]

Note: This estimate does not assume the Proposed Bridge across the Greenup Dam or the Proposed AA Hwy.
<table>
<thead>
<tr>
<th>(B) Total Axles (7)</th>
<th>(C) % of Total Axles From Load Sta.</th>
<th>(D) Correction</th>
<th>(E) Corrected % of Total Axles (C)/ (D)</th>
<th>(F) Total Axles by Weight Class (B) x (E)</th>
<th>(G) EWL Factor</th>
<th>(H) EWL for Two Directions: (F) x (G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,545,910</td>
<td>15.18%</td>
<td>0.04</td>
<td>15.16%</td>
<td>992,607</td>
<td>1</td>
<td>992,607</td>
</tr>
<tr>
<td>"</td>
<td>7.66%</td>
<td>0.05</td>
<td>7.71%</td>
<td>504,624</td>
<td>2</td>
<td>1,009,248</td>
</tr>
<tr>
<td>"</td>
<td>8.33%</td>
<td>0.11</td>
<td>8.44%</td>
<td>532,247</td>
<td>2</td>
<td>2,104,864</td>
</tr>
<tr>
<td>"</td>
<td>8.71%</td>
<td>0.06</td>
<td>8.77%</td>
<td>574,665</td>
<td>8</td>
<td>4,597,330</td>
</tr>
<tr>
<td>"</td>
<td>4.87%</td>
<td>0.04</td>
<td>4.87%</td>
<td>317,935</td>
<td>16</td>
<td>5,086,940</td>
</tr>
<tr>
<td>"</td>
<td>2.84%</td>
<td>0.02</td>
<td>2.86%</td>
<td>187,344</td>
<td>32</td>
<td>5,995,008</td>
</tr>
<tr>
<td>2.264</td>
<td>2.264</td>
<td>0</td>
<td>148,199</td>
<td>64</td>
<td>9,489,736</td>
<td></td>
</tr>
<tr>
<td>1.937</td>
<td>0</td>
<td>0</td>
<td>1.937</td>
<td>128</td>
<td>16,145,920</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL EWL for 8 year period (two directions): 45,522,563

45,522,563 x 0.497 = (18.4 x 142 x 0.10) x 10^6
14 x 10^6 EAL's

2,274 x 128 x 0.497 = (1,922 x 0.00000) x 6100
1,003,922 EALs/lane (HLHS-RVWY)

10-24-84

Note: This estimate does not assume the Palmer Bridge across the Greenup Dam or the proposed AA Hwy.
Traffic Volume Group 3000

Greensp

Road Name Ashano- So-Falmouth

Route No. US 23

CT Limits End K'931 1/4 mile, MP 17.50, to 1/4 mile N of K'930

PROJECT NO.

METEOR STATION REFERENCE Special Weight Data- Greensp Co. Sta 0 and (76)

<table>
<thead>
<tr>
<th>Per Cent of Trucks</th>
<th>Average Axles per Truck</th>
<th>Average 24 Hour Traffic</th>
<th>Average 24 Hour Truck Traffic (1 \times 3)</th>
<th>Average 24 Hour Truck Traffic at End of 8 Year Period (1 \times (3))</th>
<th>Average Axles per Truck at End of 8 Year Period (2 \times 0.08)</th>
<th>Total Axles in 8 Years ((5) \times (6) \times 365 \times 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>()</td>
<td>()</td>
<td>()</td>
<td>()</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>3.545</td>
<td>5100</td>
<td>3.675</td>
<td>6.009,360</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(B) Total Axles (7)</th>
<th>(C) % of Total Axles From Load Sta.</th>
<th>(D) Correction</th>
<th>(E) Corrected % of Total Axles (C) (\times) (D)</th>
<th>(F) Total Axles by Weight Class (B) (\times) (E)</th>
<th>(G) EEL Factor</th>
<th>(H) EEL for Two Directions ((F) \times (G))</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,009,360</td>
<td>15.125</td>
<td>0.04</td>
<td>15.165</td>
<td>911,319</td>
<td>1</td>
<td>911,319</td>
</tr>
<tr>
<td>7,657</td>
<td>0.05</td>
<td>7.707</td>
<td>443,262</td>
<td>2</td>
<td>2,029,480</td>
<td></td>
</tr>
<tr>
<td>8,333</td>
<td>0.41</td>
<td>8.443</td>
<td>597,370</td>
<td>1</td>
<td>2,029,480</td>
<td></td>
</tr>
<tr>
<td>8,799</td>
<td>0.06</td>
<td>8.779</td>
<td>527,522</td>
<td>2</td>
<td>4,420,494</td>
<td></td>
</tr>
<tr>
<td>4,817</td>
<td>0.04</td>
<td>4.857</td>
<td>291,875</td>
<td>16</td>
<td>4,420,000</td>
<td></td>
</tr>
<tr>
<td>2,842</td>
<td>0.02</td>
<td>2.862</td>
<td>171,488</td>
<td>32</td>
<td>5,503,116</td>
<td></td>
</tr>
<tr>
<td>2,244</td>
<td>0</td>
<td>2.244</td>
<td>134,052</td>
<td>64</td>
<td>8,707,328</td>
<td></td>
</tr>
<tr>
<td>1,927</td>
<td>0</td>
<td>1.927</td>
<td>115,800</td>
<td>128</td>
<td>14,322,400</td>
<td></td>
</tr>
</tbody>
</table>

Total EEL for 8 year period (two directions)

\[
\text{Total EEL} = \frac{41,791,163}{20} \times 0.497 - (1.64 + 1.92 \times 0.11) \times 10 \times 5700
\]

\[
= \frac{41,791,163}{20} \times 0.497 - (1.64 \times 0.000001 \times 5700)
\]

\[
= \frac{41,791,163}{20} \times 0.497 - 1,017,615 \text{ EEL/LANE (4 Lane-2 Way)}
\]

\[
= 18,154.24
\]

Note: This estimate does not assume the proposed grade crossing the Greensp Dam or the proposed HA Way.
Traffic Volume Group 3000

Road Name: Park Mansville

Route No.: US 66

Section Limits: From MPH 4.20 to Robertsville (MP 12.211)

Station Reference: 197.32-21.64; Road Data: Reserve Co. Sta 257(W)

Per Cent of Trucks

<table>
<thead>
<tr>
<th>% Per Cent of Trucks</th>
<th>Total Axles</th>
<th>Average Axles per Truck</th>
<th>24 Hour Traffic</th>
<th>Average 24 Hour Truck Traffic at End of 8 Year Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>5,218,858</td>
<td>8.982</td>
<td>26.00</td>
<td>440</td>
</tr>
</tbody>
</table>

Total Axles in 8 Years

<table>
<thead>
<tr>
<th>(B) Total Axles (1)</th>
<th>(C) % of Total Axles From Load Sta.</th>
<th>(D) Correction</th>
<th>(E) Corrected % of Total Axles (C) x (D)</th>
<th>(F) Total Axles by Weight Class (2) x (E)</th>
<th>(G) EWL Factor</th>
<th>(H) EWL for Two Directions (F) x (G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,218,858</td>
<td>17.575</td>
<td>0.04</td>
<td>17.615</td>
<td>919,302</td>
<td>2</td>
<td>919,302</td>
</tr>
<tr>
<td></td>
<td>9.661</td>
<td>0.05</td>
<td>9.711</td>
<td>506,803</td>
<td>2</td>
<td>1,013,606</td>
</tr>
<tr>
<td></td>
<td>10.516</td>
<td>0.11</td>
<td>10.626</td>
<td>554,564</td>
<td>4</td>
<td>2,218,224</td>
</tr>
<tr>
<td></td>
<td>10.754</td>
<td>0.06</td>
<td>10.814</td>
<td>564,367</td>
<td>8</td>
<td>4,576,928</td>
</tr>
<tr>
<td></td>
<td>502.3</td>
<td>0.04</td>
<td>502.3</td>
<td>264,231</td>
<td>16</td>
<td>4,222,876</td>
</tr>
<tr>
<td></td>
<td>2.360</td>
<td>0.02</td>
<td>2.380</td>
<td>124,209</td>
<td>32</td>
<td>3,974,688</td>
</tr>
<tr>
<td></td>
<td>1.051</td>
<td>0</td>
<td>1.051</td>
<td>54,950</td>
<td>64</td>
<td>3,570,900</td>
</tr>
<tr>
<td></td>
<td>0.228</td>
<td>0</td>
<td>0.228</td>
<td>11,899</td>
<td>128</td>
<td>1,523,072</td>
</tr>
</tbody>
</table>

TOTAL EWL for 8 Year period (two directions): 21,901,924

\[
\frac{21,901,924 \times 0.5}{20} = 547,548 \text{ EWL/Lane (2 Lane-2 Way)}
\]

APPENDIX 2
Field Trip Report
Pavement Rehabilitation and Design Team
Kentucky Review
by
Reuben S. Thomas
Paul Teng
Tom Everett
November 18, 1985
Purpose of Trip

To meet with Region 4, Kentucky Division, and Kentucky Department of Transportation for a review of I-64 and U.S. Route 23 in Kentucky on November 13-14, 1985.

Contacts

Kentucky Department of Transportation:

Gene B. Drake Design
Harrison Evans Maintenance
A. B. Magee Design, Special Projects
Edward L. Minter Materials
David Hughes Construction
Cyrus S. Layson Assistant State Highway Engineer
Larry Epley Materials
Duane Evans Specifications

Kentucky Division: Paul Doss District Engineer
Paul Doss Design
Johnny L. Morris Regional Pavement Specialist
Reuben Thomas Pavement Branch, Engineering
Paul Teng Management and Contract
Tom Everett Highway Engineer Trainee
Region 4: Pavement Branch, Engineering
Washington Headquarters: Administration Branch, Highway Operations

Review Contents

This field review consisted of a review of a recent concrete pavement restoration (CPR) project and a potential concrete pavement rehabilitation project on I-64 and a 25 mile potential rehabilitation project on a 4-lane divided flexible pavement on U.S. Route 23 from Ashland to South Portsmouth. In the following sections, the pavement projects will be discussed along with recommendations. It should be noted that these observations are based upon a limited review. We do not feel that we can briefly examine a pavement in a short time and give the State the ultimate solution for a problem its engineers have been investigating for many months. We would like to provide an outside opinion and items for consideration that may be beneficial to the State in determining its final rehabilitation strategy.

For any pavement rehabilitation project, the States are encouraged to follow the approach for an engineering and economic analysis as outlined in Mr. Barnhart's November 15, 1983, memorandum. Briefly, this includes the following steps:

a) Establish existing condition of pavement.
b) Identify distress.
c) Determine causes of distress.
d) Develop feasible alternatives.
e) Conduct economic (life cycle cost) and engineering analysis of each alternative.
f) Select most appropriate alternative.
g) Design rehabilitation alternative.
h) Follow-up evaluation.
IV. Project Review

A. I-64 from U.S. Route 60 to I-75

This is a 10-inch meshed reinforced portland cement concrete pavement with a 50-foot joint spacing and dowels on a 6-inch dense graded limestone aggregate subbase over a 2-foot limestone rock subgrade. The shoulder is 2 inches of asphaltic concrete over dense grade aggregate. The project was opened to traffic in 1973.

There is transverse mid-slab cracks throughout the project. Approximately 40 percent of the panels have one or more cracks. The cracks are spalled and several of the observed cracks were faulted in the range of 1/4 to 3/16 inches.

The transverse joints are in good condition. The joint sealant is deteriorating. There was some indication from the State representatives that the joints are not working. Our observations confirmed that the width of joint was consistent throughout and there has not been much movement. The longitudinal joint was not sealed and there was a drop-off at the edge of the shoulder. The ride is satisfactory and outside of the transverse mid-slab cracks, the concrete is sound.

The State is faced with the problem of whether to rehabilitate this project now or let it go for a few more years. As a rule of thumb, the State does CPR on projects when the cost is less than $300,000 per mile.

It is our belief that it is not feasible to repair all of the mid-slab cracks. It is recommended that the State closely monitor the cracks throughout this section over the next year. If the majority of cracks stay tightly closed as now exists, then the State may want to consider repairing only the faulted cracks. However, if more cracks open up and fault, then it would be feasible to let the pavement deteriorate further over the next few years before initiating a major reconstruction project such as recycling, structural overlay, or crack and seat.

Since the transverse joints looked like they have not worked since the original construction, any repair work on the 50-foot long slab should carefully consider the consequences of re-establishing slab continuity. If the joints are not functional, crack repair of full depth patching without allowing movement could turn the pavement into a CRCP. However, the steel percentage in the existing pavement is not adequate for a CRCP to function. Therefore, the repaired slab could create further new transverse cracks.

There was a comment made during our review that the installation of underdrains might be feasible. The Team did not observe any pumping and believes that underdrains are not warranted at this time. The team was advised by the State engineers that Monsanto type of edge drain was installed in an adjacent CPR Section (Item B below). Thus far the drainage system is working. The State may wish to seal the longitudinal shoulder joint for this section and study the moisture related distress indicators (such as pumping, faulting, etc.) of the two pavement sections.

B. I-64 from U.S. Route 60 at Mt. Sterling to Route 799

This is a 32-mile concrete pavement rehabilitation. The original pavement was a 10-inch meshed reinforced jointed concrete pavement on a 6-inch dense graded limestone base on earth subgrade. The joint spacing was 50-feet and has dowels. The asphalt concrete shoulders are in good condition.
This CPR project included sealing the joints, installing underdrains (HazenTYPE), full depth PCC patching, and spill repair. The project was just completed this year.

The pavement ride was satisfactory; however, some patches were rough. There were a few places where the pavement had broken up in swelling clay areas and asphalt concrete patches have been installed.

C. U.S. Route 23 from Milepost 3.1 just north of Astoria and north to Milepost 28.8 at South Portsmouth.

The attached map shows the route location and provides data on Federal-Aid project number, contractor, award date, and typical section. The projects along this route were constructed between 1972 and 1976. The typical section for this 4-lane divided flexible highway averages 1-inch bituminous surface, 5 1/2-inches bituminous base, and 10-inches dense graded aggregate. Slag and limestone aggregate were used throughout the length of these projects. Sections of the route have been covered with between 1 and 3 applications of chip seal over the past few months. There are also several bituminous maintenance patches. The shoulders consist of untreated aggregate.

Prior to the chip seal, there were transverse cracks throughout the project on a regular pattern of 30-50 feet. In areas not covered by chip seal, these cracks were still visible and in many cases have deteriorated under loading to form block-like crack patterns. These cracks are frequent and severe.

There also exists longitudinal cracks and block cracks in the wheelpaths. The right lane is also rutted severely in several locations.

The chip seal has worn off in many places, creating slick places in the wheelpath. The crack seal over the sections of open graded friction course between mileposts 17.7 and 20.3 looks good. However, in most cases the cracks are reflecting through the chip seal.

Between mileposts 20.3 and 22.4, there are no transverse cracks visible in either the northbound or southbound roadways. There are longitudinal cracks due to loading in the southbound lanes. It should be noted that this section has limestone in dense graded aggregate base, bituminous base and surface courses.

A meeting was held on the night of November 13 to present the viewpoints of the different offices of the State as to the reasons behind the deterioration of this pavement. It was generally agreed that the longitudinal block cracking and rutting was due to loading. This route, especially the northbound lanes, have been subjected to extreme truck loadings from coal trucks. Overloaded trucks are not uncommon on this route.
One individual noted that during construction in sections where the limestone dense graded subbase sections, the limestone was deficient in the minus 200 sieve. This difference was made up by the addition of flyash. He noted that the flyash may have set up with the limestone creating a semi-rigid base which had a crack pattern similar to rigid pavements and which reflected through the flexible surface. Flyash was also added to the slag dense graded aggregate base.

It was indicated that since the freeze in 1977, they have been seeing more transverse cracking. One individual stated that the transverse cracking is due to temperature cracking and that this is not restricted to this project, but is common throughout the State.

A detailed analysis by Mr. James Havens is attached.

The Team noted a distinct difference between the sections with limestone aggregate and slag aggregate. It is possible that this factor in combination with temperature cracking can explain the severe transverse cracking that exists along this route. It is recommended that investigation trenches be cut at several locations for two reasons: First, to determine if rutting is limited to the surface layer and is not associated with deformation of the dense graded aggregate base; secondly, to determine if the transverse cracks are reflecting up from the dense graded aggregate base. Trenches should be cut both in the slag aggregate and limestone aggregate sections.

In addition, it was suggested that a detailed crack survey be conducted to determine which material has the worst condition. The Team concurs in this suggestion.

Roadrater readings have been taken on this route from milepost 3.1 to milepost 20.24. Using Kentucky's design procedure, overlay thicknesses between 2.7 and 0.4 inches have been determined. It is recommended that roadrater readings be taken for the remaining portion of the project.

From the Team's observation, it is felt that any overlay of less than 3 inches on the severely cracked section is not feasible. There are sections that are not cracked badly where a thinner overlay may be satisfactory, but for the majority of the route, a thicker overlay seems justified.

It was discussed if additional chip seals should be applied to untreated sections to seal cracks. It was indicated that 1-inch of bituminous overlay could be placed for the price of a chip seal.

A typical practice in adjacent States like North Carolina that have experienced similar rutting and cracking problems is to mill off a layer of the distressed old pavement and replace it with a thicker structural overlay. Using the Falling Weight Deflectometer, North Carolina was able to determine that the milled off 2.5 inch old pavement was structurally equivalent to approximately 1 inch of new pavement.
There was some indication that the State did not want to mill off the recently placed chip seal. However, this is a feasible alternative, especially for sections where chip seals has not been placed.

The following are possible rehabilitation alternatives to consider:

1. Asphalt concrete overlay.
2. Mill off 1-2 inches and place asphalt concrete overlay.
3. Recycle.
4. Unbonded PCC overlay.

In addition, it was noted that the shoulders along this project are not surfaced. For a route with this traffic, the Team recommends a higher type shoulder of acceptable geometric standards, i.e. 10-foot asphalt concrete shoulders.

The project along this 25-mile section are in different stages of deterioration. Several different alternatives may be feasible. It is known that as a pavement deteriorates, it costs more to repair. Some of these projects need corrective work to prevent further deterioration. It is recommended that corrective action be taken on the worst section as soon as possible.

V. Closing Remarks

During the field trip, we observed a close working relationship between our Division Office and the State, and also among all the various offices in the State transportation department. Everybody is interested in how to improve the performance of the pavements and what has caused the distress thus far. We think this spirit of cooperation is excellent and we look forward to continuing to work with the State and our field offices whenever we can provide assistance.
Mr. C. S. Layson, P.E.
Assistant State Highway Engineer
Bureau of Highways
Department of Transportation
Frankfort, Kentucky 40622

Subject: Pavement Inspection Team; C. S. Layson, A. B. Magee, E. B. Drake, J. H. Havens,

Dear Mr. Layson:

Two types of defects were obvious: rutting and transverse cracking. The rutting was directly and irrefutably caused by extremely heavy trucks hauling coal to Portsmouth (and beyond). The hauling extends from Louisa and points in Martin, Johnson, and perhaps Floyd Counties. Hauling here was interrupted only by closure of the suspension bridge (for re-cabling, in 1978-1979) at South Shore. The transverse cracking is not associated with loading. A highway bridge crossing Greenup Dam will be opening soon, and coal truck traffic may cross the River at that point rather than at South Shore.

The rutting is systematic and can be modeled by computer programs presently at hand. The pavement structures were tested last year and processed through other programs to determine overlay requirements. Those requirements were in the order of 1.5 inches to extend the service life another eight years. Milling or leveling and wedging would be required to correct the rutting.

Rutting varies along the road and is a maximum of about 1.5 inches. Numerous coal-hauling trucks have pldied the road. Each truck makes the rut a little deeper. The deformation (non-recoverable shear) occurs in the upper 3 to 5 inches of the asphaltic concrete. This has been demonstrated by trenching and inspecting exposed cross sections of the pavements. The most recent case was the Purchase Parkway (Ref. Research Report UKTRP-84-28). Just previous to that was US23, just north of Louisa (Research Report UKTRP-84-1; “Rutting: A Case Study (US23; 1.5 miles north of Louisa),” January 1984). Prior histories are given there also. Coal trucks now are reportedly hauling 60 to 80 tons (payload) per trip. Most recently they caused rutting on a new section of US23, between Lowmanseville and Louisa.

Transverse cracking persisted throughout. The frequency ranged between...
16 and 57 per mile; thus, the interval ranged between 330 feet and 92.6 feet. It is theorized that the interval is governed by the tensile strength of the pavement at the first onset of critical shrinkage. Shrinkage, here, is due to thermal contraction. Temperature cracking is probably more the rule than the exception in Kentucky. A case in point is the Purchase Parkway (reported in 1984). Of course, the spacing varies from place to place, and the width of the cracks varies.

The horizontal tensile force in a pavement is \(F = \sigma A \), where \(\sigma \) = tensile stress, \(A \) = say 1 sq. ft. or 144 sq. ins. The resistance to sliding (that is the force of friction) is given by \(F = fWL \), where \(W \) is the weight in pounds of a 1-ft cube of pavement and \(L \) is the length of pavement. Equating forces:

\[
\sigma A = fWL
\]

Therefore, the maximum crack spacing is \(2L \); and \(L \), in feet, is numerically equal to the tensile strength of the pavement in pounds per square inch (psi).

