DETERMINATION OF THE EXTRAVASCULAR BURDEN OF CARBON MONOXIDE (CO) ON HUMAN HEART

Kinnera Erupaka
University of Kentucky, kinnerarey@uky.edu

Available from: https://uknowledge.uky.edu/gradschool_theses/501

This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
ABSTRACT OF THE THESIS

DETERMINATION OF THE EXTRAVASCULAR BURDEN OF CARBON MONOXIDE (CO) ON HUMAN HEART

Noninvasive measurements of myocardial carboxymyoglobin levels (%MbCO) and oxygen tensions (PtO₂) are difficult to obtain experimentally. We have developed a compartmental model which allows prediction of myocardial %MbCO levels and PtO₂ for varied carbon monoxide (CO) exposures. The cardiac compartment in the model consists of vascular subcompartments which contain two tissue subcompartments varying in capillary density. Mass-balance equations for oxygen (O₂) and CO are applied for all compartments. Myocardial oxygen consumption and blood flow are quantified from predictive formulas based on heart rate. Model predictions are validated with experimental data at normoxia, hypoxia, exercise and hyperoxia. CO exposures of varying concentration and time (short-high, long-low), CO rebreathing during 100% O₂, and exposure during exercise is simulated. Results of the simulations demonstrate that during CO exposures and subsequent therapies, the temporal changes of %MbCO in the heart differ from those of carboxyhemoglobin levels (%HbCO). Analysis of correlation between %HbCO, %MbCO and PtO₂ was done to understand myocardial injury due to CO hypoxia. This thesis demonstrates that the model is able to anticipate the uptake and distribution of CO in the human myocardium and thus can be used to estimate the extravascular burden (MbCO, PtO₂) of CO on the human heart.

Key words: Myocardial Oxygen Tension, CO Hypoxia, Exercise, Tissue Oxygenation, Cardiac Muscle

Kinnera Erupaka

01 – 09- 2008
DETERMINATION OF THE EXTRAVASCULAR BURDEN OF CARBON MONOXIDE (CO) ON HUMAN HEART

By

KINNERA ERUPAKA

Dr. Eugene Bruce
Director of Thesis

Dr. Abhijit Patwardhan
Director of Graduate Studies

01-09-2008
Date
RULES FOR THE USE OF THESSES

Unpublished theses submitted for the Master’s degree and deposited in the University of Kentucky Library are as a rule open for inspection, but are to be used only with due regard to the rights of the authors. Bibliographical references may be noted, but quotations or summaries of parts may be published only with the permission of the author, and with the usual scholarly acknowledgments.

Extensive copying or publication of the thesis in whole or in part also requires the consent of the Dean of the Graduate School of the University of Kentucky.

A library that borrows this thesis for use by its patrons is expected to secure the signature of each user.

Name

Date

__

__

__

__

__

__

__

__
DETERMINATION OF THE EXTRAVASCULAR BURDEN OF CARBON MONOXIDE (CO) ON HUMAN HEART

THESIS

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science
College of Engineering
Center for Biomedical Engineering
at the University of Kentucky

By
Kinnera Erupaka
Lexington, Kentucky

Director: Dr. Eugene N. Bruce, Professor of Biomedical Engineering
Lexington, Kentucky
2008
Copyright © Kinnera Erupaka 2008
ACKNOWLEDGEMENTS

I am very thankful to my advisor Dr. Eugene Bruce for giving me this opportunity to work on this project. His constant support, guidance, encouragement and daily involvement helped in successful completion of my work.

I would like to thank my committee members Dr. Abhijit Patwardhan, Dr. Bruce Walcott and Dr. Michael Reid for their valuable suggestions, patience and time.

I am thankful to Dr. Peggy Bruce for helping me in estimating parameters for the model and proof reading my thesis.

I also wish to thank my best friends Prasad and Jagan for helping me with formatting my thesis and for the moral support and confidence they have been extending.

Last but not the least; I would like to thank NIH for providing me funding to work on this project.
TABLE OF CONTENTS

Acknowledgement .. iii
List of Tables .. vi
List of Figures .. vii
List of Files .. viii

Chapter 1: Introduction ... 1
 1.1 Carbon Monoxide Toxicity .. 1
 1.2 Symptoms, Diagnosis and Treatments of CO Poisoning ... 3
 1.3 Motivation for the Thesis ... 4
 1.4 The Need for a Model .. 5

Chapter 2: Background .. 13
 2.1 Previous Models .. 13
 2.1.1 Oxyhemoglobin Dissociation Curve ... 15
 2.1.2 Haldene’s Equation .. 17
 2.1.3 Blood to Tissue Oxygen Flux Equations .. 17
 2.2 Chosen Model and Proposed Modification .. 18
 2.3 Basic concepts of the model .. 19
 2.4 Anatomy of the Heart .. 20

Chapter 3: Model Description .. 32
 3.1 Overview of Desired Model ... 32
 3.2 Modified Model ... 33
 3.2.1 Mass Balance Equations for the Alveolar Compartment 34
 3.2.2 Mass Balance Equations for Blood Compartments ... 34
 3.2.3 Mass Balance Equations for the Tissue Compartments .. 37
 3.2.4 Prediction equations in modified model ... 38
 3.3 Cardiac compartment .. 40
 3.3.1 Mass Balance Equation of the Cardiac Vascular Blood Compartments 42
 3.3.2 Mass balance equation of the cardiac tissue subcompartments 45
 3.4 Parameters for the Model .. 46
 3.4.1 Physiological parameters .. 47
 3.4.2 Model-derived parameters .. 48
 3.4.3 Simulation parameters .. 48
 3.5 Predictive Equations in the Model ... 48
 3.5.1 Prediction Equations for Myocardial Oxygen Consumption and Blood Flow 49
 3.5.2 Prediction Equations for Cardiac Output ... 51
 3.5.3 Prediction Equations for Heart Rate ... 51
 3.6 Sensitivity Analysis ... 52
 3.7 Validation Schema for the Cardiac Compartment ... 54
 3.8 Algorithms ... 55

Chapter 4: Results .. 73
 4.1 Model Validation .. 73
 4.2 Model Simulations .. 74
 4.2.1 Short Duration-High Concentration CO Exposure ... 75
 4.2.2 Long Duration-Low Concentration CO Exposure ... 77
 4.2.3 CO Rebreathing During 100% O₂ Administration ... 79
LIST OF TABLES