Sixteen cracks per mile gives a spacing of 330 ft.; \(L = 165 \) ft. and \(\sigma \), therefore, would be 165 psi. Sixty cracks per mile gives a spacing of 88 ft.; \(L = 44 \) ft., and \(\sigma = 44 \) psi.

Why is there such a great difference in tensile strength? Shouldn't these pavements have about the same tensile strengths? Yes, they have about the same strengths at low temperatures; but that strength (about 400 psi) is greater than these strengths. Consequently these cracks occurred at more moderate temperatures — perhaps well above moderate temperatures — perhaps even warmer temperatures.

It is believed that close-spaced cracks occurred during daily cycling of temperatures in the fall season. The longer-spaced cracks occurred during a cooler period. Differences in properties of the pavements surely influenced the patterns.

Some cracks seemed older and wider than others. The pavements are old enough to present mature crack patterns, but the development of them is lost history.

The pavement is not failing at the cracks. This means that the structure has not been greatly weakened by them or that it needs more overlamenent over the cracks. The most significant consideration, therefore, seems to be the problem of reflection cracking of any overlamenent. It seems unlikely that any way will be found to prevent the cracks from reflecting through. They might be routed and sealed later if they are considered to be offensive and unsightly. It is important to keep in mind that the purposes of overlamenent are to correct for rutting and to extend the service life according to projected traffic.

We could have entitled this report "The Reality of Cracks." Temperature cracking is the principal subject. Expounding further: Are cracks predictable? Yes, they occur almost everywhere unless very soft asphalts are used. Is the spacing of the cracks predictable? Yes, if the tensile strength is known, the equation already cited applies very well. A single reference suffices as an independent, state-of-the-art treatise. It is: "Prediction of Temperature Cracking at Low
Temperatures;" by B. E. Ruth, L. A. K. Bloy, and A. A. Avital;

The section from Sta. 440 to 687 + 48.76 (equals 580 + 73.93 ahead) and
to Sta. 851 contains limestone aggregate in the bituminous concretes and
in the DGA bases. This appears to be the area where the crack interval
as was 88 ft. All other sections contained slag in the bituminous base and
surface. This is where the close-spacing occurred. Why does slag cause
the difference? It has been known for a long time that slags tending to
be vesicular absorb oils from the asphalt binder, and that causes drying
and hardening of the asphalt. It is not known how much shrinkage
accompanies the process. It is possible that some warm temperature
fracturing ensues and weakens the tensile properties of the pavement.
Otherwise, the crack spacing would or should be about the same as in the
limestone sections.

At some cracks, it appeared that "necking down," a phenomenon
accompanying ductile fracture, had occurred.

Illustrative photographs are attached hereto.

The all-limestone sections run from Ky 827, down river to Sta. 440.
There are two sections downstream (to Sta. 206) which contain limestone
in the DGA. Also, there are two sections upstream which contain
limestone in the DGA. If these sections are found to have crack-spacing
similar to the all-limestone sections, the influence could be attributed
commonly to the DGA bases. On the other hand, if the spacings differ,
the difference could be attributed altogether to the slag aggregate as
described previously.

If the all-slag sections differ from the sections with limestone DGA
bases, those differences would be attributable to the slag DGA. Slag is
known to have some cementitious qualities and could act somewhat like a
weak, cementated aggregate base or "soil-cement" base (tend to crack at
fairly close spacing).

Detailed surveys are needed to resolve the foregoing questions.
Sealcoats and overlays may now obscure the data.

Road Rater deflection tests were made September 26, 1984. Traffic
estimates were made 8 years forward, and overlay requirements were
determined and reported (by Gary Sharpe, Nov. 30, 1984). Copies of
those items are appended and made a part hereof. (Note: EWL's/32=
EAL's)

Meanwhile, double and perhaps triple chip seals have been applied over
portions of the road, and full-width overlayment (patching) were being
marked for immediate lay-down on other portions farther toward South
Shore. The thicknesses of these overlays would surely exceed one
inch and probably equal 1.5 inches in the wheel paths. These overlays,
therefore, could approach the thicknesses of overlay required by the
analyses of Road Rater data, as reported by Sharpe.

At present, there seems to be both advantages and disadvantages to
re-doing Road Rater tests (winter approaching). Design has new
estimates of traffic (EUL's) to extend service life 20 years hence.
Although overlay requirements could be read from Sharpe’s graphs (attached); Sharpe, at this writing, has been requested to submit a proposal for the additional work. His proposal will precede or accompany this report.

Respectfully submitted,

[Signature]

James H. Havens, P.E.
Associate Director

cc: E. B. Drake
A. B. Magee

Attachments
Rutting: Section Chip-Sealed Previously; Depth Nominally 1.5 inches; Inner Lane not Rutted; Facing South Shore (10-10-85)

Cracking: Example of Prominent Crack; Section Chip-Sealed; Not Bleeding (10-10-85)
Section toward South Shore; Chip-Sealed Aggregate Loss Seems Extensive (10-10-85)
March 31, 1986

Mr. E. B. Drake, P.E.
Transportation Engineering Branch Manager
Division of Design
Department of Highways
Kentucky Transportation Cabinet
Frankfort, Kentucky 40622

Dear Mr. Drake:

Subject: Transmittal of Overlay Thickness Recommendations
US 23, Greenup County: MP 6.0 to MP 28.8

Enclosed are two tables summarizing the findings of overlay thickness design recommendations for the subject sections of US 23 in Greenup County. Thickness design recommendations were determined for each of ten sections for each of the northbound and southbound directions.

Overlay thickness calculations were determined on the basis of resilient modulus testing of asphaltic concrete cores obtained in the field, deflection testing using the KTRP Model 400 Road Rater, and in-place and laboratory California Bearing Ratio (CBR) test conducted on in-situ materials in the field and "bag samples" of subgrade and dense graded aggregate (DGA) samples obtained from the two "trenches" cut in the field.

The findings and analysis procedures for the above tests will be summarized in a report currently being prepared. Completion is expected within the next four to five weeks. Following are some general conclusions and recommendations which will be presented and supported in the aforementioned report:

1. Thickness design recommendations are presented in the attached tables.

2. A minimum thickness of asphaltic concrete surfacing is recommended for all sections even though structural evaluations indicate no need for overlay from a structural perspective. Resurfacing is recommended because of the
observed cracking throughout the entire area. Much of the observed cracking is thought to be temperature-related and not structurally related. Deflection testing apparently support this conclusion. Resilient moduli testing indicate relatively stiff and brittle asphaltic concrete material which may also contribute to the observed cracking. The relatively high resilient moduli (400 ksi to 1000 ksi) also apparently contributes to the low deflections and apparent stiff structural conditions. An 80th percentile resilient modulus of 490 ksi was determined for resilient modulus tests. A design resilient modulus of 480 ksi was selected. Deflection measurements were used in combination with resilient moduli for each design section to determine the design subgrade modulus for each section. Design moduli were verified by findings from destructive evaluations of materials and inplace CBR tests.

3. A crack-relief layer of some type is recommended for placement between the existing surface and the overlay thickness. The crack relief layer is recommended because of the observed cracking in the existing pavement surface and the potential for reflective cracking in the asphaltic concrete overlay. This may present a good opportunity for experimentation with the use of the polymer asphalt and aggregate layer which has been used with some apparent success on the pozzolanic base sections of the Man-O-War Boulevard in Lexington.

Please contact this office if additional information is required or if additional evaluations are required.

Sincerely,

Gary W. Sharpe, P.E.
Chief Research Engineer

GWSigns
Enclosures
cc: C. S. Layson
 E. L. Wheat
 H. Evans
 E. L. Eizenbergs
 J. H. Havens
 E. C. Deen
TABLE 1: OVERLAY THICKNESS DESIGN RECOMMENDATIONS
NORTH US 23, GREENVILLE COUNTY

<table>
<thead>
<tr>
<th>Design Parameters</th>
<th>Design Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section</td>
<td>Beginning Milepoint</td>
</tr>
<tr>
<td>A</td>
<td>3.1</td>
</tr>
<tr>
<td>B</td>
<td>7.7</td>
</tr>
<tr>
<td>C</td>
<td>11.2</td>
</tr>
<tr>
<td>D</td>
<td>12.6</td>
</tr>
<tr>
<td>E</td>
<td>14.7</td>
</tr>
<tr>
<td>F</td>
<td>17.7</td>
</tr>
<tr>
<td>G</td>
<td>20.3</td>
</tr>
<tr>
<td>H1</td>
<td>22.4</td>
</tr>
<tr>
<td>H2</td>
<td>23.0</td>
</tr>
<tr>
<td>I</td>
<td>25.1</td>
</tr>
<tr>
<td>J</td>
<td>26.8</td>
</tr>
</tbody>
</table>

E_{AC} = Modulus of Elasticity For Asphaltic Concrete
E_{DGA} = Modulus of Elasticity For Dense Graded Aggregate
E_{SUB} = Modulus of Elasticity For Subgrade
T_{AC} = Thickness of Existing Asphaltic Concrete
T_{DGA} = Thickness of Existing Dense Graded Aggregate
<table>
<thead>
<tr>
<th>Section</th>
<th>Beginning Milepoint</th>
<th>Ending Milepoint</th>
<th>Design EAL x 10^6 (ksi)</th>
<th>E_{ac} (kpsi)</th>
<th>E_{dga} (kpsi)</th>
<th>E_{sub} (kpsi)</th>
<th>T_{ac} (in)</th>
<th>T_{dga} (in)</th>
<th>Overlay (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>3.1</td>
<td>6.0</td>
<td>8.9</td>
<td>480</td>
<td>24.4</td>
<td>8.4</td>
<td>6.5</td>
<td>9.0</td>
<td>3.5</td>
</tr>
<tr>
<td>A2</td>
<td>6.0</td>
<td>7.7</td>
<td>8.9</td>
<td>480</td>
<td>19.4</td>
<td>6.4</td>
<td>6.5</td>
<td>9.0</td>
<td>4.5</td>
</tr>
<tr>
<td>B</td>
<td>7.7</td>
<td>11.2</td>
<td>8.9</td>
<td>480</td>
<td>25.3</td>
<td>8.8</td>
<td>6.5</td>
<td>11.0</td>
<td>2.6</td>
</tr>
<tr>
<td>C</td>
<td>11.2</td>
<td>12.6</td>
<td>7.2</td>
<td>480</td>
<td>33.1</td>
<td>12.1</td>
<td>6.5</td>
<td>11.0</td>
<td>1.0</td>
</tr>
<tr>
<td>D</td>
<td>12.6</td>
<td>14.7</td>
<td>7.2</td>
<td>480</td>
<td>35.4</td>
<td>13.2</td>
<td>6.5</td>
<td>9.0</td>
<td>1.5</td>
</tr>
<tr>
<td>E1</td>
<td>14.7</td>
<td>16.0</td>
<td>5.3</td>
<td>480</td>
<td>39.7</td>
<td>15.1</td>
<td>6.5</td>
<td>12.0</td>
<td>0.0</td>
</tr>
<tr>
<td>E2</td>
<td>15.0</td>
<td>17.7</td>
<td>5.3</td>
<td>480</td>
<td>38.5</td>
<td>14.6</td>
<td>6.5</td>
<td>12.0</td>
<td>0.0</td>
</tr>
<tr>
<td>F</td>
<td>17.7</td>
<td>20.3</td>
<td>5.3</td>
<td>480</td>
<td>39.9</td>
<td>15.2</td>
<td>6.5</td>
<td>9.5</td>
<td>0.5</td>
</tr>
<tr>
<td>G1</td>
<td>20.3</td>
<td>21.1</td>
<td>5.3</td>
<td>480</td>
<td>40.3</td>
<td>15.2</td>
<td>6.5</td>
<td>9.5</td>
<td>0.5</td>
</tr>
<tr>
<td>G2</td>
<td>21.1</td>
<td>22.4</td>
<td>5.3</td>
<td>480</td>
<td>37.2</td>
<td>14.0</td>
<td>6.5</td>
<td>9.5</td>
<td>0.5</td>
</tr>
<tr>
<td>H1</td>
<td>22.4</td>
<td>23.0</td>
<td>5.3</td>
<td>480</td>
<td>32.7</td>
<td>13.4</td>
<td>6.5</td>
<td>9.5</td>
<td>1.0</td>
</tr>
<tr>
<td>H2</td>
<td>23.0</td>
<td>25.1</td>
<td>7.6</td>
<td>480</td>
<td>32.7</td>
<td>13.4</td>
<td>6.5</td>
<td>9.5</td>
<td>1.5</td>
</tr>
<tr>
<td>I</td>
<td>25.1</td>
<td>26.8</td>
<td>7.6</td>
<td>480</td>
<td>40.2</td>
<td>15.3</td>
<td>6.5</td>
<td>9.5</td>
<td>0.0</td>
</tr>
<tr>
<td>J</td>
<td>26.8</td>
<td>28.8</td>
<td>8.5</td>
<td>480</td>
<td>50.8</td>
<td>20.5</td>
<td>6.5</td>
<td>13.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

\[E_{ac} = \text{Modulus of Elasticity For Asphaltic Concrete} \]
\[E_{dga} = \text{Modulus of Elasticity For Dense Graded Aggregate} \]
\[E_{sub} = \text{Modulus of Elasticity For Subgrade} \]
\[T_{ac} = \text{Thickness of Existing Asphaltic Concrete} \]
\[T_{dga} = \text{Thickness of Existing Dense Graded Aggregate} \]
MEMO TO: George Asbury, Director
Division of Maintenance

ATTENTION: Harrison Evans, Assistant Director
Division of Maintenance

FROM: Ed Minter

DATE: February 7, 1986

SUBJECT: Recommendation for U.S.-23 Segment between M.P. 3.1 and M.P. 28.8

Exclude from the section referenced above the areas that were paved last year. The section of open-graded pavement that was chip-sealed last year could be delayed for a year or two. A second chip-seal course could extend its service life for several years.

I recommend that as a first action all pot-holes that have formed be repaired. As the second effort I recommend that all cracks that are larger than 1/8 inch be filled with polymerized emulsion (CRS-2S) and blotted with No. 8 or 9 M slag aggregate. After the emulsion has cured the excess aggregate should be swept or vacuumed off the pavement. Traffic could then be allowed to use the lane. Obviously only one lane could be sealed at a time in order not to disrupt the flow of traffic.

After all cracks larger than 1/8 inch are filled I recommend that a chip-seal application be applied. This would provide a filler, sealer, and some stress relief to future bituminous overlays. The polymerized emulsion (CRS-2S) should be applied at .45 gallons per square yard followed by sufficient No. 8 or 9 M stone to cover the emulsion one (1) stone thick. Rolling of the aggregate chip should be accomplished by pneumatic tired rollers at a maximum speed of 5 miles per hour for a minimum of three passes. The first pass must be made immediately behind the aggregate spreader. No more than 5-8% excess aggregate should be applied. All excess stone should be swept off after the emulsion has cured. This is important as a safety precaution and to keep the unbonded aggregate from dislodging the bonded aggregate.
After all loose aggregate has been removed I recommend placement of enough bituminous hot mix to fulfill the recommendation made by Gary Sharp.

The sand asphalt section at Southshore does not show as much distress as other sections. To simply seal the existing cracks would suffice. The cracks could be sealed as described earlier except that a smaller slag aggregate than an 8 or 9 M could be used to reduce the bump height over cracks.

I am attaching a summary of our study of U.S. 23 M.P. 3.1 to M.P. 28.8.

Attachment

cc: J. McChord
 L. Epley
 J. Hinton
 G. Sharp
In early 1985 an effort was begun to save portions of U.S. 23 from further severe damage caused by many factors but mostly by water and heavy loads. It was important to keep the expense of those maintenance activities as low as possible. The monetary figures that I remember was about $400,000 maximum available funds.

It was decided that a polymerized emulsion chip-seal would be employed to try to fill as many cracks as possible. As many as three chip-seal applications were required to fill some cracked areas. After the chip-seal a hot-mix surface course was applied at thicknesses of 1-3 inches. Obviously there was not enough money available to treat the entire 10 miles of pavement that was in the poorest condition. We therefore treated the worst sections first which meant treating the outside lane with chip-seal and covering only part of the chip-seal with hot-mix bituminous pavement. At present I feel the work done to have been successful.

We now are looking at the remainder of the roadway on U.S. 23 as identified by the subject mile points. Collectively I hope we can formulate the best maintenance strategy possible.

My recommendation must begin with the existing cracks. Before any subsequent work all cracks should be sealed or filled. I realize the difficulty involved in accomplishing a seal of pavement cracks but they should at least be filled. If we use a polymerized emulsion crack sealer and chip I believe we have an excellent opportunity of sealing as well as filling the cracks on U.S. 23. The openness of the slag particles that compose the old cracked pavement should have a high affinity for asphalt. The added resistance to cold temperature cracking of the polymerized emulsion residue should also retard recurrence of the old cracks. It would be impossible to individually seal all cracks on U.S. 23 but the ones that are one eighth inch or larger should be attempted. The smallest cracks could be adequately filled by chip-sealing the entire width of pavement after the large cracks and pot-holes are first filled. After the final chip-seal with polymerized emulsion is complete I recommend waiting for at least one year before further rehabilitation of the pavement is attempted. The reason for this delay would be to identify those cracks, pot-holes, and weak spots that need more attention prior to overlaying with a new bituminous surface course.

Gary Sharp is trying to determine the pavement's present load bearing capacity in order to calculate the depth of bituminous concrete overlay needed to bring the pavement back to required strength.

The Division of Materials took the pavement cores for Gary and at the same time we also took 27 additional cores in an effort to learn more about the failures on U.S. 23.
Mr. Havens calculated the occurrence of cracks on U.S. 23 to have a spacing of 88 feet. Actual observation will corroborate the numbers of 30-50 feet as stated by the Pavement Rehabilitation and Design Team's review made on November 14, 1985. After having observed many sections of the pavement I find that the first transverse cracks were probably spaced 30-50 feet apart but subsequent cracking is more random and the total cracks are often no farther apart than 2-4 feet. Generally, I found that the cracks could be placed in three categories. The first transverse cracks to form were caused by shrinkage or contraction of the pavement. The first cracks probably were clean breaks through all layers of pavement. These breaks occurred much like you would expect concrete cracks to form if no saw joints were made. The second cracks to form were generally parallel to the shrinkage cracks and were probably caused by constant traffic stress. Generally these cracks started in the surface and progressed downward as traffic loading and freeze-thaw action widened them. The third type of crack can be identified as blocking cracks that formed at right angles to the transverse cracks. Their depth is generally shallow and more narrow. As these cracks grow wider, deeper, and more numerous the D.G.A. is more susceptible to water and traffic damage. These blocking cracks are not always parallel to traffic flow but as they become more numerous they also become more random and more numerous in the outside lane wheel tracks. Add to this the slight rutting in most areas which, according to the cores taken, was caused by load deflection and wear and you have a collecting point for water. The trenches made by Gary Sharp's team showed very little deflection of the D.G.A. but eventually the water will begin to erode the D.G.A. allowing the pieces of broken pavement to rock under traffic. If a mistake was made last summer on the U.S. 23 chip seal and resurfacing effort it was failure to first fill all cracks larger than 1/8 inch before the first chip seal course was applied. By doing so we could have adequately filled most cracks with one chip seal course. This would have tied rocking pieces together much better. Instead of filling some cracks we bridged them which may allow some cracks to come back.

Many possible reasons were cited for the formation of the cracks on U.S. 23. Nearly all of the reasons cited may have contributed. I believe that the first transverse cracks were caused by shrinkage of the pavement. Decrease in temperature during one or two very cold winters or the dry weather during the summers of 1983 and 1984 could have had strong shrinking effects on the pavement causing many cracks. I believe however that the first cracks formed before these events and possibly independent of these factors. I am inclined to agree with David Hughes and Larry Epley and cite as the most probable reason the heavy absorption of asphalt by the slag particles. Under ultraviolet light the penetration of asphalt into the slag was very deep. Nearby 1/8 inch absorption was
noted in some core slag particles. Most of the absorption probably occurred during mixing and placement of the mix. As the individual particles cooled the asphalt was sucked into the particles therefore producing a lot of shrinkage stress on the pavement very early in its service life. The first cracks may have been unnoticed for years or until freeze-thaw action caused further deterioration. Another factor that points to the age of the first cracks to form is the rounding of the pavement at the crack edge. Since this pavement is so stiff it would have taken a long time for traffic to deflect the pavement at the crack edge. This factor is more noticeable at M.P. 23 or close to Southshore, Ky. The slight depression at the crack is most noticeable as a thump-thump while riding in vehicles over the pavement. The rounded edges are easy to see when you stop and look more closely at the largest transverse cracks. They are noticeable also on the video tapes that have been made of the cracks. Havens referred to these as "necking down" at the cracks in his report dated November 8, 1985. The report by Havens will also explain other factors necessary to an understanding of the U.S. 23 cracking problems.