Table 2.1: Myocardial Blood Flow ...22
Table 2.2: Myocardial Oxygen Consumption ...23
Table 2.3: Skeletal Muscle Blood Flow ..24
Table 2.4: Skeletal Muscle Oxygen Consumption ..27
Table 2.5: Myocardial tissue Oxygen tension in Various Species ...28
Table 3.1: Prediction Equation for Estimating Volumes of Muscular Regions (arms, Legs and Trunk) for males and females. ...57
Table 3.2: Blood flow and Oxygen consumption values for muscular regions57
Table 3.3: Cardiac Compartment Variables and description ..58
Table 3.4: Myoglobin Concentration of the Heart ...60
Table 3.5: Physiological Cardiac Parameters ...61
Table 3.6: Model derived parameters ...62
Table 3.7: Simulation parameters ..63
Table 3.8: Sensitivity Analysis of the Parameters ..64
Table 3.9: Values for Standard Set of Parameters ..64
Table 3.10: Steady State Values in Human ..64
Table 4.1: Validation of the Model ...87
LIST OF FIGURES

Figure 1.1: Hemoglobin and Oxyhemoglobin ... 8
Figure 1.2: Oxymyoglobin, Myoglobin and Carboxymyoglobin 9
Figure 1.3: Carboxyhemoglobin ... 10
Figure 1.4: Overview of the Thesis .. 11
Figure 1.5: Stages of Model Development ... 12
Figure 2.1: Primary Model ... 30
Figure 2.2: Basic Concepts of Building a Model ... 31
Figure 3.1: Modified Model ... 65
Figure 3.2: Final Model ... 66
Figure 3.3: Cardiac Output and Carboxyhemoglobin ... 67
Figure 3.4: Two Subcompartment Cardiac Tissue .. 68
Figure 3.5: Vasculature of Cardiac Compartment ... 68
Figure 3.6: Strategy for Developing Prediction Equations for the Model 69
Figure 3.7: Heart Rate and Myocardial Blood Flow ... 70
Figure 3.8: Heart Rate and Myocardial Oxygen Consumption 71
Figure 3.9: Flow chart for the Algorithm ... 72
Figure 4.1: Comparison of Coronary Venous PO2 ... 89
Figure 4.2: Comparison of Myocardial Tissue PO2 in Subcompartment 1 90
Figure 4.3: Comparison of Myocardial Tissue PO2 in Subcompartment 2 91
Figure 4.4: Prediction for Short Duration-High Concentration CO Exposure 92
Figure 4.5: Prediction Summary for Short Duration-High Concentration CO 93
Figure 4.6: Prediction for Long Duration-Low Concentration CO Exposure 94
Figure 4.7: CO Rebreathing During 100% O2 Administration 95
Figure 4.8: Baseline HbCO (1.9%) at Rest and Three Levels of Exercise 96
Figure 4.9: HbCO (10%) at Rest and Three Levels of Exercise 97
Figure 4.10: HbCO (20%) at Rest and Three Levels of Exercise 98
Figure 4.11: HbCO (20%) at Rest and Three Levels of Exercise Followed with 100% O2 99
Figure 4.12: Comparison of 100% O2 and Room Air breathing after CO exposure 100
Figure 4.13: Baseline HbCO (1.9%) - HbCO (5%) - HbCO (15%) 101
LIST OF FILES

1. Thesis. pdf ... viii
CHAPTER 1
Introduction

Chapter 1 explains the importance of the need for developing a model for predicting the extravascular burden of CO on the human heart. The chapter gives a basic introduction to carbon monoxide (CO) toxicity, and details the sources of CO, reactions of CO with the heme pigments in the body and the effects of CO exposure on oxygen \(O_2\) delivery to tissues. This chapter discusses the symptoms, effects and treatment strategies of CO poisoning cases. Finally, the chapter highlights the hypothesis made and goals to be achieved in the following thesis.

1.1 Carbon Monoxide (CO) Toxicity

Carbon Monoxide (CO) is a byproduct of incomplete combustion of carbon-based fossil fuels. CO is generated in toxic amounts by internal-combustion engines, faulty fossil-fuel heating systems, fire accidents, and emissions from modern automobiles in poorly ventilated spaces. The body produces CO as a by-product of hemoglobin degradation, but the gas does not reach toxic concentrations in vivo unless it is inhaled from exogenous sources (like faulty heaters, indoor charcoal grills, cigarette smoke, swimming behind a motorboat or under a houseboat, etc.). Carbon monoxide, which is a colorless, tasteless and odorless gas, is often referred to as an invisible killer as it is difficult to detect. Exposure to CO concentrations exceeding permissible exposure levels (PEL) of 50 ppm over an average of 8 hrs (1, 2) is a significant environmental and occupational health concern. There are approximately 4000 deaths per year occurring in United States due to CO poisoning (3, 4, and 5). CO exposures and poisonings occur more often during the fall and winter, when people are more likely to use gas furnaces, heaters and generators in their homes (4, 6).

CO produces tissue toxicity by impairing oxygen \(O_2\) delivery to the tissues. CO is absorbed by the respiratory tract and diffuses through the alveolar-capillary membrane and enters the blood, following a path similar to that of \(O_2\). The rate of absorption of CO decreases when the partial pressures of CO in blood of the
pulmonary capillaries and the alveolar air reach a state of equilibrium. After being absorbed and diffusing through the respiratory tract, CO combines reversibly with the heme pigments of the body, namely: (i) Hemoglobin (Hb) present in blood (ii) Myoglobin (Mb) present in muscle tissues, and (iii) other membrane bound heme-containing compounds (e.g., cytochromes). Hemoglobin (Hb) is a tetrameric heme protein present in red blood cells whose main function is oxygen (O₂) transport (Figure 1.1.1). O₂ is stored in the lungs as a gas and in the blood. In the blood it is present in two (7) forms: (i) dissolved in plasma (normally 1.5% or 3 ml in 1 liter blood) and (ii) reversibly combined with hemoglobin (normally 98.5% or 197 ml in 1 liter blood). Each hemoglobin molecule can bind to four oxygen molecules forming fully-saturated oxyhemoglobin (O₂Hb), (Figure 1.1.2). Hb binds CO ~220 times more strongly than it binds O₂, to form carboxyhemoglobin (HbCO) (Figure 1.3.1).

Myoglobin (Mb) is a monomeric heme protein present in muscle tissue (Figure 1.2.2) and each myoglobin molecule can bind to one oxygen molecule forming oxymyoglobin (O₂Mb) (Figure 1.2.1). It is an oxygen store and also binds to CO to form carboxymyoglobin (MbCO) (Figure 1.2.3). Mb binds CO ~36 times more strongly than it binds O₂.

Thus CO toxicity causes mortality primarily due to the effects of severe hypoxia by attaching itself to Hb and Mb and reducing the oxygen carrying capacity of these heme proteins. CO usually replaces only two of the four O₂ molecules bound to the heme groups of hemoglobin. In cases of high CO concentrations it is possible that CO may replace the third O₂ molecule by binding to the third heme group (Figure 1.3.2). Thus CO toxic hypoxemia causes changes in the circulatory, respiratory and metabolic demands of the tissue (8-18).

Groups especially susceptible to the hypoxic stress of carbon monoxide exposure would potentially be individuals with cardiovascular and obstructive lung diseases, individuals with cerebrovascular and peripheral vascular diseases, and individuals with anemia. In addition, hospitalized individuals suffering from tissue hypoxia (e.g. shock) or those undergoing operations may be at increased risk. Individuals with undetected or undiagnosed coronary artery disease as well as the fetus, the newborn or, even pregnant women may be assumed to be at increased risk.
because of the anticipated reduced capacity to accommodate hypoxic stress or some inherent sensitivity to hypoxia. Furthermore, other populations such as those living at high altitudes, young children, or older adults may also be at increased risk (2).

1.2 Symptoms, Diagnosis and Treatments of CO Poisoning

Symptoms and effects of CO poisoning are greatly dependent on the concentration and duration of exposure. CO poisoning could be acute (exposure to CO occurs and lasts no longer than 24 hrs) or chronic (exposure to CO that occurs more than once and lasts longer than 24 hrs). Generally, chronic exposures involve lower HbCO saturations due to lower CO exposures. Diagnosis of CO poisoning is difficult unless the event of toxicity occurs at site of high CO concentration like a house on fire or a blast in a coal mine. CO poisoning can be difficult to diagnose because CO poisoning symptoms are similar to those of flu. Specific information regarding the CO exposure duration and the concentration of CO inhaled is often unavailable. In addition valid blood HbCO level measurements are readily obtained but are an unreliable predictor of injury, and there are no clinical tests that can determine the extra vascular burden of CO (e.g., a noninvasive measurement of MbCO levels or tissue PO2 in humans). Although CO poisoning does not cause a fever, other symptoms are similar to those of the flu (including nausea, severe headache, vomiting) and also include neurological sequellae (memory loss, personality and behavior changes, brain damage etc), cardiac abnormalities in ECG, abnormal ventricular function and elevated cardiac biomarkers diagnostic of myocardial injury depending on the type of CO exposure. Treatment for CO poisoned victims involves administering supplemental O2. The treatment is with either normobaric hyperoxia, where 100% Oxygen (O2) is administered if the victim is conscious and HbCO levels in the blood are less than 25%, or hyperbaric hyperoxia where 100% Oxygen (O2) is administered, at 1-3 ATA (1 atmosphere = 760 mm of Hg) pressure, if the victim is unconscious or the HbCO level exceeds 25%. However, there are some problems with the treatment strategies for CO poisoning victims. Decision of the treatment protocol is based on the measured HbCO levels in the
venous blood. Blood %HbCO is readily measurable but is thought to be an unreliable measure of poisoning severity. Carboxymyoglobin (MbCO) levels and tissue partial pressures of oxygen (PO₂) which are more reliable indicators of CO toxicity in the tissue are difficult to measure through any clinical procedures. Treatment strategy is often debatable and it may not be very clear whether hyperbaric hyperoxia rather than normobaric hyperoxia treatment is necessary (19, 20, 21, 22, 23). Despite treatment after CO poisoning, neurological and cardiac sequellae often occur.

1.3 Motivation for the Thesis

CO hypoxia results in impaired O₂ delivery causing a decrease in O₂ uptake by the cells. This diminished O₂ utilization causes alterations in biochemical (cardiac troponin I, phosphocreatine (PCr), lactate) and physiological (cardiac output, rate pressure product, metabolic rate) activities. Elevated cardiac biomarkers (cardiac troponin I ≥ 0.7ng/ml, CK-MB (Creatine kinase MB isoenzyme) mass ≥5.0ng/ml) and diagnostic EKG (electrocardiogram) changes (like ST segment elevation, T-wave changes), abnormal left ventricular (LV) function (like alternations in left ventricular ejection fractions) and regional wall motion abnormality are observed in moderate to severely CO poisoned patients (24). In a population of 230 CO poisoned patients, 44% of deaths were reported to be due to cardiovascular causes such as cardiac arrest, myocardial infarction, congestive heart failure, fatal arrhythmia (24).

Also, there is evidence that workers who are exposed to high CO concentrations have an increased risk for cardiovascular morbidity and mortality (25, 26). The effect of high CO exposures would pose a greater risk for injury during exercise, as there would be increased demand for O₂ in the tissue accompanied with O₂ impairment due to CO binding to hemoglobin and myoglobin. Exercise also increases ventilation which, in turn, increases the amount of CO inhaled and thus the dose of CO.

Coronary circulation is very sensitive to O₂ deprivation as the myocardium has a very high O₂ extraction fraction (Measure of quantity of O₂ delivered to the tissue and is defined as ratio of arterial and venous (A- V) O₂ concentration difference and arterial (A) O₂ concentration) to causing profound effects of CO in the myocardium. Each molecule of myoglobin in the heart is capable of binding to one CO molecule by
means of the heme group to form carboxymyoglobin (MbCO), which would further increase the CO content in the heart tissue causing a decrease in O₂ availability. Also, the contribution of myoglobin diffusion during CO hypoxia is unclear (27, 28, 29). All the above recent reports on cardiac impairment, occurring with CO poisoning motivated scientists to understand the causes of cardiovascular abnormalities in CO poisoning victims (30, 31, 32). Therefore, keeping these facts in mind, the following hypothesis was made for the thesis:

Hypothesis: “During CO exposures and subsequent therapies, the temporal changes of %MbCO in the heart differ from those of %HbCO; in particular, there are times during the therapy %MbCO can sometimes increase when %HbCO is decreasing”.

The importance of this hypothesis is that CO load delivered to the heart impairs oxygen delivery, further affecting the tissue oxygen tension (PtO₂) and O₂ pressure gradients. This CO load is related to both %HbCO in arterial blood perfusing the heart and %MbCO in cardiac tissue. If %MbCO and %HbCO change in opposite directions, then the currently-used clinical indicator of potential injury (i.e., %HbCO) will be inaccurate and possibly misleading. Thus, determining the total CO load on the cardiac cells (or its effect on tissue PO₂) might be a better predictor of injury.