After looking at the cores, kind of traffic North of Ashland, deflection of the bituminous pavement on U.S. 23 at Louisa, Ky., and various other pavements exhibiting failures I have concluded that the pavement on U.S. 23 may have performed at its peak. It actually performed like a concrete pavement would have performed. The slag absorbed a lot of asphalt leaving the pavement very hard and brittle. If the asphalt film thickness had remained as thick as when first mixed the pavement would have rutted very badly much earlier and required much more maintenance. I had originally thought that the slag selectively absorbed a fraction of the asphalt is the most volatile portion. However, after looking at these cores I find that I was wrong. The slag absorbed the asphalt without fractionating it. Both sources of slag used in the original construction absorbed a lot of asphalt but the Northern end appeared to have absorbed the most. The slag particles in the pavement at Southshore appear to have much larger air packets in the aggregate than the south end. Under ultraviolet light the absorbed asphalt appears dark rather than the light brown and bright yellow that is evident when examining bank gravel or limestone asphalt mixes. Mixes that fractionally absorb a part of the asphalt film do not have as much cohesion between particles as is exhibited by the slag mix on U.S. 23. The asphalt left as film coating on aggregate particles is much more viscous and brittle than it would be if the light fractions of asphalt had not been absorbed. On future full depth slag mixes it may be advisable to control expected cracking by sawing at intervals and sealing the saw cuts with a suitable sealant.

At present I have many slides, some pictures, several V.C.R. tapes and 27 cores that are available to persons who wish to study this job more thoroughly than is possible by reading this paper. I encourage your comments.

Edward L. Minter
January 31, 1986
Mr. R. E. Johnson, Division Administrator
Federal Highway Administration
P. O. Box 536
Frankfort, Kentucky 40601

ATTENTION: Paul Doss

Dear Mr. Johnson:

SUBJECT: Pavement Rehabilitation and Design Team

This is to acknowledge that our trip is still scheduled for November 13-14, 1985, and reservations have been made in Ashland for you and those listed below to attend the inspection of sections of US 23. Attached is a tabulation of the data we have been able to accumulate from our files pertinent to the investigation. I take this opportunity to put this in your hands prior to the trip for the purpose of study.

We plan to leave sometime the morning of the 13th, and I will call you later about the exact time. Call if you have questions concerning this data, or about the trip.

Sincerely,

R. K. Capito, P.E.
State Highway Engineer

By: L. S. Blevins, P. E.
Division of Design

cc: G. S. Layson-w/a
J. E. Havens-w/a
Harrison Evans-w/a
L. E. Jewell-w/a
Duane Evans-w/a
E. B. Drake-w/a
Larry Epley-w/a
FHWA Files
MEMORANDUM

To: James H. Havens
Associate Director

From: David Hunsucker
Research Engineer Associate

Date: 30 May 1986

Subject: Detailed Crack Survey - U. S. 23, Greenup County

On 17 and 18 March 1986, Kentucky Transportation Research Program personnel conducted a detailed crack survey encompassing each design section of the subject highway. One thousand foot sections in each design section were arbitrarily chosen for the survey.

A variety of pavement distresses were observed in both the Northbound and Southbound travel lanes. These distresses included transverse cracks, longitudinal cracks, alligator cracking, edge cracking, raveling, bleeding, and pot holes.

Results of the detailed crack survey, a summary of the distresses and photographs taken during the survey are attached. The results of this survey will enable one to return to these sites after the bituminous overlays have been constructed and determine the time and extent of reflective cracking.
<table>
<thead>
<tr>
<th>Southbound Lanes</th>
<th>Northbound Lanes</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>97</td>
</tr>
<tr>
<td>331'</td>
<td>500</td>
</tr>
<tr>
<td>325</td>
<td>325</td>
</tr>
<tr>
<td>320</td>
<td>319</td>
</tr>
<tr>
<td>300</td>
<td>313</td>
</tr>
<tr>
<td>286'</td>
<td>289</td>
</tr>
<tr>
<td>281</td>
<td>287</td>
</tr>
<tr>
<td>275</td>
<td>278</td>
</tr>
<tr>
<td>264'</td>
<td>269</td>
</tr>
<tr>
<td>250</td>
<td>252</td>
</tr>
<tr>
<td>137' pln. 11'</td>
<td>247</td>
</tr>
<tr>
<td>125</td>
<td>237</td>
</tr>
<tr>
<td>120</td>
<td>206</td>
</tr>
<tr>
<td>112'</td>
<td>175</td>
</tr>
</tbody>
</table>
Section A - SB lanes at 116 ft.

Section A - SB lanes at 239 ft.
Section A - Northbound

MP 7.0 to 7.0 + 1000 FT

<table>
<thead>
<tr>
<th>Distress Station Number</th>
<th>Station From</th>
<th>Station To</th>
<th>Distress Type</th>
<th>Length of Distress (FT)</th>
<th>Area of Distress (SQ. FT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0+36</td>
<td>0+36</td>
<td>Transverse</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0+36</td>
<td>0+36</td>
<td>Alligator</td>
<td>7'</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0+82</td>
<td>0+82</td>
<td>Transverse</td>
<td>12'</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0+94</td>
<td>0+94</td>
<td>Transverse</td>
<td>13'</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1+11</td>
<td>1+11</td>
<td>"</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1+14</td>
<td>1+14</td>
<td>"</td>
<td>5'</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1+20</td>
<td>1+20</td>
<td>"</td>
<td>11'</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1+55</td>
<td>1+55</td>
<td>"</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1+55</td>
<td>1+55</td>
<td>Alligator</td>
<td>10'</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1+63</td>
<td>1+63</td>
<td>Transverse</td>
<td>4'</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1+96</td>
<td>1+96</td>
<td>"</td>
<td>13'</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2+04</td>
<td>2+04</td>
<td>"</td>
<td>22'</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2+06</td>
<td>2+06</td>
<td>Alligator</td>
<td>14'</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2+37</td>
<td>2+37</td>
<td>Transverse</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2+37</td>
<td>2+37</td>
<td>Alligator</td>
<td>8'</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2+42</td>
<td>2+42</td>
<td>Transverse</td>
<td>17'</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>2+47</td>
<td>2+47</td>
<td>"</td>
<td>5'</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2+53</td>
<td>2+53</td>
<td>"</td>
<td>6'</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2+69</td>
<td>2+69</td>
<td>"</td>
<td>9'</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2+69 2+84</td>
<td>2+69 2+84</td>
<td>Longitudinal</td>
<td>15'</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>2+78</td>
<td>2+78</td>
<td>Transverse</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>2+78</td>
<td>2+78</td>
<td>Alligator</td>
<td>7'</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>2+75 2+84</td>
<td>2+75 2+84</td>
<td>Alligator</td>
<td>9'</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2+84</td>
<td>2+84</td>
<td>Transverse</td>
<td>10'</td>
<td></td>
</tr>
<tr>
<td>DISTRESS STATION NUMBER</td>
<td>DISTRESS STATION FROM</td>
<td>DISTRESS STATION TO</td>
<td>DISTRESS TYPE</td>
<td>LENGTH OF DISTRESS (FT.)</td>
<td>AREA OF DISTRESS (SQ. FT.)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------------</td>
<td>----------------------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>25</td>
<td>2+81</td>
<td>2+77</td>
<td>Longitudinal</td>
<td>16'</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>2+97</td>
<td></td>
<td>Transverse</td>
<td>2'</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>3+13</td>
<td></td>
<td>"</td>
<td>16'</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>3+19</td>
<td></td>
<td>"</td>
<td>13'</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>3+19</td>
<td>3+23</td>
<td>Longitudinal</td>
<td>4'</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>3+23</td>
<td></td>
<td>Transverse</td>
<td>10' @ 4'</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>3+33</td>
<td></td>
<td>"</td>
<td>14'</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>3+38</td>
<td>3+42</td>
<td>Longitudinal</td>
<td>4'</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>3+47</td>
<td></td>
<td>Transverse</td>
<td>5'</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>3+54</td>
<td></td>
<td>"</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>3+64</td>
<td></td>
<td>Alligator</td>
<td>10'</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>3+68</td>
<td></td>
<td>Transverse</td>
<td>6' @ 4'</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>3+65</td>
<td>3+73</td>
<td>Longitudinal</td>
<td>8'</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>3+75</td>
<td></td>
<td>Transverse</td>
<td>7'</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>3+95</td>
<td></td>
<td>"</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>4+09</td>
<td></td>
<td>"</td>
<td>14'</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>4+18</td>
<td></td>
<td>"</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>4+27</td>
<td></td>
<td>"</td>
<td>6'</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>4+27</td>
<td>4+38</td>
<td>Longitudinal</td>
<td>11'</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>4+52</td>
<td></td>
<td>Transverse</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>4+74</td>
<td></td>
<td>Transverse</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>4+93</td>
<td></td>
<td>"</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>4+96</td>
<td></td>
<td>"</td>
<td>5'</td>
<td></td>
</tr>
</tbody>
</table>

End Section A
<table>
<thead>
<tr>
<th>Distress Station</th>
<th>Station to Station</th>
<th>Distress Type</th>
<th>Length of Distress (ft.)</th>
<th>Area of Distress (sq. ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.00 - 1.50</td>
<td>Transverse Crack</td>
<td>6'</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.50 - 2.00</td>
<td>Transverse Crack</td>
<td>6'</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.50 - 2.00</td>
<td>Transverse Crack</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.50 - 2.00</td>
<td>Transverse Crack</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.50 - 2.00</td>
<td>Transverse Crack</td>
<td>34'</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.50 - 3.00</td>
<td>Transverse Crack</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.50 - 3.00</td>
<td>Transverse Crack</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.50 - 3.00</td>
<td>Transverse Crack</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.50 - 3.00</td>
<td>Transverse Crack</td>
<td>34'</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.50 - 3.00</td>
<td>Retraction Crack</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.50 - 3.00</td>
<td>Transverse Crack</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.50 - 3.00</td>
<td>Transverse Crack</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.50 - 3.00</td>
<td>Transverse Crack</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.50 - 3.00</td>
<td>Transverse Crack</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.50 - 3.00</td>
<td>Transverse Crack</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0.50 - 3.00</td>
<td>Retraction Crack</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.50 - 3.00</td>
<td>Transverse Crack</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.50 - 3.00</td>
<td>Retraction Crack</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.50 - 3.00</td>
<td>Transverse Crack</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0.50 - 3.00</td>
<td>Retraction Crack</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0.50 - 3.00</td>
<td>Transverse Crack</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>0.50 - 3.00</td>
<td>Transverse Crack</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0.50 - 3.00</td>
<td>Transverse Crack</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Distress Station Number</td>
<td>From</td>
<td>To</td>
<td>Distress Type</td>
<td>Length of Distress (FT.)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
<td>----</td>
<td>---------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>25</td>
<td>2+81</td>
<td></td>
<td>Transverse Child</td>
<td>2</td>
</tr>
<tr>
<td>26</td>
<td>2+86</td>
<td></td>
<td>Transverse Child</td>
<td>9</td>
</tr>
<tr>
<td>27</td>
<td>3+27</td>
<td>3+31</td>
<td>Transverse Child</td>
<td>24</td>
</tr>
<tr>
<td>28</td>
<td>3,27</td>
<td>3+45</td>
<td>Longitudinal Child</td>
<td>18</td>
</tr>
<tr>
<td>29</td>
<td>3+29</td>
<td></td>
<td>Balance Child</td>
<td>5</td>
</tr>
<tr>
<td>30</td>
<td>3+50</td>
<td>5+52</td>
<td>Balance Child</td>
<td>50</td>
</tr>
<tr>
<td>31</td>
<td>3+72</td>
<td></td>
<td>Transverse Child</td>
<td>24</td>
</tr>
<tr>
<td>32</td>
<td>3+72</td>
<td>6+07</td>
<td>Longitudinal Child</td>
<td>35</td>
</tr>
<tr>
<td>33</td>
<td>4+07</td>
<td></td>
<td>Transverse Child</td>
<td>24</td>
</tr>
<tr>
<td>34</td>
<td>4+07</td>
<td></td>
<td>Balance Child</td>
<td>2</td>
</tr>
<tr>
<td>35</td>
<td>4+15</td>
<td></td>
<td>Transverse Child</td>
<td>4</td>
</tr>
<tr>
<td>36</td>
<td>4+20</td>
<td></td>
<td>Transverse Child</td>
<td>4</td>
</tr>
<tr>
<td>37</td>
<td>4+47</td>
<td></td>
<td>Transverse Child</td>
<td>7</td>
</tr>
<tr>
<td>38</td>
<td>4+55</td>
<td></td>
<td>Transverse Child</td>
<td>24</td>
</tr>
<tr>
<td>39</td>
<td>4+55</td>
<td></td>
<td>Balance Child</td>
<td>3</td>
</tr>
<tr>
<td>40</td>
<td>5+13</td>
<td></td>
<td>Transverse Child</td>
<td>4</td>
</tr>
<tr>
<td>41</td>
<td>5+18</td>
<td>6+85</td>
<td>Balance Child</td>
<td>860</td>
</tr>
<tr>
<td>42</td>
<td>5+62</td>
<td></td>
<td>Transverse Child</td>
<td>24</td>
</tr>
<tr>
<td>43</td>
<td>5+57</td>
<td></td>
<td>Transverse Child</td>
<td>4</td>
</tr>
<tr>
<td>44</td>
<td>5+61</td>
<td></td>
<td>Transverse Child</td>
<td>4</td>
</tr>
<tr>
<td>45</td>
<td>5+42</td>
<td></td>
<td>Transverse Child</td>
<td>24</td>
</tr>
<tr>
<td>46</td>
<td>5+42</td>
<td></td>
<td>Balance Child</td>
<td>7</td>
</tr>
<tr>
<td>47</td>
<td>6+18</td>
<td></td>
<td>Transverse Child</td>
<td>5</td>
</tr>
<tr>
<td>48</td>
<td>6+33</td>
<td></td>
<td>Transverse Child</td>
<td>4</td>
</tr>
<tr>
<td>Distress Station Number</td>
<td>From (°)</td>
<td>To (°)</td>
<td>Distress Station Type</td>
<td>Distress Length (FT.)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------</td>
<td>--------</td>
<td>-----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>44</td>
<td>6+01</td>
<td>6+02</td>
<td>Transient Cargo</td>
<td>24</td>
</tr>
<tr>
<td>50</td>
<td>6+02</td>
<td>6+03</td>
<td>Transient Cargo</td>
<td>11</td>
</tr>
<tr>
<td>51</td>
<td>6+03</td>
<td>6+05</td>
<td>Transient Cargo</td>
<td>13</td>
</tr>
<tr>
<td>52</td>
<td>7+00</td>
<td>8+00</td>
<td>Allied Cargo</td>
<td>24</td>
</tr>
<tr>
<td>53</td>
<td>7+13</td>
<td>8+13</td>
<td>Transient Cargo</td>
<td>24</td>
</tr>
<tr>
<td>54</td>
<td>7+13</td>
<td>8+13</td>
<td>Allied Cargo</td>
<td>10</td>
</tr>
<tr>
<td>55</td>
<td>7+22</td>
<td>8+22</td>
<td>Transient Cargo</td>
<td>8</td>
</tr>
<tr>
<td>56</td>
<td>7+52</td>
<td>8+52</td>
<td>Transient Cargo</td>
<td>4</td>
</tr>
<tr>
<td>57</td>
<td>7+58</td>
<td>8+58</td>
<td>Transient Cargo</td>
<td>24</td>
</tr>
<tr>
<td>58</td>
<td>7+59</td>
<td>8+59</td>
<td>Allied Cargo</td>
<td>12</td>
</tr>
<tr>
<td>59</td>
<td>7+89</td>
<td>8+89</td>
<td>Transient Cargo</td>
<td>6</td>
</tr>
<tr>
<td>60</td>
<td>7+99</td>
<td>8+99</td>
<td>Transient Cargo</td>
<td>24</td>
</tr>
<tr>
<td>61</td>
<td>8+04</td>
<td>9+04</td>
<td>Transient Cargo</td>
<td>14</td>
</tr>
<tr>
<td>62</td>
<td>8+04</td>
<td>9+04</td>
<td>Allied Cargo</td>
<td>9</td>
</tr>
<tr>
<td>63</td>
<td>8+07</td>
<td>9+07</td>
<td>Transient Cargo</td>
<td>5</td>
</tr>
<tr>
<td>64</td>
<td>8+15</td>
<td>9+15</td>
<td>Transient Cargo</td>
<td>5</td>
</tr>
<tr>
<td>65</td>
<td>8+23</td>
<td>9+23</td>
<td>Transient Cargo</td>
<td>5</td>
</tr>
<tr>
<td>66</td>
<td>8+25</td>
<td>9+25</td>
<td>Allied Cargo</td>
<td>53</td>
</tr>
<tr>
<td>67</td>
<td>8+33</td>
<td>9+33</td>
<td>Transient Cargo</td>
<td>24</td>
</tr>
<tr>
<td>68</td>
<td>8+34</td>
<td>10+00</td>
<td>Allied Cargo</td>
<td>30</td>
</tr>
<tr>
<td>69</td>
<td>8+47</td>
<td>9+47</td>
<td>Transient Cargo</td>
<td>4</td>
</tr>
<tr>
<td>70</td>
<td>8+47</td>
<td>9+47</td>
<td>Allied Cargo</td>
<td>5</td>
</tr>
<tr>
<td>71</td>
<td>8+47</td>
<td>9+47</td>
<td>Transient Cargo</td>
<td>4</td>
</tr>
<tr>
<td>72</td>
<td>8+49</td>
<td>9+49</td>
<td>Transient Cargo</td>
<td>4</td>
</tr>
<tr>
<td>DISTRESS STATION STATION STATION NUMBER</td>
<td>FROM</td>
<td>TO</td>
<td>DISTRESS LENGTH OF DISTRESS AREA OF DISTRESS TYPE (FT.) (SQ.FT.)</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>----</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>6150</td>
<td></td>
<td>Tennessee Casualty</td>
<td>4</td>
</tr>
<tr>
<td>74</td>
<td>6176</td>
<td></td>
<td>Tennessee Casualty</td>
<td>4</td>
</tr>
<tr>
<td>75</td>
<td>6182</td>
<td></td>
<td>Tennessee Casualty</td>
<td>4</td>
</tr>
<tr>
<td>76</td>
<td>6185</td>
<td></td>
<td>Tennessee Casualty</td>
<td>14</td>
</tr>
<tr>
<td>77</td>
<td>6193</td>
<td></td>
<td>Tennessee Casualty</td>
<td>5</td>
</tr>
<tr>
<td>78</td>
<td>6197</td>
<td></td>
<td>Tennessee Casualty</td>
<td>6</td>
</tr>
<tr>
<td>79</td>
<td>6199</td>
<td></td>
<td>Tennessee Casualty</td>
<td>3</td>
</tr>
<tr>
<td>80</td>
<td>9208</td>
<td></td>
<td>Tennessee Casualty</td>
<td>7</td>
</tr>
<tr>
<td>81</td>
<td>9211</td>
<td></td>
<td>Tennessee Casualty</td>
<td>14</td>
</tr>
<tr>
<td>82</td>
<td>9226</td>
<td></td>
<td>Tennessee Casualty</td>
<td>14</td>
</tr>
<tr>
<td>83</td>
<td>9231</td>
<td></td>
<td>Tennessee Casualty</td>
<td>10</td>
</tr>
<tr>
<td>84</td>
<td>9239</td>
<td></td>
<td>Tennessee Casualty</td>
<td>14</td>
</tr>
<tr>
<td>85</td>
<td>9261</td>
<td></td>
<td>Tennessee Casualty</td>
<td>4</td>
</tr>
<tr>
<td>86</td>
<td>9264</td>
<td></td>
<td>Tennessee Casualty</td>
<td>13</td>
</tr>
<tr>
<td>87</td>
<td>9282</td>
<td></td>
<td>Tennessee Casualty</td>
<td>4</td>
</tr>
<tr>
<td>88</td>
<td>9287</td>
<td></td>
<td>Tennessee Casualty</td>
<td>6</td>
</tr>
<tr>
<td>89</td>
<td>9289</td>
<td></td>
<td>Tennessee Casualty</td>
<td>4</td>
</tr>
</tbody>
</table>
Section B - SB lanes at 195 ft.

Section B - SB lanes at 486 ft.
DISTRESS STATION STATION STATION DISTRESS TYPE LENGTH OF DISTRESS (FT.) AREA OF DISTRESS (SQ. FT.)

<table>
<thead>
<tr>
<th>DISTRESS NUMBER</th>
<th>STATION FROM TO</th>
<th>DISTRESS TYPE</th>
<th>LENGTH OF DISTRESS (FT.)</th>
<th>AREA OF DISTRESS (SQ. FT.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0+60 0+62</td>
<td>Transverse</td>
<td>6'</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0+75</td>
<td>Transverse</td>
<td>6'</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0+76</td>
<td>Transverse</td>
<td>6'</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0+91 1+45</td>
<td>Alligator</td>
<td>64'</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1+00</td>
<td>Transverse</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1+03 1+10</td>
<td>Alligator</td>
<td>14'</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1+45</td>
<td>Transverse</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1+45</td>
<td>Alligator</td>
<td>4'</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1+59 1+75</td>
<td>Alligator</td>
<td>32'</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1+64</td>
<td>Transverse</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1+71</td>
<td>Alligator</td>
<td>12'</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1+92</td>
<td>Alligator</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1+92</td>
<td>Alligator</td>
<td>40'</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2+00 2+34</td>
<td>Longitudinal</td>
<td>34'</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2+00 2+50</td>
<td>Alligator</td>
<td>150'</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2+17</td>
<td>Transverse</td>
<td>12'</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>2+34</td>
<td>Alligator</td>
<td>12'</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2+34</td>
<td>Alligator</td>
<td>6'</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2+54</td>
<td>Alligator</td>
<td>26'</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2+54</td>
<td>Alligator</td>
<td>26'</td>
<td></td>
</tr>
<tr>
<td>DISTRESS STATION NUMBER</td>
<td>DISTRESS STATION FROM TO</td>
<td>DISTRESS LENGTH OF AREA AT TYPE</td>
<td>DISTRESS AREA OF (FT.)</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------------------</td>
<td>-------------------------------</td>
<td>-----------------------</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>2+69 3+13</td>
<td>Longitudinal</td>
<td>59'</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>2+68 3+13</td>
<td>Transverse</td>
<td>4'</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>2+78 3+13</td>
<td>'1'</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>2+86 3+13</td>
<td>'1'</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>2+95 3+13</td>
<td>Alligator</td>
<td>6'</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>3+06 3+13</td>
<td>'1'</td>
<td>42'</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>3+13 3+13</td>
<td>Alligator</td>
<td>8'</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>3+23 4+39</td>
<td>Transverse</td>
<td>14'</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>3+25 4+39</td>
<td>Alligator</td>
<td>40'</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>3+26 4+39</td>
<td>Longitudal</td>
<td>11'</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>3+27 4+39</td>
<td>Transverse</td>
<td>20'</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>3+30 4+39</td>
<td>Longitudal</td>
<td>113'</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>3+40 4+39</td>
<td>Transverse</td>
<td>15'</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>3+50 4+39</td>
<td>Alligator</td>
<td>56'</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>3+51 4+39</td>
<td>Transverse</td>
<td>2'</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>3+55 4+39</td>
<td>Alligator</td>
<td>76'</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>3+77 4+39</td>
<td>Transverse</td>
<td>2'6 8'</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>3+94 4+39</td>
<td>'1'</td>
<td>15'</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>4+20 4+39</td>
<td>Longitudal</td>
<td>51'</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>4+39 4+39</td>
<td>Transverse</td>
<td>14'</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>4+54 4+39</td>
<td>'1'</td>
<td>18'</td>
<td></td>
</tr>
<tr>
<td>DISTRESS NUMBER</td>
<td>STATION FROM</td>
<td>STATION TO</td>
<td>DISTRESS TYPE</td>
<td>LENGTH OF DISTRESS (FT.)</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>------------</td>
<td>---------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>44</td>
<td>4+65</td>
<td>4+71</td>
<td>Longitudinal</td>
<td>6'</td>
</tr>
<tr>
<td>50</td>
<td>4+65</td>
<td>4+71</td>
<td>Transverse</td>
<td>13'</td>
</tr>
<tr>
<td>52</td>
<td>4+65</td>
<td>4+71</td>
<td>Alligator</td>
<td>6'</td>
</tr>
<tr>
<td>53</td>
<td>4+65</td>
<td>4+71</td>
<td>Transverse</td>
<td>5'</td>
</tr>
<tr>
<td>54</td>
<td>4+71</td>
<td>4+79</td>
<td></td>
<td>4'</td>
</tr>
<tr>
<td>55</td>
<td>4+89</td>
<td>4+99</td>
<td>Alligator</td>
<td>120'</td>
</tr>
<tr>
<td>56</td>
<td>5+00</td>
<td>5+00</td>
<td>Transverse</td>
<td>6'</td>
</tr>
<tr>
<td>57</td>
<td>5+00</td>
<td>6+44</td>
<td>Longitudinal</td>
<td>144'</td>
</tr>
<tr>
<td>58</td>
<td>5+07</td>
<td>5+16</td>
<td></td>
<td>9'</td>
</tr>
<tr>
<td>59</td>
<td>5+25</td>
<td>5+25</td>
<td>Transverse</td>
<td>12'</td>
</tr>
<tr>
<td>60</td>
<td>5+30</td>
<td>6+44</td>
<td>Alligator</td>
<td>24'</td>
</tr>
<tr>
<td>61</td>
<td>5+57</td>
<td>5+57</td>
<td>Longitudinal</td>
<td>2'</td>
</tr>
<tr>
<td>62</td>
<td>5+64</td>
<td>5+64</td>
<td>Alligator</td>
<td>4'</td>
</tr>
<tr>
<td>63</td>
<td>5+70</td>
<td>5+83</td>
<td>Alligator</td>
<td>39'</td>
</tr>
<tr>
<td>64</td>
<td>5+73</td>
<td>5+73</td>
<td>Transverse</td>
<td>12'</td>
</tr>
<tr>
<td>65</td>
<td>5+83</td>
<td>5+83</td>
<td>Transverse</td>
<td>2'</td>
</tr>
<tr>
<td>66</td>
<td>6+13</td>
<td>6+13</td>
<td>Transverse</td>
<td>4'</td>
</tr>
<tr>
<td>67</td>
<td>6+14</td>
<td>6+14</td>
<td>Transverse</td>
<td>24'</td>
</tr>
<tr>
<td>68</td>
<td>6+50</td>
<td>6+50</td>
<td></td>
<td>10'</td>
</tr>
</tbody>
</table>

End
<table>
<thead>
<tr>
<th>DISTRESS STATION NUMBER</th>
<th>STATION FROM</th>
<th>STATION TO</th>
<th>DISTRESS TYPE</th>
<th>LENGTH OF DISTRESS (FT.)</th>
<th>AREA OF DISTRESS (SQ. FT.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0100</td>
<td>0137</td>
<td>Transverse Crack</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0107</td>
<td>0137</td>
<td>Alligator Crack</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0100</td>
<td>0137</td>
<td>Alligator Crack</td>
<td>276</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0121</td>
<td>0137</td>
<td>Transverse Crack</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0126</td>
<td>0137</td>
<td>Transverse Crack</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0129</td>
<td>0137</td>
<td>Transverse Crack</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0137</td>
<td>0137</td>
<td>Transverse Crack</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0147</td>
<td>0137</td>
<td>Transverse Crack</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0151</td>
<td>0137</td>
<td>Transverse Crack</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0156</td>
<td>0137</td>
<td>Transverse Crack</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0158</td>
<td>0137</td>
<td>Transverse Crack</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0168</td>
<td>0137</td>
<td>Transverse Crack</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0172</td>
<td>0137</td>
<td>Transverse Crack</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0172</td>
<td>0485</td>
<td>Alligator Crack</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0270</td>
<td>0485</td>
<td>Transverse Crack</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0495</td>
<td>0485</td>
<td>Transverse Crack</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1600</td>
<td>0485</td>
<td>Transverse Crack</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1109</td>
<td>0485</td>
<td>Transverse Crack</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1113</td>
<td>0485</td>
<td>Transverse Crack</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1121</td>
<td>1300</td>
<td>Transverse Crack</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1300</td>
<td>1300</td>
<td>Alligator Crack</td>
<td>2250</td>
<td></td>
</tr>
<tr>
<td>22a</td>
<td>1300</td>
<td>4100</td>
<td>Alligator Crack</td>
<td>750</td>
<td></td>
</tr>
<tr>
<td>22b</td>
<td>4100</td>
<td>4100</td>
<td>Alligator Crack</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>22c</td>
<td>5125</td>
<td>5125</td>
<td>Alligator Crack</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

* Across Turn Lane Also
<table>
<thead>
<tr>
<th>DISTRESS STATION</th>
<th>TO</th>
<th>DISTRESS TYPE</th>
<th>LENGTH OF DISTRESS (FT.)</th>
<th>AREA OF DISTRESS (SQ.FT.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>214</td>
<td>6</td>
<td>1/5</td>
<td>ALLIANT COALING</td>
<td>4</td>
</tr>
<tr>
<td>216</td>
<td>7</td>
<td>4/1</td>
<td>ALLIANT COALING</td>
<td>3</td>
</tr>
<tr>
<td>217</td>
<td>8</td>
<td>1/6</td>
<td>ALLIANT COALING</td>
<td>24</td>
</tr>
<tr>
<td>22</td>
<td>11</td>
<td>93</td>
<td>TRANSVERSE COALING</td>
<td>4</td>
</tr>
<tr>
<td>23</td>
<td>14</td>
<td>40</td>
<td>TRANSVERSE COALING</td>
<td>3</td>
</tr>
<tr>
<td>24</td>
<td>16</td>
<td>7</td>
<td>TRANSVERSE COALING</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>18</td>
<td>7</td>
<td>ALLIANT COALING</td>
<td>4</td>
</tr>
<tr>
<td>26</td>
<td>17</td>
<td>90</td>
<td>TRANSVERSE COALING</td>
<td>3</td>
</tr>
<tr>
<td>27</td>
<td>19</td>
<td>83</td>
<td>TRANSVERSE COALING</td>
<td>3</td>
</tr>
<tr>
<td>28</td>
<td>20</td>
<td>4/5</td>
<td>TRANSVERSE COALING</td>
<td>3</td>
</tr>
<tr>
<td>29</td>
<td>21</td>
<td>1/1</td>
<td>TRANSVERSE COALING</td>
<td>3</td>
</tr>
<tr>
<td>30</td>
<td>24</td>
<td>4/5</td>
<td>TRANSVERSE COALING</td>
<td>4</td>
</tr>
<tr>
<td>31</td>
<td>25</td>
<td>6/5</td>
<td>TRANSVERSE COALING</td>
<td>4</td>
</tr>
<tr>
<td>32</td>
<td>26</td>
<td>7/4</td>
<td>TRANSVERSE COALING</td>
<td>4</td>
</tr>
<tr>
<td>33</td>
<td>27</td>
<td>7/8</td>
<td>TRANSVERSE COALING</td>
<td>4</td>
</tr>
<tr>
<td>34</td>
<td>28</td>
<td>7/8</td>
<td>TRANSVERSE COALING</td>
<td>4</td>
</tr>
<tr>
<td>35</td>
<td>29</td>
<td>8/6</td>
<td>TRANSVERSE COALING</td>
<td>4</td>
</tr>
<tr>
<td>36</td>
<td>30</td>
<td>99</td>
<td>TRANSVERSE COALING</td>
<td>4</td>
</tr>
<tr>
<td>37</td>
<td>31</td>
<td>0/7</td>
<td>TRANSVERSE COALING</td>
<td>4</td>
</tr>
<tr>
<td>38</td>
<td>32</td>
<td>0/7</td>
<td>ALLIANT COALING</td>
<td>4</td>
</tr>
<tr>
<td>39</td>
<td>33</td>
<td>1/0</td>
<td>TRANSVERSE COALING</td>
<td>4</td>
</tr>
<tr>
<td>40</td>
<td>34</td>
<td>1/2</td>
<td>TRANSVERSE COALING</td>
<td>4</td>
</tr>
<tr>
<td>41</td>
<td>35</td>
<td>2/0</td>
<td>TRANSVERSE COALING</td>
<td>4</td>
</tr>
<tr>
<td>42</td>
<td>36</td>
<td>2/5</td>
<td>TRANSVERSE COALING</td>
<td>4</td>
</tr>
<tr>
<td>DISTRESS STATION</td>
<td>STATION DISTRESS TYPE</td>
<td>LENGTH OF DISTRESS AT TYPE (FT.)</td>
<td>AREA OF DISTRESS (SQ. FT.)</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------------</td>
<td>-------------------------------</td>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>3+34</td>
<td>Transverse (Cracking)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>3+40</td>
<td>Transverse (Cracking)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>3+46</td>
<td>Transverse (Cracking)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>3+53</td>
<td>Transverse (Cracking)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>3+60</td>
<td>Transverse (Cracking)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>3+68</td>
<td>Transverse (Cracking)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>3+76</td>
<td>Transverse (Cracking)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>3+80</td>
<td>Transverse (Cracking)</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>3+86</td>
<td>Transverse (Cracking)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>3+88</td>
<td>Transverse (Cracking)</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>3+96</td>
<td>Transverse (Cracking)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>4+03</td>
<td>Transverse (Cracking)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>4+09</td>
<td>Transverse (Cracking)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>4+34</td>
<td>Transverse (Cracking)</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>4+44</td>
<td>Transverse (Cracking)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>4+54</td>
<td>Transverse (Cracking)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>4+68</td>
<td>Transverse (Cracking)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>4+79</td>
<td>Transverse (Cracking)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>4+86</td>
<td>Transverse (Cracking)</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>4+86</td>
<td>Alligator (Cracking)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>4+93</td>
<td>Transverse (Cracking)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>5+00</td>
<td>Transverse (Cracking)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>5+08</td>
<td>Transverse (Cracking)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>5+25</td>
<td>Transverse (Cracking)</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>DISTRESS STATION</td>
<td>STATION FROM</td>
<td>NUMBER TO</td>
<td>DISTRESS LENGTH OF AT TYPE</td>
<td>AREA OF DISTRESS</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------</td>
<td>-----------</td>
<td>---------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>67</td>
<td></td>
<td>5+45</td>
<td>Transverse (Crosstrack)</td>
<td>19</td>
</tr>
<tr>
<td>68</td>
<td></td>
<td>5+45</td>
<td>Transverse (Crosstrack)</td>
<td>19</td>
</tr>
<tr>
<td>69</td>
<td></td>
<td>5+45</td>
<td>Transverse (Crosstrack)</td>
<td>19</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>5+60</td>
<td>Transverse (Crosstrack)</td>
<td>12</td>
</tr>
<tr>
<td>71</td>
<td></td>
<td>5+70</td>
<td>Transverse (Crosstrack)</td>
<td>12</td>
</tr>
<tr>
<td>72</td>
<td></td>
<td>5+83</td>
<td>Transverse (Crosstrack)</td>
<td>14</td>
</tr>
<tr>
<td>73</td>
<td></td>
<td>5+87</td>
<td>Transverse (Crosstrack)</td>
<td>7</td>
</tr>
<tr>
<td>74</td>
<td></td>
<td>6+02</td>
<td>Transverse (Crosstrack)</td>
<td>5</td>
</tr>
<tr>
<td>75</td>
<td></td>
<td>6+08</td>
<td>Transverse (Crosstrack)</td>
<td>2</td>
</tr>
<tr>
<td>76</td>
<td></td>
<td>6+14</td>
<td>Transverse (Crosstrack)</td>
<td>2</td>
</tr>
<tr>
<td>77</td>
<td></td>
<td>6+20</td>
<td>Transverse (Crosstrack)</td>
<td>2</td>
</tr>
<tr>
<td>78</td>
<td></td>
<td>6+33</td>
<td>Transverse (Crosstrack)</td>
<td>12</td>
</tr>
<tr>
<td>79</td>
<td></td>
<td>6+59</td>
<td>Transverse (Crosstrack)</td>
<td>3</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>6+62</td>
<td>Transverse (Crosstrack)</td>
<td>12</td>
</tr>
<tr>
<td>81</td>
<td>6+71</td>
<td>6+74</td>
<td>Transverse (Crosstrack)</td>
<td>12</td>
</tr>
<tr>
<td>82</td>
<td>6+76</td>
<td>6+86</td>
<td>Longitudinal (Lateral)</td>
<td>10</td>
</tr>
<tr>
<td>83</td>
<td>6+94</td>
<td></td>
<td>Transverse (Crosstrack)</td>
<td>14</td>
</tr>
<tr>
<td>84</td>
<td>7+14</td>
<td></td>
<td>Transverse (Crosstrack)</td>
<td>14</td>
</tr>
<tr>
<td>85</td>
<td>7+14</td>
<td></td>
<td>Directional (Lateral)</td>
<td>6</td>
</tr>
<tr>
<td>86</td>
<td>7+34</td>
<td></td>
<td>Transverse (Crosstrack)</td>
<td>3</td>
</tr>
<tr>
<td>87</td>
<td>7+37</td>
<td></td>
<td>Transverse (Crosstrack)</td>
<td>4</td>
</tr>
<tr>
<td>88</td>
<td>7+41</td>
<td></td>
<td>Transverse (Crosstrack)</td>
<td>12</td>
</tr>
<tr>
<td>89</td>
<td>7+63</td>
<td></td>
<td>Transverse (Crosstrack)</td>
<td>7</td>
</tr>
<tr>
<td>90</td>
<td>7+67</td>
<td></td>
<td>Transverse (Crosstrack)</td>
<td>3</td>
</tr>
<tr>
<td>DISTRESS STATION STATION STATION DISTRESS TYPE</td>
<td>LENGTH OF DISTRESS (FT.)</td>
<td>AREA OF DISTRESS (SQ. FT.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91 7+61</td>
<td>Transverse Crack</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92 7+69</td>
<td>Transverse Crack</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93 7+80</td>
<td>Transverse Crack</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94 7+84</td>
<td>Transverse Crack</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95 7+91</td>
<td>Transverse Crack</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96 8+12</td>
<td>Transverse Crack</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97 8+19</td>
<td>Transverse Crack</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98 8+39</td>
<td>Transverse Crack</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99 8+42</td>
<td>Transverse Crack</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 8+51</td>
<td>Transverse Crack</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101 8+56</td>
<td>Transverse Crack</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102 8+68</td>
<td>Transverse Crack</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103 8+75</td>
<td>Transverse Crack</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104 8+80</td>
<td>Transverse Crack</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105 8+87</td>
<td>Transverse Crack</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106 8+96</td>
<td>Transverse Crack</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107 9+12</td>
<td>Transverse Crack</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108 9+16</td>
<td>Transverse Crack</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>109 9+22</td>
<td>Transverse Crack</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110 9+27</td>
<td>Transverse Crack</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>111 9+40</td>
<td>Transverse Crack</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>112 9+60</td>
<td>Transverse Crack</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>113 9+72</td>
<td>Transverse Crack</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>114 9+78</td>
<td>Transverse Crack</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISTRESS STATION NUMBER</td>
<td>FROM TO</td>
<td>DISTRESS TYPE</td>
<td>LENGTH OF DISTRESS (FT.)</td>
<td>AREA OF DISTRESS (SQ. FT.)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>115</td>
<td>9174</td>
<td>Towhead Creek</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>9187</td>
<td>Towhead Creek</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>9190</td>
<td>Towhead Creek</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>9146</td>
<td>Towhead Creek</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>10200</td>
<td>Towhead Creek</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
Section C - SB lanes at 135 ft.

Section C - SB lanes at 779 ft.
Section C - NB lanes at 26 ft.

Section C - NB lanes at 977 ft.
<table>
<thead>
<tr>
<th>DISTRESS STATION NUMBER</th>
<th>STATION FROM TO</th>
<th>DISTRESS TYPE</th>
<th>LENGTH OF DISTRESS (FT.)</th>
<th>AREA OF DISTRESS (SQ.FT.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0+25 4+15</td>
<td>transverse</td>
<td>395'</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0+25</td>
<td>Alligator</td>
<td>9'</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0+26 6+35</td>
<td>transverse</td>
<td>2'</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0+46</td>
<td>transverse</td>
<td>2'</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0+60</td>
<td>transverse</td>
<td>2'</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0+90 0+97</td>
<td>longitudinal</td>
<td>7'</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2+71</td>
<td>Alligator</td>
<td>6'</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2+77</td>
<td>transverse</td>
<td>1'</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4+79 4+85</td>
<td>longitudinal</td>
<td>6'</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6+71</td>
<td>Alligator</td>
<td>6'</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>7+96</td>
<td>Alligator</td>
<td>4'</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>8+04</td>
<td>transverse</td>
<td>1'</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>8+30</td>
<td>Alligator</td>
<td>2'</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>8+32</td>
<td>Alligator</td>
<td>2'</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>8+50</td>
<td>Alligator</td>
<td>6'</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>8+58</td>
<td>longitudinal</td>
<td>1'</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>8+90</td>
<td>transverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>9+61</td>
<td>Alligator</td>
<td>2'</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>9+71</td>
<td>Alligator</td>
<td>4'</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>9+77</td>
<td>Alligator</td>
<td>13'</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>9+82</td>
<td>Alligator</td>
<td>7'</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>9+95</td>
<td>Alligator</td>
<td>3'</td>
<td></td>
</tr>
</tbody>
</table>