1.4 The Need for our Model

Determination of the burden of CO (vascular - %HbCO and extra vascular - %MbCO) and its effects on tissue PO₂ during uptake and washout would provide a better assessment of risk associated with a range of exposure conditions in CO toxicology. This specific task can be accomplished in two ways:

1. Conduct experiments involving CO exposures
2. Estimate CO burden from a “Mathematical Model”

Conducting experiments involving low CO exposures can be accomplished in human subjects, but it would be unethical to expose subjects to high CO exposures to understand causes of injury due to CO and predict clinical outcomes. Also, these
experiments are difficult to conduct and require detailed care, great expertise and are also expensive. Even if these experiments are conducted, non-invasive measurements of \(MbCO \) are not possible. Also, invasive or non-invasive reliable measurements of tissue oxygenation in healthy human hearts are difficult to make. Experimental measurements of human myocardial \(O_2 \) tension have been reported in patient populations with cardiovascular abnormalities (33, 34). Thus, the best option would be to build a model to predict the burden (vascular-\(HbCO \); extra vascular- \(MbCO \)) of \(CO \) on the human heart by doing simulations for a range of \(CO \) exposures. If one can implement \(O_2 \) interaction equations, the model can also help to predict oxygen tension in the heart. Further, the model can be used to anticipate levels of \(CO \) that may be lethal to the heart or to assess the risk of cardiac injury when exercise is accompanied with \(CO \) exposure. This information would be helpful to design treatment protocols for people exposed to \(CO \) while at work. Thus the approach I decided to take to test the hypothesis is as follows:

Approach: “Since \(O_2 \) and \(CO \) levels in heart are not measurable non-invasively in humans, a plan to estimate these values from a model was made.”

After formulating a hypothesis, the next task was to assess the literature for the availability of an appropriate model for predicting uptake and washout of \(CO \). After making a diligent search, the model developed in our lab by the authors of reference 35 seemed most suitable. The process from setting an objective to reaching a solution is summarized in Figure 1.4.

The reasons for selecting this model are explained in detail in section 2.1 of chapter 2. This model consisted of lumped compartments for lungs, blood (arterial and venous), skeletal tissue and non-muscle tissue. Mass balance equations for \(CO \) were used to represent the compartments (35). However, this model also had some limitations and so the model was further modified in our lab resulting in a better and more efficient model (Bruce, Bruce, and Erupaka, in preparation) which, however, was still inadequate for the present purposes because it did not include a compartment for the heart. Figure 1.5 shows the different stages of model development. Thus, the next task was to accomplish the following goals of the thesis to test the hypothesis made.
The major goals of the thesis are:

(1) Introduce a two compartment cardiac block into the model.

(2) Implement mass balance equations for O_2 and CO.

(3) Test and validate the model with experimental data for conditions of rest, exercise, CO exposure and hypoxic hypoxia and hyperoxia.

(4) Use the developed and validated model to predict extravascular burden of CO and O_2 tension in the cardiac tissue during short-high concentration CO exposures, CO rebreathing studies in 100% O_2, long-low concentration CO exposure, exercise in the absence and presence of CO, and to determine CO concentrations injurious to the heart.
Figure 1.1: Hemoglobin (Hb) and Oxyhemoglobin (HbO₂). Hemoglobin (Figure 1.1.1) is a tetrameric heme protein present in red blood cells. \(\text{O}_2 \) binds to the heme (Fe) protein present in hemoglobin to form oxyhemoglobin (Figure 1.1.2).
Figure 1.2: Oxymyoglobin (MbO_2), Myoglobin (Mb), Carboxymyoglobin ($MbCO$). Myoglobin (Figure 1.2.2) is a monomeric heme protein present in muscle tissue. O_2 binds to the heme (Fe) protein present in myoglobin to form oxymyoglobin (Figure 1.2.2). CO also binds to the heme protein to form carboxymyoglobin (Figure 1.2.3).
Figure 1.3: Carboxyhemoglobin (*MbCO*). CO binds to the heme (*Fe*) protein present in hemoglobin to form carboxyhemoglobin.
Setting an Objective-
Determine risk of hypoxic injury to heart

Hypothesis-
Determining the CO load delivered to heart

Approach-
As O_2 and CO levels in heart are not measurable in humans, plan to estimate it

Access literature and determine a model to test the hypothesis

Modify the Model

Test hypothesis using modified model

Results and Conclusions

Current finding in CO literature-
Cardiac Injury with CO exposure

Figure 1.4: Overview of the Thesis
Use the model to make predictions of CO load and oxygen tension in myocardial tissue for varying CO exposures

Figure 1.5: Stages of Model Development
Chapter 2 provides information on models present in the scientific literature that predict CO uptake and the limitations of these models. This chapter discusses the basis for selecting a specific model for the thesis from the models present in the literature and the necessity to modify the selected model to test the hypothesis made. This chapter also gives a basic introduction to the concepts, simulation software used and an overview of all the compartments present in the model. As it is difficult to measure (non-invasively) carboxymyoglobin levels (MbCO) and tissue O₂ tension (PtO₂) in the human heart, building a model for estimating these parameters seemed the best approach. Modification may include implementing desired features to cater to the needs of the desired model and to overcome the limitations of the available models.

2.1 Previous Models

The CFK (Coburn Forster Kane) model often discussed in the carbon monoxide level (CO) literature predicts carboxyhemoglobin (COHb) levels for acute and chronic CO exposures (Coburn et al. 1965). The CFK equation establishes a relation between the blood COHb levels, rate of endogenous CO production, and CO exchange rate due to respiration. However, this model has certain limitations. For example, the model lumps the total blood volume into a single homogeneous, well mixed compartment and also excludes the dissolved CO or oxygen (O₂) in the blood while determining the COHb levels in the blood. The CFK model analytically solves the linearized CFK equation by assuming a constant O₂Hb concentration in the blood.

equation by accounting for the variation of O_2Hb using iterative methods, analytical solutions etc.

More recently, a mathematical model was developed (36) to predict alveolar partial pressure of CO and blood $HbCO$ as a function of exposure time and CO concentration. CO uptake by blood was predicted taking into account the diffusion based transport mechanisms of CO and the replacement reaction of CO with O_2Hb. Benignus et al. (1995) developed a model to predict blood $COHb$ levels considering variations in inhaled O_2, CO_2 and CO concentrations. But the drawback of these models was that they limited their CO uptake predictions to the vascular compartments. They did not include diffusion of gases from vascular compartments to the surrounding tissue. This results in exclusion of extravascular storage sites of CO like myoglobin present in muscle tissue and cytochrome oxidase in mitochondria. Also, the concept of lumping blood into one single compartment results in loss of physiological relevance related to variability in O_2 concentrations (O_2 content is greater at the arterial side compared to venous side) and partial pressures present in different blood subcompartments, which affects the predicted CO load.

Bruce (2003) developed a model that predicted distribution of CO in the body by considering CO diffusion between the vascular and extravascular compartments. The model (Figure 2.1) had a lung compartment, blood (arterial and venous) compartments, muscle and non-muscle tissue with vascular and extravascular compartments. Herein this model will be referred to as the primary model in this thesis. Mass balance equations for CO were written for all the compartments of the model and are described in detail in (35). An example of the mass balance equation for CO for the alveolar compartment from the above model is as follows:

$$V_L \frac{dC_{ACO}(t)}{dt} = [P_{CO}(t) - P_{ACO}(t)] \frac{V_A}{P_B} - CO\text{flux}_{LB}(t)$$

where V_L is lung volume, C_{ACO} is the alveolar CO concentration, P_{ACO} is the alveolar partial pressure of CO (P_{CO}), P_{CO} is inhaled partial pressure of CO, t is time, and $CO\text{flux}_{LB}(t)$ is the CO flux from lungs to blood defined as

$$CO\text{flux}_{LB}(t) = [P_{ACO} - ((1 - K_v)P_{CO}(t) + K_vP_{CO}(t - d_v))]D_L CO$$
where $P_{ec} CO$ is end-capillary PCO, d_v is the mean transport delay in mixed venous blood, $P_v CO$ is mixed venous partial pressure of CO, and K_v is used to apportion the effective pulmonary capillary PCO between the mixed venous and end-capillary pressures. Vascular mixing in the pulmonary capillary compartment is ignored and $C_{ec} CO$ is determined by adding CO_{fluxLB} to the mixed venous blood, which enters the lungs after the mean transport delay (d_v) from venous blood compartments.

In the modified model (discussed in Section of 3.2 of chapter 3) and final model (discussed in Section 3.3 of chapter 3) the same CO mass balance equations are used for the alveolar compartment (as shown above) and the non-muscle tissue. For the skeletal muscle (tissue and blood subcompartments), CO mass balance equations in the final model (model developed for thesis) are described for two tissue subcompartments and three blood vascular subcompartments, unlike equations used for the single blood vascular and tissue compartments discussed in (35).

To determine the partial pressure of carbon monoxide (PCO) in each blood compartment of the primary model it was necessary to solve three simultaneous algebraic equations of O_2 (discussed in Reference 35):

1. Oxyhemoglobin Dissociation Curve (ODC).
2. Haldane’s Equation.

2.1.1 Oxyhemoglobin Dissociation Curve

The oxyhemoglobin dissociation curve gives the saturation of oxygen as a function of the partial pressure of oxygen. There are number of factors that affect the binding of oxygen to hemoglobin which change the shape of the curve. Factors that affect the ODC are variation of the hydrogen ion concentration (pH), effects of carbon dioxide, effects of 2,3-DPG (2,3-Diphosphoglycerate), temperature, carbon monoxide, effects of methemoglobinemia (a form of abnormal hemoglobin) and fetal hemoglobin (37). ODC is shifted to the right by an increase in temperature, 2, 3-DPG,
or PCO₂, or a decrease in pH. In this model, for the conditions that the authors intend to simulate the most important factor that may affect the curve is the carbon monoxide level. In the absence of CO, the sigmoidal shaped curve approaches a horizontal asymptote as the partial pressure of oxygen exceeds approximately 70 mmHg and declines with a steep slope toward a point of inflexion when the partial pressure of oxygen falls approximately below 60 mmHg. Carbon monoxide also has the effect of shifting the curve to the left. Thus, a set of equations were derived to represent the O₂ dissociation relationship in the presence of CO by determining the dependence of the Hill parameters on the HbCO level and then applying a correction to the Hill equation at low O₂ pressures. The method for the derivation is detailed in the paper (35). When the inspired CO levels are zero, the ODC retains its shape. Except at low PO₂ values, a reasonable approximation to this curve for any given level of HbCO is the Hill equation given below

\[
\frac{C_{O_2}}{C_{O_2(\text{max})}} = \frac{\left(\frac{P_{O_2}}{P_{50}}\right)^n}{1 + \left(\frac{P_{O_2}}{P_{50}}\right)^n}.
\]

Where \(P_{50} = a_{p1}[1 + \exp(a_{p2} \cdot \%COHb)] - 1 \) and \(n = a_{n1} + a_{n2} \cdot \exp(-0.025 \cdot \%COHb) \)

\(a_{p1}, a_{p2}, a_{n1}, a_{n2} \) are constants resulting from curve fitting for various concentrations of CO. \(P_{50} \) is the PO₂ necessary to half-saturate the Hb.

The ODC for Mb (Figure 5 of reference 38) is also represented by a Hill equation, but it is assumed that its parameters are independent of the carboxymyoglobin (MbCO) level except for that of the maximum O₂-binding capacity. At each time step of the simulation, the dissociation curve for Mb and the Haldane equation for Mb are satisfied simultaneously via an implicit solution using an iterative procedure.
The Hill equation for myoglobin is

\[PO_2 = \frac{[O_2Mb] \cdot P_{50}}{1 - [O_2Mb]} \]

where \(PO_2 \) is the oxygen tension and \([O_2Mb]\) is the fractional \(O_2 \) saturation of myoglobin. \(P_{50} \) is the \(PO_2 \) at which myoglobin is half-saturated with oxygen and is dependent on temperature and pH.

2.1.2 Haldane’s Equation

\(PCO \) was determined by first solving for the other variables, assuming that \(PCO \) is constant across an integration step, and then updating its value via the Haldane equation as shown below.

\[\frac{M_{Hb}P_{CO}}{COHb} = \frac{P_{O_2}}{O_2:Hb} \]

\(M_{Hb} \) is the Haldane affinity ratio for hemoglobin and has a value of 218. The volumetric carrying capacity of \(Hb \) for \(O_2 \) or \(CO \) is calculated as the product of \(Hb \) concentration and the nominal maximum \(O_2 \) content, 1.38 ml \(O_2/g \ Hb \). The Haldane equation for myoglobin is

\[\frac{M_{Mb}P_{CO}}{COMb} = \frac{PO_2}{O_2:Mb} \]

\(M_{Mb} \) is the Haldane affinity ratio for myoglobin and has a value of 36. At each time step of the simulation, the dissociation curve for \(Mb \) and the Haldane equation for \(Mb \) were satisfied simultaneously via an implicit solution using an iterative procedure.