End
<table>
<thead>
<tr>
<th>DISTRESS STATION</th>
<th>STATION</th>
<th>STATION</th>
<th>DISTRESS TYPE</th>
<th>LENGTH OF DISTRESS (FT.)</th>
<th>AREA OF DISTRESS (SQ. FT.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0+10</td>
<td>Transverse Crack</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0+28</td>
<td>Transverse Crack</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0+60</td>
<td>Transverse Crack</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0+75</td>
<td>Transverse Crack</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1+02</td>
<td>Transverse Crack</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1+04</td>
<td>Transverse Crack</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1+35</td>
<td>Transverse Crack</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1+46</td>
<td>Transverse Crack</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1+46</td>
<td>Fatigue Crack</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2+27</td>
<td>Transverse Crack</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2+43</td>
<td>Transverse Crack</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2+47</td>
<td>Transverse Crack</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2+63</td>
<td>Lateral (lack)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2+66</td>
<td>Transverse Crack</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2+90</td>
<td>Transverse Crack</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2+92</td>
<td>Transverse Crack</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3+21</td>
<td>Transverse Crack</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>3+21</td>
<td>Transverse Crack</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>3+23</td>
<td>Transverse Crack</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3+33</td>
<td>Transverse Crack</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>3+50</td>
<td>Transverse Crack</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3+53</td>
<td>Transverse Crack</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3+83</td>
<td>Transverse Crack</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3+86</td>
<td>Transverse Crack</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISTRESS STATION</td>
<td>STATION FROM</td>
<td>STATION TO</td>
<td>DISTRESS TYPE</td>
<td>DISTRESS LENGTH</td>
<td>AREA OF DISTRESS</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
<td>------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>25</td>
<td>4+195</td>
<td></td>
<td>Transverse Crack</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>4+196</td>
<td>4+59</td>
<td>Transverse Crack</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>4+59</td>
<td>4+97</td>
<td>Longitudinal Crack</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>5+06</td>
<td>5+09</td>
<td>Random Transverse</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>5+93</td>
<td>5+26</td>
<td>Transverse Crack</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>5+49</td>
<td></td>
<td>Transverse Crack</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>5+67</td>
<td>5+96</td>
<td>Longitudinal Crack</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>5+76</td>
<td>5+76</td>
<td>Transverse Crack</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>5+76</td>
<td>5+76</td>
<td>Auger Crack</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>5+76</td>
<td>5+96</td>
<td>Transverse Crack</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>6+31</td>
<td></td>
<td>Transverse Crack</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>6+36</td>
<td>6+42</td>
<td>Random Transverse</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>6+57</td>
<td>6+61</td>
<td>Random Transverse</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>6+61</td>
<td>6+69</td>
<td>Random Transverse</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>6+71</td>
<td>6+75</td>
<td>Random Transverse</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>6+76</td>
<td>6+91</td>
<td>Longitudinal Crack</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>6+91</td>
<td>7+02</td>
<td>Longitudinal Crack</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>7+03</td>
<td></td>
<td>Transverse Crack</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>7+03</td>
<td>7+06</td>
<td>Paddle Transverse</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>7+06</td>
<td>7+16</td>
<td>Transverse Crack</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>7+16</td>
<td>7+48</td>
<td>Paddle Transverse</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>7+48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISTRESS STATION NUMBER</td>
<td>STATION FROM</td>
<td>STATION TO</td>
<td>DISTRESS TYPE</td>
<td>LENGTH OF DISTRESS (FT.)</td>
<td>AREA OF DISTRESS (SQ. FT.)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------</td>
<td>------------</td>
<td>---------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>44</td>
<td>7+19</td>
<td>7+61</td>
<td>Transverse/Sagitta</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>50</td>
<td>8+19</td>
<td>8+22</td>
<td>Transverse/Sagitta</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>52</td>
<td>8+22</td>
<td>8+32</td>
<td>Transverse/Sagitta</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>53</td>
<td>8+32</td>
<td>10+00</td>
<td>Lateral/Sagitta</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>8+50</td>
<td>8+52</td>
<td>Transverse/Cone</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>8+52</td>
<td>8+54</td>
<td>Transverse/Cone</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>8+54</td>
<td>8+56</td>
<td>Transverse/Cone</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>8+58</td>
<td>8+56</td>
<td>Lateral/Cone</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>8+64</td>
<td>8+67</td>
<td>Transverse/Cone</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>8+67</td>
<td>8+93</td>
<td>Transverse/Cone</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>60</td>
<td>8+93</td>
<td>8+98</td>
<td>Lateral/Cone</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>9+36</td>
<td>9+40</td>
<td>Transverse/Sagitta</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>63</td>
<td>9+40</td>
<td>9+44</td>
<td>Transverse/Sagitta</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>64</td>
<td>9+44</td>
<td>9+58</td>
<td>Transverse/Cone</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>9+58</td>
<td>9+73</td>
<td>Transverse/Cone</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>9+73</td>
<td>9+93</td>
<td>Lateral/Cone</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>10+00</td>
<td>10+00</td>
<td>Transverse/Cone</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX D
<table>
<thead>
<tr>
<th>Southbound Lane</th>
<th>Northbound Lane</th>
</tr>
</thead>
<tbody>
<tr>
<td>875</td>
<td>875</td>
</tr>
<tr>
<td>860</td>
<td></td>
</tr>
<tr>
<td>851</td>
<td></td>
</tr>
<tr>
<td>848</td>
<td></td>
</tr>
<tr>
<td>825</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td></td>
</tr>
<tr>
<td>778</td>
<td>778</td>
</tr>
<tr>
<td>775</td>
<td></td>
</tr>
<tr>
<td>761</td>
<td></td>
</tr>
<tr>
<td>750</td>
<td></td>
</tr>
<tr>
<td>8747' west of</td>
<td></td>
</tr>
<tr>
<td>upper box.</td>
<td></td>
</tr>
<tr>
<td>median center,</td>
<td></td>
</tr>
<tr>
<td>intersect 8' 31 ft.</td>
<td></td>
</tr>
<tr>
<td>in lane 6' 6"</td>
<td></td>
</tr>
<tr>
<td>change from</td>
<td></td>
</tr>
<tr>
<td>725</td>
<td></td>
</tr>
<tr>
<td></td>
<td>700</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>757</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>731</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>700</td>
</tr>
</tbody>
</table>
Section D - SB lanes at 166 ft.

Section D - SB lanes at 991 ft.
Section D - NB lanes at milepost 14.

Section D - NB lanes at 297 ft.
<table>
<thead>
<tr>
<th>DISTRESS STATION NUMBER</th>
<th>FROM TO</th>
<th>DISTRESS TYPE</th>
<th>LENGTH OF DISTRESS (FT.)</th>
<th>AREA OF DISTRESS (SQ.FT.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0+00</td>
<td>0+14</td>
<td>Longitudinal</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0+36</td>
<td>Transverse</td>
<td>12'</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0+53</td>
<td>Longitudinal</td>
<td>2'</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0+66</td>
<td>0+78</td>
<td>Transverse</td>
<td>12'</td>
</tr>
<tr>
<td>5</td>
<td>0+70</td>
<td>Transverse</td>
<td>6'</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0+89</td>
<td>Longitudinal</td>
<td>2'</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0+99</td>
<td>Transverse</td>
<td>2'</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1+07</td>
<td>Longitudinal</td>
<td>2'</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1+08</td>
<td>Transverse</td>
<td>12'</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1+13</td>
<td>Alligator</td>
<td>12'</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1+32</td>
<td>Longitudinal</td>
<td>4'</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1+61</td>
<td>Transverse</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2+12</td>
<td>Transverse</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2+63</td>
<td>Transverse</td>
<td>12'</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2+77</td>
<td>3+14</td>
<td>Longitudinal</td>
<td>37'</td>
</tr>
<tr>
<td>16</td>
<td>2+97</td>
<td>Transverse</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>2+97</td>
<td>Alligator</td>
<td>9'</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>3+34</td>
<td>Transverse</td>
<td>15'</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>3+34</td>
<td>Alligator</td>
<td>12'</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3+34</td>
<td>3+42</td>
<td>Longitudinal</td>
<td>8'</td>
</tr>
<tr>
<td>21</td>
<td>3+42</td>
<td>Transverse</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3+57</td>
<td>3+66</td>
<td>Longitudinal</td>
<td>9'</td>
</tr>
<tr>
<td>23</td>
<td>3+78</td>
<td>Transverse</td>
<td>12'</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3+89</td>
<td>Transverse</td>
<td>12'</td>
<td></td>
</tr>
<tr>
<td>DISTRESS STATION NUMBER</td>
<td>DISTRESS STATION FROM TO</td>
<td>DISTRESS TYPE</td>
<td>LENGTH OF DISTRESS (FT.)</td>
<td>AREA OF DISTRESS (SQ.FT.)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------------------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>25</td>
<td>3+84</td>
<td>4+12</td>
<td>Transverse</td>
<td>24'</td>
</tr>
<tr>
<td>26</td>
<td>4+15</td>
<td>Alligator</td>
<td>3'</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>4+16</td>
<td>Longitudinal</td>
<td>2'</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>4+37</td>
<td></td>
<td>4'</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>4+54</td>
<td>Transverse</td>
<td>12'</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>4+64</td>
<td>Alligator</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>5+40</td>
<td>Transverse</td>
<td>8'</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>5+65</td>
<td>"</td>
<td>4'</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>5+90</td>
<td>"</td>
<td>5'</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>5+93</td>
<td>Transverse</td>
<td>12'</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>6+97</td>
<td>Transverse</td>
<td>5'</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>5+11</td>
<td>Transverse</td>
<td>10'</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>5+39</td>
<td>Longitudinal</td>
<td>5'</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>6+00</td>
<td>Transverse</td>
<td>12'</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>6+04</td>
<td>"</td>
<td>12'</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>6+31</td>
<td>Transverse</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>6+38</td>
<td>Longitudinal</td>
<td>3'</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>6+84</td>
<td>Transverse</td>
<td>12'</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>7+37</td>
<td>Transverse</td>
<td>18'</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>7+40</td>
<td>Longitudinal</td>
<td>28'</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>8+03</td>
<td>"</td>
<td>33'</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>8+20</td>
<td>Transverse</td>
<td>14'</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>8+46</td>
<td>"</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>DISTRESS STATION NUMBER</td>
<td>FROM</td>
<td>TO</td>
<td>DISTRESS TYPE</td>
<td>LENGTH OF DISTRESS (FT.)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
<td>-----</td>
<td>---------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>50</td>
<td>8+66</td>
<td>8+77</td>
<td>transverse</td>
<td>9'</td>
</tr>
<tr>
<td>51</td>
<td>8+75</td>
<td></td>
<td>transverse</td>
<td>24'</td>
</tr>
<tr>
<td>52</td>
<td>9+23</td>
<td></td>
<td>longitudinal</td>
<td>3'</td>
</tr>
<tr>
<td>53</td>
<td>9+27</td>
<td></td>
<td></td>
<td>3'</td>
</tr>
<tr>
<td>54</td>
<td>9+34</td>
<td></td>
<td></td>
<td>3'</td>
</tr>
<tr>
<td>55</td>
<td>9+46</td>
<td>9+70</td>
<td></td>
<td>24'</td>
</tr>
<tr>
<td>56</td>
<td>9+82</td>
<td></td>
<td>transverse</td>
<td>3'</td>
</tr>
<tr>
<td>57</td>
<td>9+93</td>
<td></td>
<td></td>
<td>24'</td>
</tr>
</tbody>
</table>

End
<table>
<thead>
<tr>
<th>DISTRESS STATION</th>
<th>STATION FROM</th>
<th>STATION TO</th>
<th>DISTRESS TYPE</th>
<th>LENGTH OF DISTRESS (FT.)</th>
<th>AREA OF DISTRESS (SQ. FT.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0+00</td>
<td>0+12</td>
<td>Longitudinal Cycle</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0+12</td>
<td>0+17</td>
<td>Transverse/Aleure</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>0+13</td>
<td>0+24</td>
<td>Transverse Cycle</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0+27</td>
<td>0+73</td>
<td>Longitudinal Cycle</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0+35</td>
<td>0+41</td>
<td>Longitudinal Cycle</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0+37</td>
<td>1+41</td>
<td>Longitudinal Cycle</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0+49</td>
<td>1+13</td>
<td>Transverse Cycle</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0+73</td>
<td>1+24</td>
<td>Transverse/Aleure</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>1+96</td>
<td>1+46</td>
<td>Transverse/Aleure</td>
<td>24</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>1+13</td>
<td>2+16</td>
<td>Transverse Cycle</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2+19</td>
<td>3+02</td>
<td>Transverse Cycle</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2+24</td>
<td>3+08</td>
<td>Longitudinal Cycle</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>3+12</td>
<td>3+18</td>
<td>Longitudinal Cycle</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3+26</td>
<td>3+41</td>
<td>Transverse Cycle</td>
<td>24</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>3+36</td>
<td>4+35</td>
<td>Transverse Cycle</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>3+44</td>
<td>3+93</td>
<td>Transverse Cycle</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3+47</td>
<td>3+97</td>
<td>Transverse Cycle</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>DISTRESS STATION NUMBER</td>
<td>FROM TO</td>
<td>DISTRESS TYPE</td>
<td>LENGTH OF DISTRESS (FT.)</td>
<td>AREA OF DISTRESS (SQ. FT.)</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>---------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>4+77</td>
<td>Transverse Crack</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>5+31</td>
<td>Transverse Crack</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>5+48</td>
<td>Longitudinal Crack</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>5+63</td>
<td>Transverse Crack</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>5+70</td>
<td>Longitudinal Crack</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>5+78</td>
<td>Transverse/Lateral</td>
<td>12</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>6+04</td>
<td>Lateral Lateral</td>
<td>115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>6+15</td>
<td>Transverse/Lateral</td>
<td>12</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>6+20</td>
<td>Transverse/Lateral</td>
<td>13</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>6+81</td>
<td>Lateral Lateral</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>6+89</td>
<td>Transverse/Lateral</td>
<td>20</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>6+90</td>
<td>Random Transverse</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>7+34</td>
<td>Longitudinal Crack</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>7+43</td>
<td>Longitudinal Crack</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>7+72</td>
<td>Longitudinal Crack</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>7+40</td>
<td>Transverse Crack</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>7+67</td>
<td>Random Transverse</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>7+78</td>
<td>Random Transverse</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>8+42</td>
<td>Transverse Crack</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>8+30</td>
<td>Longitudinal Crack</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>8+48</td>
<td>Random Transverse</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>8+56</td>
<td>Transverse Crack</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>8+58</td>
<td>Transverse Crack</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>9+11</td>
<td>Longitudinal Crack</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISTRESS STATION STATION STATION</td>
<td>DISTRESS TYPE</td>
<td>LENGTH OF DISTRESS (FT.)</td>
<td>AREA OF DISTRESS (SQ. FT.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>+99</td>
<td>9</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>+97</td>
<td>25</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>+91 - +91</td>
<td>Alligator Geometric</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>+901</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>+905</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>+9-96</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>+946 - +981</td>
<td>8</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>+951</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>+991</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>+991</td>
<td>Alligator Geometric</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section E - SB lanes at 546 ft.
<table>
<thead>
<tr>
<th>DISTRESS NUMBER</th>
<th>STATION FROM TO</th>
<th>DISTRESS TYPE</th>
<th>LENGTH OF DISTRESS (FT.)</th>
<th>AREA OF DISTRESS (SQ.FT.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0+13</td>
<td>transverse</td>
<td>2'</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0+47</td>
<td></td>
<td>2'</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0+51</td>
<td></td>
<td>17'</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0+51</td>
<td>Alligator</td>
<td>8'</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0+64</td>
<td>transverse</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1+08</td>
<td>longitudinal</td>
<td>4'</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1+53 1+59</td>
<td></td>
<td>6'</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1+89</td>
<td>transverse</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1+57</td>
<td>Alligator</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2+04 2+07</td>
<td></td>
<td>9'</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2+18</td>
<td>transverse</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2+61</td>
<td></td>
<td>8'</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2+69</td>
<td></td>
<td>4'</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2+75</td>
<td></td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>3+14 3+31</td>
<td>longitudinal</td>
<td>17'</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>3+24</td>
<td>transverse</td>
<td>12'</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3+51</td>
<td></td>
<td>14'</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>3+33 3+50</td>
<td>longitudinal</td>
<td>17'</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>3+81</td>
<td>transverse</td>
<td>3'</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3+90</td>
<td></td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>4+17</td>
<td>Alligator</td>
<td>8'</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4+28</td>
<td>transverse</td>
<td>12'</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>4+32</td>
<td></td>
<td>12'</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>4+28 4+32</td>
<td>Alligator</td>
<td>6'</td>
<td></td>
</tr>
</tbody>
</table>
SECTION E Northbound MF. 16.0 to 16.0 +1000 ft.

<table>
<thead>
<tr>
<th>DISTRESS STATION NUMBER</th>
<th>FROM AT</th>
<th>DISTRESS TYPE</th>
<th>LENGTH OF DISTRESS (FT.)</th>
<th>AREA OF DISTRESS (SQ. FT.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>4+59</td>
<td>Alligator</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>5+15</td>
<td>Transverse</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>5+15</td>
<td>Alligator</td>
<td>10'</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>5+48</td>
<td>Transverse</td>
<td>3'</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>5+81</td>
<td>Transverse</td>
<td>6'</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>6+14</td>
<td>Transverse</td>
<td>14'</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>6+42</td>
<td>Alligator</td>
<td>48'</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>6+34</td>
<td>Longitudinal</td>
<td>3'</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>6+90</td>
<td>Transverse</td>
<td>3'</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>7+12</td>
<td>Alligator</td>
<td>72'</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>7+41</td>
<td>Transverse</td>
<td>7'</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>7+76</td>
<td>Transverse</td>
<td>12'</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>7+82</td>
<td>Transverse</td>
<td>12'</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>8+30</td>
<td>Longitudinal</td>
<td>20'</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>8+50</td>
<td>Transverse</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>8+80</td>
<td>Alligator</td>
<td>18'</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>8+85</td>
<td>Transverse</td>
<td>6'</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>9+11</td>
<td>Longitudinal</td>
<td>42'</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>9+53</td>
<td>Alligator</td>
<td>72'</td>
<td></td>
</tr>
<tr>
<td>DISTRESS NUMBER</td>
<td>STATION FROM</td>
<td>STATION TO</td>
<td>DISTRESS TYPE</td>
<td>LENGTH OF DISTRESS (FT.)</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------</td>
<td>------------</td>
<td>---------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>1</td>
<td>0.29</td>
<td>1.15</td>
<td>Longitudinal</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>1.14</td>
<td>1.17</td>
<td>Random Turner</td>
<td>24</td>
</tr>
<tr>
<td>2a</td>
<td>1.14</td>
<td>1.15</td>
<td>Random Turner</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>1.14</td>
<td>1.20</td>
<td>Alligator Catch</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>1.18</td>
<td>1.20</td>
<td>Transverse Cork</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1.57</td>
<td>1.65</td>
<td>Transverse Cork</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>1.54</td>
<td>1.65</td>
<td>Longitudinal</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>1.65</td>
<td>1.70</td>
<td>Transverse Cork</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>2.17</td>
<td>2.20</td>
<td>Transverse Cork</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>2.17</td>
<td>2.20</td>
<td>Transverse Cork</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>2.40</td>
<td>2.42</td>
<td>Transverse Cork</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>2.40</td>
<td>2.42</td>
<td>Longitudinal</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>2.40</td>
<td>2.42</td>
<td>Transverse Cork</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>2.66</td>
<td>2.68</td>
<td>Random Turner</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>2.70</td>
<td>2.73</td>
<td>Longitudinal</td>
<td>13</td>
</tr>
<tr>
<td>15</td>
<td>2.77</td>
<td>2.78</td>
<td>Transverse/Auger</td>
<td>24</td>
</tr>
<tr>
<td>16</td>
<td>2.77</td>
<td>2.78</td>
<td>Transverse Cork</td>
<td>24</td>
</tr>
<tr>
<td>17</td>
<td>3.52</td>
<td>3.58</td>
<td>Transverse Cork</td>
<td>4</td>
</tr>
<tr>
<td>18</td>
<td>3.56</td>
<td>3.62</td>
<td>Transverse Cork</td>
<td>4</td>
</tr>
<tr>
<td>19</td>
<td>3.58</td>
<td>3.62</td>
<td>Transverse Cork</td>
<td>12</td>
</tr>
<tr>
<td>20</td>
<td>3.62</td>
<td>3.66</td>
<td>Transverse Cork</td>
<td>12</td>
</tr>
<tr>
<td>21</td>
<td>3.66</td>
<td>4.04</td>
<td>Longitudinal</td>
<td>9</td>
</tr>
<tr>
<td>22</td>
<td>4.10</td>
<td>4.15</td>
<td>Random Turner</td>
<td>24</td>
</tr>
<tr>
<td>23</td>
<td>4.44</td>
<td>4.44</td>
<td>Transverse Cork</td>
<td>11</td>
</tr>
<tr>
<td>DISTRESS STATION</td>
<td>STATION</td>
<td>STATION</td>
<td>DISTRESS TYPE</td>
<td>LENGTH OF DISTRESS (FT.)</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>24</td>
<td>4·12</td>
<td>4·16</td>
<td>Longitudinal</td>
<td>10</td>
</tr>
<tr>
<td>25</td>
<td>4·75</td>
<td></td>
<td>Transverse</td>
<td>8</td>
</tr>
<tr>
<td>26</td>
<td>4·79</td>
<td></td>
<td>Transverse</td>
<td>5</td>
</tr>
<tr>
<td>27</td>
<td>4·72</td>
<td>4·86</td>
<td>Longitudinal</td>
<td>7</td>
</tr>
<tr>
<td>28</td>
<td>4·66</td>
<td>4·74</td>
<td>Longitudinal</td>
<td>8</td>
</tr>
<tr>
<td>29</td>
<td>5·80</td>
<td>5·92</td>
<td>Heading/Alligator</td>
<td>22</td>
</tr>
<tr>
<td>30</td>
<td>5·46</td>
<td>5·48</td>
<td>Heading/Alligator</td>
<td>24</td>
</tr>
<tr>
<td>31</td>
<td>5·44</td>
<td>5·63</td>
<td>Longitudinal/</td>
<td>14</td>
</tr>
<tr>
<td>32</td>
<td>5·86</td>
<td>6·39</td>
<td>Longitudinal/</td>
<td>63</td>
</tr>
<tr>
<td>33</td>
<td>5·45</td>
<td></td>
<td>Transverse</td>
<td>5</td>
</tr>
<tr>
<td>34</td>
<td>6·04</td>
<td></td>
<td>Transverse</td>
<td>13</td>
</tr>
<tr>
<td>35</td>
<td>6·19</td>
<td></td>
<td>Transverse</td>
<td>4</td>
</tr>
<tr>
<td>36</td>
<td>6·51</td>
<td></td>
<td>Transverse</td>
<td>22</td>
</tr>
<tr>
<td>37</td>
<td>6·79</td>
<td></td>
<td>Transverse</td>
<td>10</td>
</tr>
<tr>
<td>38</td>
<td>6·55</td>
<td></td>
<td>Transverse</td>
<td>8</td>
</tr>
<tr>
<td>39</td>
<td>6·61</td>
<td></td>
<td>Transverse</td>
<td>10</td>
</tr>
<tr>
<td>40</td>
<td>6·63</td>
<td></td>
<td>Transverse</td>
<td>3</td>
</tr>
<tr>
<td>41</td>
<td>7·27</td>
<td></td>
<td>Transverse</td>
<td>15</td>
</tr>
<tr>
<td>42</td>
<td>7·17</td>
<td></td>
<td>Transverse</td>
<td>17</td>
</tr>
<tr>
<td>43</td>
<td>7·35</td>
<td></td>
<td>Transverse</td>
<td>18</td>
</tr>
<tr>
<td>44</td>
<td>8·10</td>
<td></td>
<td>Transverse</td>
<td>24</td>
</tr>
<tr>
<td>45</td>
<td>8·58</td>
<td></td>
<td>Longitudinal</td>
<td>10</td>
</tr>
<tr>
<td>46</td>
<td>8·53</td>
<td></td>
<td>Longitudinal</td>
<td>6</td>
</tr>
<tr>
<td>DISTRESS STATION NUMBER</td>
<td>DISTRESS STATION FROM TO</td>
<td>DISTRESS TYPE</td>
<td>LENGTH OF DISTRESS (FT.)</td>
<td>AREA OF DISTRESS (SQ. FT.)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------------------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>48</td>
<td>8-55</td>
<td>Transverse</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>8-55</td>
<td>Transverse</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>9-07</td>
<td>Transverse/Acc</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>51</td>
<td>9-14</td>
<td>Alligator</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>9-14 9-18</td>
<td>Alligator</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>9-14</td>
<td>Alligator</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>9-18</td>
<td>Alligator</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>9-44</td>
<td>Random Tension</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>9-44 9-46</td>
<td>Random Tension</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>9-48</td>
<td>Random Tension</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>9-90</td>
<td>Transverse</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Southbound Lanes</td>
<td>Northbound Lanes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>161</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>115</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>109</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoulder</td>
<td>Shoulder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southbound Lanes</td>
<td>Northbound Lanes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>225</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>350</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>230</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>215</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>175</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

@235', end approach

\[200, 235, 204, 210, 231, 225, 235, 244, 249, 270\]
<table>
<thead>
<tr>
<th>Southbound Lanes</th>
<th>Northbound Lanes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>975</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>950</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>925</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>900</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SECTION F Northbound MP. 19.0 to 19.0 + 1000 ft.

<table>
<thead>
<tr>
<th>DISTRESS NUMBER</th>
<th>FROM</th>
<th>TO</th>
<th>DISTRESS TYPE</th>
<th>LENGTH OF DISTRESS (FT.)</th>
<th>AREA OF DISTRESS (SQ.FT.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0+00</td>
<td>0+43</td>
<td>Longitudinal</td>
<td>13'</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0+04</td>
<td>0+17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0+59</td>
<td></td>
<td></td>
<td>3'</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0+86</td>
<td>1+09</td>
<td></td>
<td>23'</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1+15</td>
<td>2+05</td>
<td></td>
<td>90'</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2+43</td>
<td>Alligator</td>
<td>4'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2+64</td>
<td>Transverse</td>
<td>6'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2+82</td>
<td>Alligator</td>
<td>4'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2+90</td>
<td>Alligator</td>
<td>6'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2+92</td>
<td>Alligator</td>
<td>4'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2+92</td>
<td>3+25</td>
<td>Alligator</td>
<td>330'</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>3+30</td>
<td>3+50</td>
<td>Transverse</td>
<td>8'</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>3+33</td>
<td>3+40</td>
<td>Longitudinal</td>
<td>20'</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3+33</td>
<td>3+40</td>
<td></td>
<td>7'</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>3+33</td>
<td>Alligator</td>
<td>8'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>3+74</td>
<td>3+98</td>
<td>Alligator</td>
<td>192'</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3+98</td>
<td>Transverse</td>
<td>14'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>4+07</td>
<td>Alligator</td>
<td>14'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>4+07</td>
<td>4+25</td>
<td>Longitudinal</td>
<td>18'</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>4+34</td>
<td>Transverse</td>
<td>12'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>4+37</td>
<td>Alligator</td>
<td>12'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4+40</td>
<td>Alligator</td>
<td>12'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>4+49</td>
<td>Alligator</td>
<td>12'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>4+58</td>
<td>Alligator</td>
<td>6' E 4'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISTRESS NUMBER</td>
<td>STATION FROM</td>
<td>STATION TO</td>
<td>STATION AT</td>
<td>DISTRESS TYPE</td>
<td>LENGTH OF DISTRESS (FT.)</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------</td>
<td>------------</td>
<td>------------</td>
<td>---------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>25</td>
<td>4+69</td>
<td>4+75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>4+69</td>
<td>4+83</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>27</td>
<td>4+83</td>
<td>5+12</td>
<td></td>
<td>transverse</td>
<td>6'</td>
</tr>
<tr>
<td>28</td>
<td>5+12</td>
<td>5+18</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>29</td>
<td>5+18</td>
<td>5+49</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>30</td>
<td>5+49</td>
<td>5+55</td>
<td>small lateral crack in west half</td>
<td>6'</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>5+55</td>
<td>5+75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>5+75</td>
<td>6+38</td>
<td></td>
<td>transverse</td>
<td>6'</td>
</tr>
<tr>
<td>33</td>
<td>6+38</td>
<td>6+68</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>34</td>
<td>6+68</td>
<td>6+68</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>35</td>
<td>6+68</td>
<td>6+68</td>
<td>Alligator</td>
<td></td>
<td>24'</td>
</tr>
<tr>
<td>36</td>
<td>6+68</td>
<td>7+12</td>
<td>transverse</td>
<td>6'</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>7+12</td>
<td>7+68</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>38</td>
<td>7+68</td>
<td>10+00</td>
<td>longitudinal</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>10+00</td>
<td>7+45</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>40</td>
<td>7+45</td>
<td>7+38</td>
<td>transverse</td>
<td>6'</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>7+38</td>
<td>7+18</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>42</td>
<td>7+18</td>
<td>8+67</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>43</td>
<td>8+67</td>
<td>8+94</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>44</td>
<td>8+94</td>
<td>8+88</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>45</td>
<td>8+88</td>
<td>9+08</td>
<td>longitudinal</td>
<td>7'</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>9+08</td>
<td>9+15</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>47</td>
<td>9+15</td>
<td>9+65</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>48</td>
<td>9+65</td>
<td>9+90</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>DISTRESS STATION</td>
<td>DISTRESS STATION</td>
<td>DISTRESS STATION</td>
<td>DISTRESS TYPE</td>
<td>LENGTH OF DISTRESS (FT.)</td>
<td>AREA OF DISTRESS (SQ.FT.)</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>1</td>
<td>4+10</td>
<td>4+21</td>
<td>Longitudinal Crack</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4+18</td>
<td>4+23</td>
<td>Longitudinal Crack</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5+37</td>
<td>5+49</td>
<td>Longitudinal Crack</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>5+75</td>
<td>Transverse Crack</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7+49</td>
<td>7+54</td>
<td>Longitudinal Crack</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>7+54</td>
<td>Transverse Crack</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>7+70</td>
<td>Transverse Crack</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7+70</td>
<td>7+70</td>
<td>Longitudinal Crack</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>7+70</td>
<td>7+79</td>
<td>Longitudinal Crack</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>8+85</td>
<td>9+00</td>
<td>Longitudinal Crack</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>8+85</td>
<td>9+00</td>
<td>Longitudinal Crack</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Southbound Lanes</td>
<td>Northbound Lanes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note:</td>
<td>Concrete surface in good shape.</td>
<td>Concrete surface in good shape.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sand patch in shoulder lane. Surface appearing rougher & in much better shape than SW lanes.</td>
<td>Sand patch in shoulder lane. Surface appearing rougher & in much better shape than SW lanes.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>975</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>950</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>925</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>875</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section G - NB lanes at 739 ft.
<table>
<thead>
<tr>
<th>DISTRESS NUMBER</th>
<th>STATION FROM</th>
<th>STATION TO</th>
<th>DISTRESS TYPE</th>
<th>LENGTH OF DISTRESS (FT.)</th>
<th>AREA OF DISTRESS (SQ.FT.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0+00</td>
<td>0+25</td>
<td>Longitudinal</td>
<td>25'</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0+00</td>
<td>0+55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0+64</td>
<td>0+66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0+86</td>
<td>1+12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1+15</td>
<td>1+24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1+32</td>
<td>1+57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1+38</td>
<td>1+59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1+59</td>
<td>8+50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1+76</td>
<td>8+25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3+86</td>
<td></td>
<td>Transverse</td>
<td>5'</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4+75</td>
<td></td>
<td>Longitudinal</td>
<td>4'</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>6+69</td>
<td></td>
<td></td>
<td>5'</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>9+32</td>
<td></td>
<td></td>
<td>4'</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>9+63</td>
<td></td>
<td></td>
<td>8'</td>
<td></td>
</tr>
<tr>
<td>Distress Station Number</td>
<td>From</td>
<td>To</td>
<td>Distress Type</td>
<td>Length of Distress (ft.)</td>
<td>Area of Distress (sq. ft.)</td>
</tr>
<tr>
<td>------------------------</td>
<td>------</td>
<td>----</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>1</td>
<td>0+54</td>
<td>1+30</td>
<td>Longitudinal Crack</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1+10</td>
<td>1+27</td>
<td>Longitudinal Crack</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1+30</td>
<td>1+30</td>
<td>Transverse Crack</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5+30</td>
<td>5+42</td>
<td>Longitudinal Crack</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5+34</td>
<td>5+34</td>
<td>Transverse Crack</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5+36</td>
<td>5+36</td>
<td>Transverse Crack</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5+42</td>
<td>5+42</td>
<td>Transverse Crack</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5+44</td>
<td>5+48</td>
<td>Longitudinal Crack</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5+48</td>
<td>5+48</td>
<td>Transverse Crack</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5+54</td>
<td>5+54</td>
<td>Transverse Crack</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>6+10</td>
<td>6+20</td>
<td>Longitudinal Crack</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>6+37</td>
<td>6+37</td>
<td>Transverse Crack</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>6+39</td>
<td>6+39</td>
<td>Transverse Crack</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>6+36</td>
<td>6+36</td>
<td>Longitudinal Crack</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>6+43</td>
<td>6+43</td>
<td>Transverse Crack</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>6+46</td>
<td>6+50</td>
<td>Both Long - Transverse Crossing</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>6+50</td>
<td>6+50</td>
<td>Transverse Crack</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>7+00</td>
<td>7+23</td>
<td>Longitudinal Crack</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>7+10</td>
<td>7+20</td>
<td>Longitudinal Crack</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>7+15</td>
<td>7+22</td>
<td>Longitudinal Crack</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>7+42</td>
<td>8+05</td>
<td>Longitudinal Crack</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>8+18</td>
<td>8+26</td>
<td>Longitudinal Crack</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>8+62</td>
<td>8+62</td>
<td>Transverse Crack</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>DISTRESS STATION STATION STATION STATION</td>
<td>DISTRESS DISTRESS DISTRESS DISTRESS</td>
<td>LENGTH OF AREA OF</td>
<td></td>
<td>NUMBER FROM TO AT TYPE (FT.) (SQ. FT.)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 8-59 8169</td>
<td>Temporary Cave 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26 9-122</td>
<td>Transverse Cave 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section H - SB lanes at 475 ft.
Section H - NB lanes at 400 ft.

Section H - NB lanes at 467 ft.
SECTION H Northbound MF 23.0 to 23.0 +1000 ft.

<table>
<thead>
<tr>
<th>DISTRESS STATION NUMBER</th>
<th>STATION FROM</th>
<th>STATION TO</th>
<th>DISTRESS TYPE</th>
<th>LENGTH OF DISTRESS (FT.)</th>
<th>AREA OF DISTRESS (SQ.FT.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0+07</td>
<td></td>
<td>Transverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0+13</td>
<td></td>
<td></td>
<td>18'</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0+19</td>
<td></td>
<td></td>
<td>14'</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0+25</td>
<td></td>
<td></td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0+34</td>
<td></td>
<td>Longitudinal</td>
<td>4'</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0+36</td>
<td></td>
<td>Transverse</td>
<td>7'</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0+44</td>
<td></td>
<td></td>
<td>13'</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0+53</td>
<td></td>
<td></td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0+67</td>
<td></td>
<td></td>
<td>15'</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0+67</td>
<td>0+78</td>
<td>Longitudinal</td>
<td>11'</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0+87</td>
<td></td>
<td>Transverse</td>
<td>4' 106'</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0+97</td>
<td></td>
<td></td>
<td>13'</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1+03</td>
<td></td>
<td></td>
<td>14'</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1+12</td>
<td></td>
<td></td>
<td>8'</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1+21</td>
<td></td>
<td></td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1+31</td>
<td></td>
<td></td>
<td>6'</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1+59</td>
<td></td>
<td></td>
<td>10'</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1+59</td>
<td></td>
<td>Longitudinal</td>
<td>8'</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1+74</td>
<td></td>
<td>Transverse</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1+81</td>
<td></td>
<td></td>
<td>12'</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1+89</td>
<td></td>
<td></td>
<td>15'</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1+94</td>
<td></td>
<td></td>
<td>6'</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>2+02</td>
<td></td>
<td></td>
<td>8'</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2+10</td>
<td></td>
<td></td>
<td>4'</td>
<td></td>
</tr>
</tbody>
</table>
SECTION I Northbound NP 26.0 to 26.0 + 1000 Ft.

<table>
<thead>
<tr>
<th>DISTRESS STATION NUMBERS</th>
<th>DISTRESS STATION FROM</th>
<th>DISTRESS STATION TO</th>
<th>DISTRESS TYPE</th>
<th>LENGTH OF DISTRESS (FT.)</th>
<th>AREA OF DISTRESS (SQ. FT.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0+00</td>
<td>1+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0+100</td>
<td>1+25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0+35</td>
<td>transverse</td>
<td>24'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0+51</td>
<td>transverse</td>
<td>6'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0+60</td>
<td>transverse</td>
<td>6'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0+71</td>
<td>transverse</td>
<td>24'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0+85</td>
<td>transverse</td>
<td>4'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1+10</td>
<td>transverse</td>
<td>6'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1+10</td>
<td>Alligator</td>
<td>36'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1+31</td>
<td>transverse</td>
<td>8'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1+56</td>
<td>transverse</td>
<td>12'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1+99</td>
<td>transverse</td>
<td>10'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2+33</td>
<td>transverse</td>
<td>12'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2+46</td>
<td>transverse</td>
<td>12'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>3+08</td>
<td>transverse</td>
<td>6'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>3+16</td>
<td>transverse</td>
<td>6'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3+20</td>
<td>Alligator</td>
<td>45'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>3+25</td>
<td>Alligator</td>
<td>45'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>3+55</td>
<td>Alligator</td>
<td>30'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>4+00</td>
<td>transverse</td>
<td>6'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>4+18</td>
<td>transverse</td>
<td>6'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4+21</td>
<td>transverse</td>
<td>6'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>4+43</td>
<td>transverse</td>
<td>4'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>4+43</td>
<td>transverse</td>
<td>4'</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section 1 Northbound

Mr. 26.0 to 26.0 +1000 ft

<table>
<thead>
<tr>
<th>Distress Station Number</th>
<th>From</th>
<th>To</th>
<th>Distress Type</th>
<th>Length of Distress (ft.)</th>
<th>Area of Distress (sq. ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>4+65</td>
<td>5+65</td>
<td>Transverse</td>
<td>18'</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>4+65</td>
<td>5+65</td>
<td>Alligator</td>
<td>8'</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>4+72</td>
<td>5+95</td>
<td>Transverse</td>
<td>92'</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>4+75</td>
<td>5+85</td>
<td>Longitudinal</td>
<td>4'</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>5+27</td>
<td>6+18</td>
<td>Longitudinal</td>
<td>12'</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>5+65</td>
<td>6+71</td>
<td>Alligator</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>5+77</td>
<td>6+77</td>
<td>Transverse</td>
<td>48'</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>6+82</td>
<td>6+18</td>
<td>Longitudinal</td>
<td>36'</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>6+21</td>
<td>6+21</td>
<td>Transverse</td>
<td>48'</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>6+25</td>
<td>6+75</td>
<td>Longitudinal</td>
<td>30'</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>6+35</td>
<td>6+75</td>
<td>Centerline</td>
<td>40'</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>6+30</td>
<td>6+30</td>
<td>Transverse</td>
<td>3'</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>6+35</td>
<td>6+35</td>
<td>Transverse</td>
<td>4'</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>6+40</td>
<td>6+40</td>
<td>Transverse</td>
<td>4'</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>6+45</td>
<td>6+45</td>
<td>Transverse</td>
<td>4'</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>6+50</td>
<td>6+50</td>
<td>Transverse</td>
<td>5'</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>6+57</td>
<td>6+57</td>
<td>Transverse</td>
<td>4'</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>6+65</td>
<td>6+65</td>
<td>Transverse</td>
<td>5'</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>6+75</td>
<td>6+75</td>
<td>Alligator</td>
<td>48'</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>6+85</td>
<td>6+85</td>
<td>Transverse</td>
<td>6'</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>6+90</td>
<td>6+90</td>
<td>Transverse</td>
<td>6'</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>6+45</td>
<td>6+45</td>
<td>Transverse</td>
<td>8'</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>7+00</td>
<td>7+20</td>
<td>Alligator</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>7+05</td>
<td>7+05</td>
<td>Transverse</td>
<td>4'</td>
<td></td>
</tr>
</tbody>
</table>
SECTION I Northbound MP 24.0 to 26.0 +1000 ft.

<table>
<thead>
<tr>
<th>Distress Station Number</th>
<th>Station From</th>
<th>Station To</th>
<th>Distress Type</th>
<th>Length of Distress (ft.)</th>
<th>Area of Distress (Sq. ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>7+10</td>
<td>7+10</td>
<td>Transverse</td>
<td>6'</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>7+15</td>
<td>7+15</td>
<td>Transverse</td>
<td>6'</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>7+20</td>
<td>7+20</td>
<td>Transverse</td>
<td>5'</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>7+30</td>
<td>7+30</td>
<td>Transverse</td>
<td>4'</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>7+35</td>
<td>7+42</td>
<td>Longitudinal</td>
<td>7'</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>7+42</td>
<td>7+42</td>
<td>Transverse</td>
<td>4'</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>7+62</td>
<td>7+62</td>
<td>Transverse</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>7+62</td>
<td>7+62</td>
<td>Longitudinal</td>
<td>6'</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>7+74</td>
<td>7+74</td>
<td>Transverse</td>
<td>6' 6'</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>7+88</td>
<td>8+17</td>
<td>Longitudinal</td>
<td>29'</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>8+02</td>
<td>8+02</td>
<td>Transverse</td>
<td>6'</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>8+05</td>
<td>8+05</td>
<td>Transverse</td>
<td>5'</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>8+11</td>
<td>8+11</td>
<td>Transverse</td>
<td>4'</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>8+17</td>
<td>8+17</td>
<td>Transverse</td>
<td>12'</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>8+25</td>
<td>8+50</td>
<td>Longitudinal</td>
<td>25'</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>8+33</td>
<td>8+33</td>
<td>Alligator</td>
<td>16'</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>8+56</td>
<td>8+60</td>
<td>Transverse</td>
<td>96'</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>8+64</td>
<td>8+64</td>
<td>Transverse</td>
<td>4'</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>8+96</td>
<td>8+96</td>
<td>Alligator</td>
<td>6'</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>9+20</td>
<td>9+23</td>
<td>Longitudinal</td>
<td>4' @ 5'</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>9+27</td>
<td>9+27</td>
<td>Transverse</td>
<td>7'</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>9+35</td>
<td>9+35</td>
<td>Transverse</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>9+75</td>
<td>9+75</td>
<td>Transverse</td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>9+75</td>
<td>9+75</td>
<td>Longitudinal</td>
<td>11'</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>9+86</td>
<td>9+86</td>
<td>Transverse</td>
<td>7'</td>
<td></td>
</tr>
</tbody>
</table>