2.1.3 Blood to Tissue Oxygen Flux Equations

The blood to tissue oxygen flux equations are described in (35). It was assumed that \(O_2 \) diffuses from the vascular to the extravascular subcompartments of the tissues
at rates just sufficient to meet the metabolic demand of the tissue. Endogenous CO production was included by assuming that all endogenous CO is delivered to the mixed venous compartment.

2.2 Chosen Model and Proposed Modifications

The model (primary model) developed by Bruce (2003) fit the criteria of the model needed for the thesis as the model accounted for transport of CO in the pulmonary compartment, CO bound to Hb and dissolved in plasma, and transport of CO from the blood flow to surrounding tissue. This model consists of five major compartments: 1. The arterial blood, 2. The Lungs, 3. Skeletal Muscle, 4. Non-muscle tissue and 5. Mixed venous blood compartments (Figure 2.1). Herein this model will be referred to as the primary model in this thesis. However, O₂ parameters were assumed to be constant in this model and were passed as arguments.

Thus the primary model was chosen and certain modifications were proposed to test the hypothesis made. The proposed modifications are as follows:

Tissue O₂ tension which is an important predictor of the oxygenation state of the tissue can also be anticipated by adding equations for O₂ mass balances. This would also aid in accounting for the nonlinearities in an efficient way.

The model predictions would be more physiologically relevant if the single muscle compartment was divided into subcompartments. This would allow diffusion of gases within the tissue resulting in better solution estimates for O₂ tensions and CO load. Therefore, in our lab we intended to replace the single lumped muscle compartment with two subcompartments. Regional heterogeneity of blood flow and O₂ consumption in skeletal muscle demanded development of predictive equations to calculate the arm, the trunk and the leg skeletal mass distributions. Also, a formula was developed to predict an increase in cardiac output with increased COHb level in blood. A paper on the updated model is in preparation (Bruce, Bruce, and Erupaka).

Though heart is a muscle tissue, it has a different morphology from skeletal muscle tissue. Cardiac muscle has a different capillary density (39), resting blood flow (Table 2.1) and metabolic rate (Table 2.2) from that of skeletal muscle (Table 2.3 and Table 2.4). Lumping the skeletal muscle and cardiac muscle into a single
compartment would not be a good assumption to make. Thus, it would be important to add a heart compartment to the model in order to model CO uptake and PO_2 in the myocardium and relate them to cardiac injury.

Another objective was to develop better and more efficient algorithms to determine PO_2 and PCO in the compartments. The algorithms used in the primary model had convergence issues while solving the O_2 dissociation curves of Hb and Mb (especially solving for PO_2 and PCO when certain conditions caused ODC to be flat) and resulted in numerical errors. It was also important to modify the blood to tissue oxygen flux equations by evaluating them as a function of pressure gradients and diffusion coefficients of O_2 instead of making an assumption of equality between O_2 flux and metabolic demand of the compartment.

2.3 Basic Concepts of the Model

The basic concept used in developing the model is the continuum theory of conservation of mass. Figure 2.2 gives a summary of basic concepts needed to build a model. Mass balance equations are written for CO and O_2 for all compartments. Mass balance equations state that for any substance Q in a compartment,

$$\frac{dQ}{dt} = (\text{rate of inflow} + \text{rate of creation}) - (\text{rate of outflow} + \text{rate of destruction})$$

The model diagram and dynamic equations are described in detail in chapter 3. The simulation tool or software used to apply principles of physiology and engineering to a model is ACSL (Advanced Continuous Simulation Language). This tool has been exclusively developed for the purpose of modeling systems described by time dependent, non-linear differential equations or transfer functions. ACSL application areas include control system design, missile and aircraft simulation, power plant dynamics, biomedical systems, vehicle handling, heat transfer analysis, etc. Most of its basic elements are defined from FORTRAN, however the latest version is a fusion of various other languages like C++, JAVA, etc., which supports enhanced graphical user interface (GUI) and displays. The algorithm used for integration is the Runge-Kutta-Fehlberg algorithm with fixed order and variable step. The algorithm evaluates the derivative three times per step and makes a second order advance. If any error in a state is larger than that allowed, the step size is reduced.
until the error criteria are satisfied for all the states. Apart from the integration algorithm which is built-in in ACSL, other algorithms are developed as macros and called to solve certain simultaneous algebraic equations which are discussed in section 3.8 of chapter 3.

In general models have several parameters to be estimated and the values for these parameters are either taken from the literature available or they are estimated. When available, subject-specific values of model parameters were obtained from the literature or directly from the investigators. Usually, the age, weight, and height of a subject were available, and often one or more additional parameters, such as Hb concentration, total blood volume, cardiac output (Q'), or ventilation, were provided by the investigators. In some cases, average values for a group of subjects were used. Predictive formulas were used to estimate Q' (when it was not measured) and tissue volume of skeletal muscle (V_m) as functions of body weight (BW), age (A), height (HT), and gender (G; has a value of 1 for a male and 0 for a female subject). Predictive formulas were used from published papers,

$$Q' = (54.1 + 7.9G)BW + 1400 - 200G \quad (40)$$

Cardiac output was calculated in ml/min

$$V_m = 1000(0.244BW + 7.80HT + 6.6G - 0.098A - 3.3)/1.04 \quad (41)$$

Tissue volume of skeletal muscle was calculated in ml.

2.4 Anatomy of the Heart

The heart is the mechanical pump that circulates blood through the blood vessels involuntarily maintaining the homeostasis of blood to tissue exchange. The heart has several surfaces (anterior, inferior) and membranes that surround and protect the heart without interrupting the contraction and vigorous movement of heart. The heart wall consists of three layers namely the epicardium which is the external layer, the myocardium which is the middle layer of the wall and the endocardium, the inner layer of the heart wall. The myocardium is an involuntary cardiac muscle tissue which makes up the bulk of the heart and is responsible for the pumping action of the
heart. There exists oxygen supply and consumption heterogeneity in these layers of the heart wall corresponding to variable oxygen tensions (Table 2.5).

The heart has four chambers. The right and left atria which receive blood from the great veins (superior vena cava, inferior vena cava, coronary sinus) and from the lungs through the pulmonary veins, respectively. The right and left ventricles perform the pumping action of blood. However, these chambers also vary in thickness according to their function. The left ventricle pumps blood to vasculature at greater distances with large blood flow resistance resulting in higher pressures compared to the right ventricle. Thus the left ventricle has a thicker wall as it works harder. The left heart is generally considered the energy source of the system. The greater work load in the left ventricle results in higher blood flow through the cardiac muscle and greater oxygen consumption compared to other chambers of the heart, as the tissues match their vascular function to their metabolic needs. During resting conditions, the myocardial oxygen extraction fraction is 60-70% (42).

It is a known fact that the heart requires energy to maintain ionic balance and synchronous contractions. This energy is supplied by the ATP (Adenosine Tri Phosphate), which needs oxygen for aerobic metabolism to take place. In cases of increased myocardial stress, conditions of hypoxia, hypoxemia or CO poisoning, the energy metabolism cycles are disrupted (43-47) and an increase in coronary supply should occur to prevent tissue hypoxia. Thus, modeling O_2 delivery and demand is needed to estimate the burden of hypoxia on the cardiac tissue. As CO impairs oxygen delivery, causing discrepancies in the tissue-blood PO_2 gradients, the objective was to develop a model to estimate the oxygen tension in the cardiac tissue and also predict the burden of the CO load delivered to the heart.
Table 2.1: Myocardial Blood Flow

<table>
<thead>
<tr>
<th>Species</th>
<th>Condition</th>
<th>Region</th>
<th>Value (ml/min/g)</th>
<th>Technique</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baboons</td>
<td>Awake, Sitting</td>
<td>Left ventricle</td>
<td>2.41 ± 0.90 ml/min/g (80%)</td>
<td>15 um Microspheres</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Right ventricle</td>
<td>1.74 ± 0.73 ml/min/g (16%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dogs</td>
<td>Sedated - Responsive</td>
<td>Left ventricle</td>
<td>0.96 ± 0.11 ml/min/g</td>
<td>Microspheres</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Right ventricle</td>
<td>0.77 ± 0.07 ml/min/g</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interventricular septum</td>
<td></td>
<td>0.91 ± 0.10 ml/min/g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dogs</td>
<td>Anesthetized</td>
<td>Left ventricle</td>
<td>1.14 ± 0.38 ml/min/g</td>
<td>Microspheres</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Right ventricle</td>
<td>0.72 ± 0.28 ml/min/g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dogs</td>
<td>anesthetized</td>
<td>Left ventricle</td>
<td>0.86 ml/min/g</td>
<td>Microspheres</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Right ventricle</td>
<td>0.48 ml/min/g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog-closed chest</td>
<td>anesthetized</td>
<td>Left ventricle</td>
<td>1.0 ml/min/g</td>
<td>Microspheres</td>
<td>59</td>
</tr>
<tr>
<td>Humans 25 ± 3 yr</td>
<td>[LV=196 ± 38 g]</td>
<td>Left ventricle</td>
<td>0.79 ml/min/g</td>
<td>PET - semi-supine</td>
<td>60</td>
</tr>
<tr>
<td>Humans 46±12 yr</td>
<td>[LV=193 ± 20 g]</td>
<td>Left ventricle</td>
<td>0.88 ± 0.19 ml/min/g</td>
<td>PET</td>
<td>61</td>
</tr>
</tbody>
</table>

(Table also referred in Section 3.4)
Table 2.2: Myocardial Oxygen Consumption

<table>
<thead>
<tr>
<th>Species</th>
<th>Region</th>
<th>Value (ml/min/100g)</th>
<th>Technique</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Awake Dog</td>
<td>Right ventricle</td>
<td>4.7 ± 0.5</td>
<td>BNII nephelometer</td>
<td>51</td>
</tr>
<tr>
<td>Dog</td>
<td>Right atrium</td>
<td>4</td>
<td>"</td>
<td>52</td>
</tr>
<tr>
<td>Dog</td>
<td>Left ventricle</td>
<td>8.6</td>
<td>"</td>
<td>52</td>
</tr>
<tr>
<td>Dog</td>
<td>Left atrium</td>
<td>0.8</td>
<td>"</td>
<td>52</td>
</tr>
<tr>
<td>Dog</td>
<td>Whole heart</td>
<td>8.2 ± 2.1</td>
<td>PET</td>
<td>53</td>
</tr>
<tr>
<td>Dog</td>
<td>Whole heart</td>
<td>7.0 ± 1.5</td>
<td>PET</td>
<td></td>
</tr>
<tr>
<td>Dog</td>
<td>Left ventricle</td>
<td>8.8 ± 1.5</td>
<td>PET</td>
<td>54</td>
</tr>
<tr>
<td>Human</td>
<td>Heart</td>
<td>8.2+/−2.1 ml/min/100g</td>
<td>11C-acetate and PET</td>
<td>53</td>
</tr>
</tbody>
</table>

(Table also referred in **Section 3.4**)