End.
<table>
<thead>
<tr>
<th>DISTRESS NUMBER</th>
<th>STATION FROM</th>
<th>STATION TO</th>
<th>DISTRESS TYPE</th>
<th>LENGTH OF DISTRESS (FT.)</th>
<th>AREA OF DISTRESS (SQ.FT.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>2+21</td>
<td>Transverse</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>2+42</td>
<td>Alligator</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>2+60</td>
<td>2+70</td>
<td>Transverse</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>2+70</td>
<td>Alligator</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>2+81</td>
<td>2+90</td>
<td>Alligator</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2+80</td>
<td>2+90</td>
<td>Alligator</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>3+10</td>
<td>3+20</td>
<td>Transverse</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>3+20</td>
<td>3+30</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>3+30</td>
<td>3+40</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>3+40</td>
<td>3+50</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>3+50</td>
<td>3+60</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>3+60</td>
<td>3+70</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>3+70</td>
<td>4+70</td>
<td>Longitudinal</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>3+80</td>
<td>3+90</td>
<td>Alligator</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>4+00</td>
<td>4+10</td>
<td>Transverse</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>4+10</td>
<td>4+20</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>4+20</td>
<td>4+30</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>4+30</td>
<td>4+40</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>4+40</td>
<td>4+50</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>4+50</td>
<td>4+60</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>4+60</td>
<td>4+70</td>
<td>Transverse</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>4+70</td>
<td>5+00</td>
<td>Alligator</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>4+84</td>
<td>4+95</td>
<td>Alligator</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>5+00</td>
<td>5+20</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISTRESS NUMBER</td>
<td>STATION FROM</td>
<td>STATION TO</td>
<td>STATION AT</td>
<td>DISTRESS TYPE</td>
<td>LENGTH OF DISTRESS (FT.)</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------</td>
<td>------------</td>
<td>------------</td>
<td>---------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>49</td>
<td>5+33</td>
<td>5+47</td>
<td></td>
<td>Longitudinal</td>
<td>14 x 6'</td>
</tr>
<tr>
<td>50</td>
<td>5+34</td>
<td>5+47</td>
<td></td>
<td>Transverse</td>
<td>24'</td>
</tr>
<tr>
<td>51</td>
<td>5+54</td>
<td>5+64</td>
<td></td>
<td>Longitudinal</td>
<td>231'</td>
</tr>
<tr>
<td>52</td>
<td>5+54</td>
<td>7+65</td>
<td></td>
<td>Longitudinal</td>
<td>231'</td>
</tr>
<tr>
<td>53</td>
<td>5+69</td>
<td>5+69</td>
<td></td>
<td>Alligator</td>
<td>180'</td>
</tr>
<tr>
<td>54</td>
<td>6+00</td>
<td>6+20</td>
<td></td>
<td></td>
<td>200'</td>
</tr>
<tr>
<td>55</td>
<td>6+30</td>
<td>6+42</td>
<td></td>
<td></td>
<td>96'</td>
</tr>
<tr>
<td>56</td>
<td>6+50</td>
<td>6+65</td>
<td></td>
<td></td>
<td>75'</td>
</tr>
<tr>
<td>57</td>
<td>6+77</td>
<td>7+77</td>
<td></td>
<td>Transverse</td>
<td>4'</td>
</tr>
<tr>
<td>58</td>
<td>6+81</td>
<td>6+81</td>
<td></td>
<td></td>
<td>4'</td>
</tr>
<tr>
<td>59</td>
<td>7+00</td>
<td>7+20</td>
<td></td>
<td>Alligator</td>
<td>140'</td>
</tr>
<tr>
<td>60</td>
<td>7+30</td>
<td>7+40</td>
<td></td>
<td></td>
<td>70'</td>
</tr>
<tr>
<td>61</td>
<td>7+35</td>
<td>7+55</td>
<td></td>
<td>Transverse</td>
<td>8'</td>
</tr>
<tr>
<td>62</td>
<td>7+62</td>
<td>7+62</td>
<td></td>
<td></td>
<td>6'</td>
</tr>
<tr>
<td>63</td>
<td>7+80</td>
<td>7+80</td>
<td></td>
<td></td>
<td>6'</td>
</tr>
<tr>
<td>64</td>
<td>7+65</td>
<td>7+65</td>
<td></td>
<td></td>
<td>8'</td>
</tr>
<tr>
<td>65</td>
<td>8+00</td>
<td>8+00</td>
<td></td>
<td></td>
<td>6'</td>
</tr>
<tr>
<td>66</td>
<td>8+22</td>
<td>8+22</td>
<td></td>
<td></td>
<td>10'</td>
</tr>
<tr>
<td>67</td>
<td>8+30</td>
<td>8+30</td>
<td></td>
<td></td>
<td>6'</td>
</tr>
<tr>
<td>68</td>
<td>8+35</td>
<td>9+00</td>
<td></td>
<td>Longitudinal</td>
<td>65'</td>
</tr>
<tr>
<td>69</td>
<td>8+40</td>
<td>8+48</td>
<td></td>
<td>Alligator</td>
<td>40'</td>
</tr>
<tr>
<td>70</td>
<td>8+55</td>
<td>8+65</td>
<td></td>
<td></td>
<td>50'</td>
</tr>
<tr>
<td>71</td>
<td>8+75</td>
<td>9+10</td>
<td></td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>72</td>
<td>9+00</td>
<td>9+20</td>
<td></td>
<td></td>
<td>400</td>
</tr>
<tr>
<td>DISTRESS NUMBER</td>
<td>STATION FROM</td>
<td>STATION TO</td>
<td>DISTRESS TYPE</td>
<td>LENGTH OF DISTRESS (FT.)</td>
<td>AREA OF DISTRESS (SQ-FT.)</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
<td>------------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>73</td>
<td>9+27</td>
<td></td>
<td>Transverse</td>
<td>8'</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>9+32</td>
<td></td>
<td></td>
<td>8'</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>9+38</td>
<td></td>
<td></td>
<td>5'</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>9+41</td>
<td></td>
<td></td>
<td>24'</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>9+59</td>
<td></td>
<td></td>
<td>6'</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>9+62</td>
<td></td>
<td></td>
<td>12'</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>9+66</td>
<td></td>
<td></td>
<td>12'</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>9+62</td>
<td>9+70</td>
<td></td>
<td>8'</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>9+80</td>
<td></td>
<td>Transverse</td>
<td>5'</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>9+86</td>
<td></td>
<td></td>
<td>14'</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>9+95</td>
<td></td>
<td></td>
<td>24'</td>
<td>End</td>
</tr>
<tr>
<td>Distress Station Number</td>
<td>From</td>
<td>To</td>
<td>Distress Type</td>
<td>Length of Distress (ft.)</td>
<td>Area of Distress (sq. ft.)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
<td>----</td>
<td>---------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>1</td>
<td>0146</td>
<td>1+91</td>
<td>Random Transverse</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0+03</td>
<td>1+91</td>
<td>Random Transverse</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0+03</td>
<td>1+91</td>
<td>Random Transverse</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0+03</td>
<td>1+91</td>
<td>Random Transverse</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0+03</td>
<td>1+91</td>
<td>Random Transverse</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0+03</td>
<td>1+91</td>
<td>Random Transverse</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0+03</td>
<td>1+91</td>
<td>Random Transverse</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0+03</td>
<td>1+91</td>
<td>Random Transverse</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0+03</td>
<td>1+91</td>
<td>Random Transverse</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0+03</td>
<td>1+91</td>
<td>Random Transverse</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0+03</td>
<td>1+91</td>
<td>Random Transverse</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0+03</td>
<td>1+91</td>
<td>Random Transverse</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0+03</td>
<td>1+91</td>
<td>Random Transverse</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0+03</td>
<td>1+91</td>
<td>Random Transverse</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0+03</td>
<td>1+91</td>
<td>Random Transverse</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0+03</td>
<td>1+91</td>
<td>Random Transverse</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0+03</td>
<td>1+91</td>
<td>Random Transverse</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0+03</td>
<td>1+91</td>
<td>Random Transverse</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0+03</td>
<td>1+91</td>
<td>Random Transverse</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0+03</td>
<td>1+91</td>
<td>Random Transverse</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0+03</td>
<td>1+91</td>
<td>Random Transverse</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0+03</td>
<td>1+91</td>
<td>Random Transverse</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>0+03</td>
<td>1+91</td>
<td>Random Transverse</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0+03</td>
<td>1+91</td>
<td>Random Transverse</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>DISTRESS STATION NUMBER</td>
<td>STATION FROM</td>
<td>STATION TO</td>
<td>DISTRESS TYPE</td>
<td>LENGTH OF DISTRESS (FT.)</td>
<td>AREA OF DISTRESS (SQ. FT.)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------</td>
<td>------------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>25</td>
<td>2+40</td>
<td>2+40</td>
<td>Transverse Crack</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>2+30</td>
<td>2+40</td>
<td>Transverse Crack</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>2+37</td>
<td>2+42</td>
<td>Random Crack</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>2+40</td>
<td>2+61</td>
<td>Lateral Spread</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>2+56</td>
<td>2+79</td>
<td>Lateral Spread</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2+28</td>
<td>2+28</td>
<td>Transverse Crack</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>2+79</td>
<td>2+83</td>
<td>Transverse Crack</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>2+83</td>
<td>2+83</td>
<td>Transverse Crack</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>2+80</td>
<td>2+86</td>
<td>Alligator Cracking</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>3+06</td>
<td>3+06</td>
<td>Transverse Crack</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>3+10</td>
<td>3+40</td>
<td>Lateral Spread</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>3+28</td>
<td>3+28</td>
<td>Transverse Crack</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>3+26</td>
<td>3+44</td>
<td>Random Crack</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>3+55</td>
<td>3+55</td>
<td>Transverse Crack</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>3+70</td>
<td>3+75</td>
<td>Random Crack</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>3+73</td>
<td>3+73</td>
<td>Transverse Crack</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>3+78</td>
<td>3+78</td>
<td>Transverse Crack</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>3+78</td>
<td>3+78</td>
<td>Random Crack</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>4+01</td>
<td>4+01</td>
<td>Transverse Crack</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>4+21</td>
<td>4+21</td>
<td>Transverse Crack</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>4+23</td>
<td>4+23</td>
<td>Transverse Crack</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>4+15</td>
<td>4+25</td>
<td>Random/Alligator</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>DISTRESS STATION NUMBER</td>
<td>FROM TO</td>
<td>DISTRESS TYPE</td>
<td>LENGTH OF DISTRESS (FT.)</td>
<td>AREA OF DISTRESS (SQ. FT.)</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>4+68</td>
<td>TRANSVERSE CRACK</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>4+27</td>
<td>LONGITUDINAL CRACK</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>4+18</td>
<td>LONGITUDINAL CRACK</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>4+52</td>
<td>LONGITUDINAL CRACK</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>4+60</td>
<td>TRANSVERSE CRACK</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>4+65</td>
<td>TRANSVERSE CRACK</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>4+68</td>
<td>TRANSVERSE CRACK</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>4+73</td>
<td>RANDOM TRANSVERSE</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>4+76</td>
<td>ALLIGATOR CRACKING</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>4+79</td>
<td>TRANSVERSE CRACK</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>5+66</td>
<td>LONGITUDINAL CRACK</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>5+100</td>
<td>LONGITUDINAL CRACK</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>5+104</td>
<td>TRANSVERSE CRACK</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>5+104</td>
<td>ALLIGATOR CRACKING</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>5+12</td>
<td>ALLIGATOR CRACKING</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>5+12</td>
<td>TRANSVERSE CRACK</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>5+17</td>
<td>TRANSVERSE CRACK</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>5+18</td>
<td>TRANSVERSE CRACK</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>5+23</td>
<td>TRANSVERSE CRACK</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>5+23</td>
<td>ALLIGATOR CRACKING</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>5+23</td>
<td>ALLIGATOR CRACKING</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>5+25</td>
<td>LONGITUDINAL CRACK</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>5+25</td>
<td>LONGITUDINAL CRACK</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>5+50</td>
<td>TRANSVERSE/ALLIGATOR</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
Section H - US2358

Greeley County

<table>
<thead>
<tr>
<th>Distress Station Number</th>
<th>From</th>
<th>To</th>
<th>Distress Type</th>
<th>Length of Distress (FT.)</th>
<th>Area of Distress (SQ. FT.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>5+50</td>
<td>6+55</td>
<td>Random Cracking</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>74</td>
<td>5+50</td>
<td>6+00</td>
<td>Alligator Crossing</td>
<td>1125</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>5+50</td>
<td>6+91</td>
<td>Random Cracking</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>5+70</td>
<td>6+48</td>
<td>Longitudinal Crack</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>5+85</td>
<td>6+48</td>
<td>Longitudinal Crack</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>6+02</td>
<td>6+08</td>
<td>Transverse Crack</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>6+19</td>
<td>6+23</td>
<td>Transverse Crack</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>6+42</td>
<td>6+52</td>
<td>Transverse Crack</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>6+48</td>
<td>6+58</td>
<td>Transverse Crack</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>6+53</td>
<td>6+63</td>
<td>Transverse Crack</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>6+50</td>
<td>7+00</td>
<td>Alligator Crossing</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>6+86</td>
<td>7+00</td>
<td>Transverse Crack</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>6+60</td>
<td>7+00</td>
<td>Random Cracking</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>6+90</td>
<td>7+25</td>
<td>Longitudinal Crack</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>7+00</td>
<td>7+90</td>
<td>Alligator Crossing</td>
<td>725</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>7+05</td>
<td>7+20</td>
<td>Random Cracking</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>7+20</td>
<td>7+88</td>
<td>Longitudinal Crack</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>7+15</td>
<td>7+18</td>
<td>Alligator Crack</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>7+47</td>
<td>7+47</td>
<td>Transverse Crack</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>7+80</td>
<td>7+97</td>
<td>Random Cracking</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>7+15</td>
<td>7+47</td>
<td>Longitudinal Crack</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>7+88</td>
<td>7+88</td>
<td>Transverse Crack</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>8+27</td>
<td>8+27</td>
<td>Transverse Crack</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>8+45</td>
<td>8+45</td>
<td>Transverse Crack</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>DISTRESS STATION NUMBER</td>
<td>FROM TO</td>
<td>DISTRESS TYPE</td>
<td>LENGTH OF DISTRESS (FT.)</td>
<td>AREA OF DISTRESS (SQ. FT.)</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>----------------------------</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>8+71</td>
<td>TRANSVERSE CRACK</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>8+50</td>
<td>TRANSVERSE CRACK</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>8+91</td>
<td>TRANSVERSE CRACK</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>9+95</td>
<td>TRANSVERSE CRACK</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>9+100</td>
<td>TRANSVERSE CRACK</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>9+108</td>
<td>TRANSVERSE CRACK</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>9+25</td>
<td>TRANSVERSE CRACK</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>9+50</td>
<td>ALLIGATOR CRACK</td>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>9+43</td>
<td>TRANSVERSE CRACK</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>9+49</td>
<td>TRANSVERSE CRACK</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>9+50</td>
<td>TRANSVERSE CRACK</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>9+75</td>
<td>ALLIGATOR CRACK</td>
<td>240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>9+71</td>
<td>TRANSVERSE CRACK</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>9+86</td>
<td>TRANSVERSE CRACK</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>9+89</td>
<td>TRANSVERSE CRACK</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>10+100</td>
<td>TRANSVERSE CRACK</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISTRESS STATION NUMBER</td>
<td>STATION FROM</td>
<td>STATION TO</td>
<td>DISTRESS TYPE</td>
<td>LENGTH OF DISTRESS (FT.)</td>
<td>AREA OF DISTRESS (SQ. FT.)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------</td>
<td>------------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>1</td>
<td>0100</td>
<td>0114</td>
<td>Transverse Cave</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0100</td>
<td>0114</td>
<td>Transverse Cave</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0100</td>
<td>0114</td>
<td>Transverse Cave</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0104</td>
<td>0111</td>
<td>Transverse Cave</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0111</td>
<td>0111</td>
<td>Transverse Cave</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0114</td>
<td>0114</td>
<td>Transverse Cave</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0118</td>
<td>0122</td>
<td>Random Cycling</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0125</td>
<td>0125</td>
<td>Transverse Cave</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0125</td>
<td>0125</td>
<td>Transverse Cave</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0127</td>
<td>0127</td>
<td>Transverse Cave</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0133</td>
<td>0133</td>
<td>Transverse Cave</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0133</td>
<td>0133</td>
<td>Transverse Cave</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0130</td>
<td>0150</td>
<td>Transverse Cave</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0163</td>
<td>0163</td>
<td>Transverse Cave</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0165</td>
<td>0165</td>
<td>Transverse Cave</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0168</td>
<td>0181</td>
<td>Transverse Cave</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0163</td>
<td>0185</td>
<td>Transverse Cave</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0168</td>
<td>0168</td>
<td>Transverse Cave</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0174</td>
<td>0174</td>
<td>Transverse Cave</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0180</td>
<td>0191</td>
<td>Transverse Cave</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0191</td>
<td>0191</td>
<td>Random Transverse</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0146</td>
<td>0146</td>
<td>Transverse Cave</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>0149</td>
<td>0149</td>
<td>Transverse Cave</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0144</td>
<td>0175</td>
<td>Transverse Cave</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>DISTRESS STATION</td>
<td>STATION FROM</td>
<td>STATION TO</td>
<td>DISTRESS TYPE</td>
<td>LENGTH OF DISTRESS (FT.)</td>
<td>AREA OF DISTRESS (SQ.FT.)</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
<td>------------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>25</td>
<td>1080</td>
<td>1073</td>
<td>Lateral / Crack</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1082</td>
<td>1075</td>
<td>Transverse / Crack</td>
<td>2A</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1070</td>
<td>1073</td>
<td>Transverse / Crack</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1075</td>
<td>1065</td>
<td>Alligator Crack</td>
<td>725</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1076</td>
<td>1070</td>
<td>Lateral / Crack</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1090</td>
<td>1085</td>
<td>Transverse / Crack</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>1095</td>
<td>1090</td>
<td>Transverse / Crack</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>2101</td>
<td>2105</td>
<td>Transverse / Crack</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>2103</td>
<td>2107</td>
<td>Transverse / Crack</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>2101</td>
<td>2108</td>
<td>Alligator Crack</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>2108</td>
<td>2104</td>
<td>Transverse / Crack</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>2105</td>
<td>2101</td>
<td>Transverse / Alligator</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>2127</td>
<td>2129</td>
<td>Alligator (Edge)</td>
<td>448</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>2143</td>
<td>2148</td>
<td>Random Transverse</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>2132</td>
<td>2132</td>
<td>Transverse / Crack</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>2153</td>
<td>2153</td>
<td>Transverse / Alligator</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>2153</td>
<td>2153</td>
<td>Transverse / Crack</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>2158</td>
<td>2158</td>
<td>Transverse / Crack</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>2163</td>
<td>2163</td>
<td>Transverse / Crack</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>2168</td>
<td>2168</td>
<td>Transverse / Crack</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>2178</td>
<td>2178</td>
<td>Transverse / Crack</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>2181</td>
<td>2181</td>
<td>Transverse / Crack</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>2184</td>
<td>2184</td>
<td>Transverse / Crack</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISTRESS STATION FROM</td>
<td>STATION TO</td>
<td>DISTRESS TYPE</td>
<td>LENGTH OF DISTRESS (FT.)</td>
<td>AREA OF DISTRESS (SQ.FT.)</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>2+88</td>
<td>Trafalgar (Armed)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>2+92</td>
<td>Trafalgar (Armed)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>2+96</td>
<td>Trafalgar (Armed)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>2+94</td>
<td>Trafalgar (Armed)</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>3+06</td>
<td>Trafalgar (Armed)</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>3+06</td>
<td>Trafalgar (Armed)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>3+09</td>
<td>Trafalgar (Armed)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>3+13</td>
<td>Trafalgar (Armed)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>3+18</td>
<td>Trafalgar (Armed)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>3+23</td>
<td>Trafalgar (Armed)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>3+28</td>
<td>Trafalgar (Armed)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>3+33</td>
<td>Trafalgar (Armed)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>3+37</td>
<td>Trafalgar (Armed)</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>3+40</td>
<td>Trafalgar (Armed)</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>3+46</td>
<td>Trafalgar (Armed)</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>3+46</td>
<td>Trafalgar (Armed)</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>3+51 3+96</td>
<td>Alligator (Cannon)</td>
<td>115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>3+55</td>
<td>Trafalgar (Armed)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>3+59</td>
<td>Trafalgar (Armed)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>3+63</td>
<td>Trafalgar (Armed)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>3+67</td>
<td>Trafalgar (Armed)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>3+71</td>
<td>Trafalgar (Armed)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>3+75</td>
<td>Trafalgar (Armed)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>3+79</td>
<td>Trafalgar (Armed)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distress Station Number</td>
<td>From</td>
<td>To</td>
<td>Distress Type</td>
<td>Length of Distress (ft.)</td>
<td>Area of Distress (sq. ft.)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
<td>----</td>
<td>---------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>73</td>
<td></td>
<td></td>
<td>Transverse Crack</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td></td>
<td></td>
<td>Transverse Crack</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td>Transverse Crack</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>3+96</td>
<td>A+40</td>
<td>Longitudinal Crack</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>A+125</td>
<td>A+36</td>
<td>Longitudinal Crack</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>A+72</td>
<td>A+83</td>
<td>Transverse/Alarve</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>79</td>
<td>A+70</td>
<td>A+85</td>
<td>Longitudinal Crack</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>A+71</td>
<td>A+85</td>
<td>Alarve Cracking</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>A+75</td>
<td>A+86</td>
<td>Longitudinal Crack</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>A+79</td>
<td>A+85</td>
<td>Longitudinal Crack</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>A+85</td>
<td></td>
<td>Transverse Crack</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td></td>
<td></td>
<td>Alarve Cracking</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>5+05</td>
<td>5+70</td>
<td>Random Transverse</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>5+12</td>
<td>5+26</td>
<td>Random Transverse</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>5+00</td>
<td>5+88</td>
<td>Longitudinal/Random</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>5+32</td>
<td></td>
<td>Random Transverse</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>5+38</td>
<td></td>
<td>Random Transverse</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>5+45</td>
<td></td>
<td>Random Transverse</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>5+62</td>
<td></td>
<td>Transverse Crack</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>5+73</td>
<td></td>
<td>Transverse Crack</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>5+67</td>
<td>5+74</td>
<td>Random Cracking</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>5+80</td>
<td>5+90</td>
<td>Longitudinal Cracks</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>5+80</td>
<td>5+90</td>
<td>Random Cracking</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>6+10</td>
<td>6+15</td>
<td>Random Transverse</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>DISTRESS STATION NUMBER</td>
<td>FROM TO</td>
<td>DISTRESS TYPE</td>
<td>LENGTH OF DISTRESS (FT.)</td>
<td>AREA OF DISTRESS (SQ. FT.)</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>6+05</td>
<td>6+75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>6+10</td>
<td>6+11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>6+15</td>
<td>6+20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>6+26</td>
<td>CHAPAR CANOEY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>6+42</td>
<td>6+48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>6+46</td>
<td>TRANSVERSE CANOEY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>6+60</td>
<td>6+60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>6+64</td>
<td>6+68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>7+06</td>
<td>7+06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>7+06</td>
<td>7+12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>7+06</td>
<td>7+12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>7+06</td>
<td>7+12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>7+12</td>
<td>TRANSVERSE CANOEY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>7+16</td>
<td>7+34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>7+33</td>
<td>TRANSVERSE CANOEY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>7+40</td>
<td>TRANSVERSE CANOEY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>7+45</td>
<td>7+52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>7+52</td>
<td>TRANSVERSE CANOEY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>7+60</td>
<td>TRANSVERSE CANOEY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>7+81</td>
<td>8+03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>7+85</td>
<td>TRANSVERSE CANOEY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>7+96</td>
<td>TRANSVERSE CANOEY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>8+15</td>
<td>8+52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>8+46</td>
<td>8+53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISTRESS STATION NUMBER</td>
<td>FROM TO</td>
<td>DISTRESS TYPE</td>
<td>LENGTH OF DISTRESS (FT.)</td>
<td>AREA OF DISTRESS (SQ. FT.)</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>8+03</td>
<td>Transverse Crack</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>8+42</td>
<td>Transverse Crack</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>8+42</td>
<td>Alligator Crack</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>8+44</td>
<td>Transverse Crack</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>8+46</td>
<td>Transverse Crack</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>8+44</td>
<td>Longitudinal Crack</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>8+52</td>
<td>Transverse Crack</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>8+64</td>
<td>Transverse Crack</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>9+30</td>
<td>Alligator Crack</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>9+30</td>
<td>Alligator Crack</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>9+40</td>
<td>Transverse Crack</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>9+24</td>
<td>Transverse Crack</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>9+10</td>
<td>Alligator Crack</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>9+27</td>
<td>Transverse Crack</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>9+30</td>
<td>Transverse Crack</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>10+00</td>
<td>Alligator Crack</td>
<td>175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>9+53</td>
<td>Transverse Crack</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>10+00</td>
<td>Alligator Crack</td>
<td>118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>10+00</td>
<td>Alligator Crack</td>
<td>118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>9+73</td>
<td>Transverse Crack</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>9+07</td>
<td>Transverse Crack</td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section J - SB lanes at 451 ft.

Section J - SB lanes at 920 ft.
<table>
<thead>
<tr>
<th>DISTRESS STATION STATION STATION</th>
<th>DISTRESS TYPE</th>
<th>LENGTH OF DISTRESS (FT.)</th>
<th>AREA OF DISTRESS (SQ. FT.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 0+05</td>
<td>Transverse</td>
<td>3'</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0+06</td>
<td>3'</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0+09</td>
<td>3'</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0+19</td>
<td>4'</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0+22</td>
<td>Alligator</td>
<td>4'</td>
</tr>
<tr>
<td>6</td>
<td>0+26</td>
<td>Transverse</td>
<td>6'</td>
</tr>
<tr>
<td>7</td>
<td>0+31</td>
<td>7'</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0+34</td>
<td>5'</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0+42</td>
<td>4'</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0+55</td>
<td>5'</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0+65</td>
<td>4'</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0+76</td>
<td>Longitudinal</td>
<td>4'</td>
</tr>
<tr>
<td>13</td>
<td>0+74</td>
<td>Transverse</td>
<td>4'</td>
</tr>
<tr>
<td>14</td>
<td>0+78</td>
<td>8'</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0+81 to 0+97</td>
<td>Longitudinal</td>
<td>16'</td>
</tr>
<tr>
<td>16</td>
<td>0+84</td>
<td>3'</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1+19</td>
<td>Alligator</td>
<td>30'</td>
</tr>
<tr>
<td>18</td>
<td>1+55</td>
<td>12'</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1+66</td>
<td>Transverse</td>
<td>5'</td>
</tr>
<tr>
<td>20</td>
<td>1+75</td>
<td>12'</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1+79</td>
<td>5'</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1+89</td>
<td>Alligator</td>
<td>8'</td>
</tr>
<tr>
<td>23</td>
<td>2+02</td>
<td>Transverse</td>
<td>6'</td>
</tr>
<tr>
<td>24</td>
<td>2+18</td>
<td>Longitudinal</td>
<td>4'</td>
</tr>
<tr>
<td>DISTRESS STATION NUMBER</td>
<td>STATION FROM TO</td>
<td>DISTRESS TYPE</td>
<td>LENGTH OF DISTRESS (FT.)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>25</td>
<td>2+22</td>
<td>Transverse</td>
<td>5'</td>
</tr>
<tr>
<td>26</td>
<td>2+30</td>
<td>Longitudinal</td>
<td>30'</td>
</tr>
<tr>
<td>29</td>
<td>2+39</td>
<td>Alligator</td>
<td>29'</td>
</tr>
<tr>
<td>29</td>
<td>2+68</td>
<td>Longitudinal</td>
<td>3'</td>
</tr>
<tr>
<td>30</td>
<td>2+75</td>
<td>Transverse</td>
<td>18'</td>
</tr>
<tr>
<td>31</td>
<td>2+96</td>
<td>Longitudinal</td>
<td>21'</td>
</tr>
<tr>
<td>32</td>
<td>3+20</td>
<td>Longitudinal</td>
<td>9'</td>
</tr>
<tr>
<td>33</td>
<td>3+47</td>
<td>11</td>
<td>4'</td>
</tr>
<tr>
<td>34</td>
<td>3+60</td>
<td>Transverse</td>
<td>14'</td>
</tr>
<tr>
<td>35</td>
<td>3+67</td>
<td>Longitudinal</td>
<td>4'</td>
</tr>
<tr>
<td>36</td>
<td>3+78</td>
<td>11</td>
<td>5'</td>
</tr>
<tr>
<td>37</td>
<td>3+96</td>
<td>Transverse</td>
<td>12'</td>
</tr>
<tr>
<td>38</td>
<td>4+01</td>
<td>11</td>
<td>12'</td>
</tr>
<tr>
<td>39</td>
<td>4+33</td>
<td>Alligator</td>
<td>54'</td>
</tr>
<tr>
<td>40</td>
<td>4+70</td>
<td>11</td>
<td>36'</td>
</tr>
<tr>
<td>41</td>
<td>4+90</td>
<td>Transverse</td>
<td>6'</td>
</tr>
<tr>
<td>42</td>
<td>4+80</td>
<td>Longitudinal</td>
<td>4'</td>
</tr>
<tr>
<td>43</td>
<td>5+08</td>
<td>11</td>
<td>14'</td>
</tr>
<tr>
<td>44</td>
<td>5+08</td>
<td>Transverse</td>
<td>24'</td>
</tr>
<tr>
<td>45</td>
<td>5+13</td>
<td>11</td>
<td>6'</td>
</tr>
<tr>
<td>46</td>
<td>5+32</td>
<td>11</td>
<td>6'</td>
</tr>
<tr>
<td>47</td>
<td>5+55</td>
<td>11</td>
<td>8'</td>
</tr>
<tr>
<td>48</td>
<td>5+58</td>
<td>11</td>
<td>7'</td>
</tr>
<tr>
<td>DISTRESS STATION NUMBER</td>
<td>FROM TO</td>
<td>DISTRESS TYPE</td>
<td>LENGTH OF DISTRESS (FT.)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------</td>
<td>---------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>47</td>
<td>5+67</td>
<td>Alligator</td>
<td>18'</td>
</tr>
<tr>
<td>50</td>
<td>5+62</td>
<td>5+63</td>
<td>Longitudinal 11'</td>
</tr>
<tr>
<td>51</td>
<td>5+93</td>
<td>Transverse</td>
<td>10'</td>
</tr>
<tr>
<td>52</td>
<td>6+00</td>
<td>6+04</td>
<td>Alligator</td>
</tr>
<tr>
<td>53</td>
<td>6+36</td>
<td>Transverse</td>
<td>10'</td>
</tr>
<tr>
<td>54</td>
<td>6+42</td>
<td>6+43</td>
<td>Alligator</td>
</tr>
<tr>
<td>55</td>
<td>6+70</td>
<td>Alligator</td>
<td>30'</td>
</tr>
<tr>
<td>56</td>
<td>7+00</td>
<td>7+03</td>
<td>Longitudinal 3'</td>
</tr>
<tr>
<td>57</td>
<td>7+03</td>
<td>Transverse</td>
<td>6'</td>
</tr>
<tr>
<td>58</td>
<td>7+12</td>
<td>Alligator</td>
<td>24'</td>
</tr>
<tr>
<td>59</td>
<td>7+50</td>
<td>7+55</td>
<td>Alligator</td>
</tr>
<tr>
<td>60</td>
<td>7+61</td>
<td>Transverse</td>
<td>4'</td>
</tr>
<tr>
<td>61</td>
<td>7+71</td>
<td>7+72</td>
<td>Alligator</td>
</tr>
<tr>
<td>62</td>
<td>8+00</td>
<td>8+01</td>
<td>Alligator</td>
</tr>
<tr>
<td>63</td>
<td>8+31</td>
<td>8+31</td>
<td>24'</td>
</tr>
<tr>
<td>64</td>
<td>9+71</td>
<td>Alligator</td>
<td>72'</td>
</tr>
<tr>
<td>65</td>
<td>9+10</td>
<td>Transverse</td>
<td>18'</td>
</tr>
<tr>
<td>66</td>
<td>9+48</td>
<td>Alligator</td>
<td>24'</td>
</tr>
<tr>
<td>67</td>
<td>9+66</td>
<td>9+72</td>
<td>Alligator</td>
</tr>
<tr>
<td>68</td>
<td>9+88</td>
<td>9+92</td>
<td>Alligator</td>
</tr>
</tbody>
</table>

End
<table>
<thead>
<tr>
<th>DISTRESS STATION STATION STATION NUMBER</th>
<th>DISTRESS TYPE</th>
<th>LENGTH OF DISTRESS AT</th>
<th>AREA OF DISTRESS (SQ. FT.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Transverse</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Transverse</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Transverse</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Transverse</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Transverse</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Transverse</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Transverse</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Transverse</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Transverse</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Longitudinal</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Transverse</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Transverse</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Transverse</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Longitudinal</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Longitudinal</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Transverse</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Transverse</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Transverse</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Transverse</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Longitudinal</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Transverse</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Transverse</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Transverse</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Transverse</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>DISTRESS STATION NUMBER</td>
<td>FROM</td>
<td>TO</td>
<td>DISTRESS TYPE</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
<td>----</td>
<td>---------------</td>
</tr>
<tr>
<td>25</td>
<td>1+46</td>
<td>2+00</td>
<td>Transverse</td>
</tr>
<tr>
<td>26</td>
<td>2+00</td>
<td></td>
<td>Transverse</td>
</tr>
<tr>
<td>27</td>
<td>2+00</td>
<td></td>
<td>Transverse</td>
</tr>
<tr>
<td>28</td>
<td>2+14</td>
<td></td>
<td>Transverse</td>
</tr>
<tr>
<td>29</td>
<td>2+22</td>
<td></td>
<td>Transverse</td>
</tr>
<tr>
<td>30</td>
<td>1+75</td>
<td>2+24</td>
<td>Longitudinal</td>
</tr>
<tr>
<td>31</td>
<td>2+37</td>
<td></td>
<td>Fidder/Transverse</td>
</tr>
<tr>
<td>32</td>
<td>2+40</td>
<td></td>
<td>Transverse</td>
</tr>
<tr>
<td>33</td>
<td>2+58</td>
<td>2+54</td>
<td>Longitudinal</td>
</tr>
<tr>
<td>34</td>
<td>2+45</td>
<td></td>
<td>Transverse</td>
</tr>
<tr>
<td>35</td>
<td>2+50</td>
<td></td>
<td>Transverse</td>
</tr>
<tr>
<td>36</td>
<td>2+63</td>
<td></td>
<td>Transverse</td>
</tr>
<tr>
<td>37</td>
<td>2+77</td>
<td></td>
<td>Transverse</td>
</tr>
<tr>
<td>38</td>
<td>2+76</td>
<td></td>
<td>Transverse</td>
</tr>
<tr>
<td>39</td>
<td>2+77</td>
<td></td>
<td>Transverse</td>
</tr>
<tr>
<td>40</td>
<td>2+78</td>
<td></td>
<td>Transverse</td>
</tr>
<tr>
<td>41</td>
<td>2+79</td>
<td></td>
<td>Transverse</td>
</tr>
<tr>
<td>42</td>
<td>2+87</td>
<td></td>
<td>Transverse</td>
</tr>
<tr>
<td>43</td>
<td>2+91</td>
<td></td>
<td>Transverse</td>
</tr>
<tr>
<td>44</td>
<td>2+87</td>
<td>3+07</td>
<td>Longitudinal</td>
</tr>
<tr>
<td>45</td>
<td>3+20</td>
<td></td>
<td>Transverse</td>
</tr>
<tr>
<td>46</td>
<td>3+01</td>
<td>3+14</td>
<td>Longitudinal</td>
</tr>
<tr>
<td>47</td>
<td>3+15</td>
<td></td>
<td>Transverse</td>
</tr>
<tr>
<td>48</td>
<td>3+16</td>
<td></td>
<td>Transverse</td>
</tr>
<tr>
<td>DISTRESS STATION NUMBER</td>
<td>FROM STATION</td>
<td>TO STATION</td>
<td>DISTRESS TYPE</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------</td>
<td>------------</td>
<td>---------------</td>
</tr>
<tr>
<td>49</td>
<td>34</td>
<td>34.5</td>
<td>Transverse</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td>Transverse</td>
</tr>
<tr>
<td>51</td>
<td>34.5</td>
<td>34.6</td>
<td>Longitudinal</td>
</tr>
<tr>
<td>52</td>
<td>34.7</td>
<td></td>
<td>Transverse</td>
</tr>
<tr>
<td>53</td>
<td>34.8</td>
<td></td>
<td>Transverse</td>
</tr>
<tr>
<td>54</td>
<td>34.9</td>
<td></td>
<td>Transverse</td>
</tr>
<tr>
<td>55</td>
<td>34.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56 a.</td>
<td>34.50</td>
<td>34.62</td>
<td>Longitudinal</td>
</tr>
<tr>
<td>57</td>
<td>34.6</td>
<td></td>
<td>Transverse</td>
</tr>
<tr>
<td>58</td>
<td>34.7</td>
<td></td>
<td>Transverse</td>
</tr>
<tr>
<td>59</td>
<td>34.8</td>
<td></td>
<td>Transverse</td>
</tr>
<tr>
<td>60</td>
<td>34.9</td>
<td></td>
<td>Transverse</td>
</tr>
<tr>
<td>61</td>
<td>34.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>34.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>34.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>34.25</td>
<td>34.37</td>
<td>Longitudinal</td>
</tr>
<tr>
<td>65</td>
<td>34.38</td>
<td></td>
<td>Transverse</td>
</tr>
<tr>
<td>66</td>
<td>34.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>34.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>34.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>34.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70 a.</td>
<td>34.56</td>
<td>34.62</td>
<td>Longitudinal</td>
</tr>
<tr>
<td>71</td>
<td>34.62</td>
<td></td>
<td>Transverse</td>
</tr>
<tr>
<td>DISTRESS STATION</td>
<td>STATION FROM</td>
<td>STATION TO</td>
<td>DISTRESS NUMBER</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
<td>------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>72</td>
<td>4468</td>
<td>4469</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>4468</td>
<td>5113</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>4175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>5122</td>
<td>5128</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>5128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>5130</td>
<td>5159</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>5135</td>
<td>5163</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>5164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>5166</td>
<td>5170</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>5171</td>
<td>6108</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>6102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>6102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>6115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>6115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>6148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>6148</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISTRESS STATION</td>
<td>STATION</td>
<td>STATION</td>
<td>DISTRESS TYPE</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>---------</td>
<td>---------------</td>
</tr>
<tr>
<td>95</td>
<td>6+97</td>
<td>6+97</td>
<td>Transverse</td>
</tr>
<tr>
<td>96</td>
<td>6+97</td>
<td>6+97</td>
<td>Transverse</td>
</tr>
<tr>
<td>97</td>
<td>6+96</td>
<td>6+96</td>
<td>Longitudinal</td>
</tr>
<tr>
<td>98</td>
<td>6+97</td>
<td>6+97</td>
<td>Transverse</td>
</tr>
<tr>
<td>99</td>
<td>6+98</td>
<td>6+98</td>
<td>Longitudinal</td>
</tr>
<tr>
<td>100</td>
<td>6+98</td>
<td>6+98</td>
<td>Transverse</td>
</tr>
<tr>
<td>101</td>
<td>6+98</td>
<td>6+98</td>
<td>Longitudinal</td>
</tr>
<tr>
<td>102</td>
<td>7+15</td>
<td>7+15</td>
<td>Transverse</td>
</tr>
<tr>
<td>103</td>
<td>7+15</td>
<td>7+15</td>
<td>Transverse</td>
</tr>
<tr>
<td>104</td>
<td>7+16</td>
<td>7+16</td>
<td>Transverse</td>
</tr>
<tr>
<td>105</td>
<td>7+16</td>
<td>7+16</td>
<td>Transverse</td>
</tr>
<tr>
<td>106</td>
<td>7+16</td>
<td>7+16</td>
<td>Transverse</td>
</tr>
<tr>
<td>107</td>
<td>7+16</td>
<td>7+16</td>
<td>Transverse</td>
</tr>
<tr>
<td>108</td>
<td>7+16</td>
<td>7+16</td>
<td>Transverse</td>
</tr>
<tr>
<td>109</td>
<td>7+16</td>
<td>7+16</td>
<td>Transverse</td>
</tr>
<tr>
<td>110</td>
<td>7+16</td>
<td>7+16</td>
<td>Transverse</td>
</tr>
<tr>
<td>111</td>
<td>7+16</td>
<td>7+16</td>
<td>Transverse</td>
</tr>
<tr>
<td>112</td>
<td>7+16</td>
<td>7+16</td>
<td>Transverse</td>
</tr>
<tr>
<td>113</td>
<td>7+16</td>
<td>7+16</td>
<td>Transverse</td>
</tr>
<tr>
<td>114</td>
<td>7+16</td>
<td>7+16</td>
<td>Transverse</td>
</tr>
<tr>
<td>115</td>
<td>7+16</td>
<td>7+16</td>
<td>Transverse</td>
</tr>
<tr>
<td>116</td>
<td>7+16</td>
<td>7+16</td>
<td>Transverse</td>
</tr>
<tr>
<td>117</td>
<td>7+16</td>
<td>7+16</td>
<td>Transverse</td>
</tr>
<tr>
<td>Distress Station Number</td>
<td>From</td>
<td>To</td>
<td>Distress Type</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
<td>----</td>
<td>-------------------</td>
</tr>
<tr>
<td>118</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>8+75</td>
<td>8+82</td>
<td>Longitudinal</td>
</tr>
<tr>
<td>121</td>
<td>8+85</td>
<td></td>
<td>Transverse</td>
</tr>
<tr>
<td>122</td>
<td>9+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>9+20</td>
<td></td>
<td>Aligator</td>
</tr>
<tr>
<td>124</td>
<td>9+22</td>
<td></td>
<td>Transverse</td>
</tr>
<tr>
<td>125</td>
<td>9+25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>9+59</td>
<td></td>
<td>Transverse/Aligator</td>
</tr>
<tr>
<td>127</td>
<td>9+57</td>
<td></td>
<td>Transverse</td>
</tr>
<tr>
<td>128</td>
<td>9+59</td>
<td></td>
<td>Transverse</td>
</tr>
<tr>
<td>129</td>
<td>9+61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>9+87</td>
<td>9+94</td>
<td>Longitudinal</td>
</tr>
<tr>
<td>131</td>
<td>9+92</td>
<td>9+95</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>9+95</td>
<td></td>
<td>Aligator</td>
</tr>
<tr>
<td>133</td>
<td>9+98</td>
<td>9+99</td>
<td>Longitudinal</td>
</tr>
<tr>
<td>134</td>
<td>9+99</td>
<td></td>
<td>Transverse</td>
</tr>
<tr>
<td>135</td>
<td>9+97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>9+96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>9+96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>9+95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>9+96</td>
<td>10+00</td>
<td>Longitudinal</td>
</tr>
<tr>
<td>140</td>
<td>9+95</td>
<td>10+00</td>
<td>Several/Both/All</td>
</tr>
</tbody>
</table>