Table 2.3: Skeletal Muscle Blood Flow

<table>
<thead>
<tr>
<th>Values (ml/min/100ml tissue)</th>
<th>Species</th>
<th>Region</th>
<th>Method</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4±0.6</td>
<td>Human</td>
<td>Gastrocnemius</td>
<td>133Xe clearance technique</td>
<td>62</td>
</tr>
<tr>
<td>1.6±0.4</td>
<td>Human</td>
<td>Brachioradialis</td>
<td>133Xe clearance technique</td>
<td>"</td>
</tr>
<tr>
<td>1.8±0.7</td>
<td>Human</td>
<td>Flexor digitorum superficialis</td>
<td>133Xe clearance technique</td>
<td>"</td>
</tr>
<tr>
<td>1.5±0.6</td>
<td>Human</td>
<td>Biceps</td>
<td>133Xe clearance technique</td>
<td>"</td>
</tr>
<tr>
<td>1.6±0.4</td>
<td>Human</td>
<td>Triceps</td>
<td>133Xe clearance technique</td>
<td>"</td>
</tr>
<tr>
<td>1.4±0.6</td>
<td>Human</td>
<td>Tibialis</td>
<td>133Xe clearance technique</td>
<td>"</td>
</tr>
<tr>
<td>1.6±0.6</td>
<td>Human</td>
<td>Quadriceps</td>
<td>133Xe clearance technique</td>
<td>"</td>
</tr>
<tr>
<td>2± 0.5</td>
<td>Human</td>
<td>Leg proximal</td>
<td>auto radiographic</td>
<td>50</td>
</tr>
<tr>
<td>Values (ml/min/100ml tissue)</td>
<td>Species</td>
<td>Region</td>
<td>Method</td>
<td>Reference</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------</td>
<td>-----------------</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>3.1±1.7</td>
<td>Human</td>
<td>Muscle</td>
<td>emission tomography and 15 O labelled water</td>
<td>63</td>
</tr>
<tr>
<td>1.9± 0.5</td>
<td>Human</td>
<td>Leg proximal</td>
<td>auto radiographic method</td>
<td>50</td>
</tr>
<tr>
<td>1.9± 0.5</td>
<td>Human</td>
<td>Leg middle</td>
<td>auto radiographic method</td>
<td>"</td>
</tr>
<tr>
<td>1.6± 0.4</td>
<td>Human</td>
<td>Leg distal</td>
<td>auto radiographic method</td>
<td>"</td>
</tr>
<tr>
<td>1.4± 0.3</td>
<td>Human</td>
<td>Leg distal</td>
<td>auto radiographic method</td>
<td>"</td>
</tr>
<tr>
<td>1.4± 0.64</td>
<td>Human</td>
<td>Brachioradialis</td>
<td>NIRS technique after venous occlusion</td>
<td>49</td>
</tr>
<tr>
<td>0.81± 0.47</td>
<td>Human</td>
<td>Flexor digitorum superficialis</td>
<td>NIRS IO50</td>
<td>64</td>
</tr>
<tr>
<td>0.72± 0.32</td>
<td>Human</td>
<td>Flexor digitorum superficialis</td>
<td>NIRS IO36</td>
<td>"</td>
</tr>
<tr>
<td>Values (ml/min/100ml tissue)</td>
<td>Species</td>
<td>Region</td>
<td>Method</td>
<td>Reference</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------</td>
<td>--------------------</td>
<td>---------------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>1.42± 1.04</td>
<td>Human</td>
<td>Brachioradialis</td>
<td>Fick/plethysmography</td>
<td>64</td>
</tr>
<tr>
<td>2.06± 0.7</td>
<td>Human</td>
<td>Forearm</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>2.6± 1.2</td>
<td>Human</td>
<td>Calf-profound flexors</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>3.1± 0.27</td>
<td>Human</td>
<td>Forearm</td>
<td>venous occlusion and strain gauge plethysmography</td>
<td>65</td>
</tr>
<tr>
<td>3.12±1.55</td>
<td>Human</td>
<td>Femoral</td>
<td>(15O)H2O and PET</td>
<td>"</td>
</tr>
<tr>
<td>3±2</td>
<td>Human</td>
<td>Skeletal muscle</td>
<td>(15O)H2O,(15O)CO and PET</td>
<td>66</td>
</tr>
</tbody>
</table>

(Table also referred in Section 3.1, Section 3.2.2)
Table 2.4: Skeletal Muscle Oxygen Consumption

<table>
<thead>
<tr>
<th>Species</th>
<th>Region</th>
<th>MRO₂ Value (ml/min/100g)</th>
<th>Technique</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>Forearm</td>
<td>0.15 ± 0.01</td>
<td>NIRS -arterial occlusion</td>
<td>48</td>
</tr>
<tr>
<td>Human</td>
<td>Forearm</td>
<td>0.114 ± 0.03</td>
<td>NIRS -venous occlusion</td>
<td>49</td>
</tr>
<tr>
<td>Human</td>
<td>Quadriceps femoris</td>
<td>0.21 ± 0.04</td>
<td>PET</td>
<td>50</td>
</tr>
<tr>
<td>Human</td>
<td>Quadriceps femoris</td>
<td>0.21 ± 0.03 mid</td>
<td>PET</td>
<td>50</td>
</tr>
<tr>
<td>Human</td>
<td>Quadriceps femoris</td>
<td>0.17 ± 0.02 most distal</td>
<td>PET</td>
<td>50</td>
</tr>
</tbody>
</table>

(Table also referred in Section 3.2, Section 3.2.2)
Table 2.5: Myocardial Tissue Oxygen Tension in Various Species

<table>
<thead>
<tr>
<th>Species</th>
<th>Region</th>
<th>Mean PO2 Value</th>
<th>Arterial PO2</th>
<th>Method</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mice (N=5)</td>
<td>Left ventricle mid-myocardium</td>
<td>Mean PO2 = ~15.5 mm Hg</td>
<td></td>
<td>OxySpin - EPR</td>
<td>145</td>
</tr>
<tr>
<td>Cat (N=6)</td>
<td>Surface of beating heart (histogram) (~ 5 - 60 Torr)</td>
<td>Median PO2 = 31 mm Hg "Steady state" (normoxia)</td>
<td></td>
<td>Platinum electrode 8 mm</td>
<td>146</td>
</tr>
<tr>
<td>Cat (N=6)</td>
<td>Surface of beating heart (histogram) (~ 5 - 125 Torr)</td>
<td>42 mm Hg 464.7 mm Hg</td>
<td></td>
<td>Platinum electrode 8 mm</td>
<td>146</td>
</tr>
<tr>
<td>Cat (N=6)</td>
<td>Surface of beating heart (histogram) (~ 0 - 15 Torr)</td>
<td>35 mm Hg 259.3 mm Hg</td>
<td></td>
<td>Platinum electrode 8 mm</td>
<td>146</td>
</tr>
<tr>
<td>Cat (N=6)</td>
<td>Surface of beating heart (histogram) (~ 0 - 15 Torr)</td>
<td>4 mm Hg (79% = 0-5 Torr) 18.7 mm Hg</td>
<td></td>
<td>Platinum electrode 8 mm</td>
<td>146</td>
</tr>
<tr>
<td>Mouse (N=7)</td>
<td>Mid-myocardium</td>
<td>16.4 ± 0.7 mm Hg (normoxia)</td>
<td></td>
<td>LiPc crystals - EPR</td>
<td>147</td>
</tr>
<tr>
<td>Dog (N=24)</td>
<td>Left ventricle 6 mm deep</td>
<td>42±7 mm Hg 143 ± 23</td>
<td></td>
<td>Paratrend probe</td>
<td>147</td>
</tr>
<tr>
<td>Dog (N=5)</td>
<td>Anterior wall of left ventricle</td>
<td>36±8 mm Hg</td>
<td></td>
<td>Polarographic Clark type</td>
<td>148</td>
</tr>
<tr>
<td>Dog (N=12)</td>
<td>Left epicardium (2 mm deep) "coronary stenosis"</td>
<td>52±7 mm Hg</td>
<td>Ventilated with 100% O2 to maintain normocapnia</td>
<td>Monopolar Polarographic needle</td>
<td>149</td>
</tr>
<tr>
<td>Dog (N=9)</td>
<td>Left ventricular myocardium: shallow - before bypass</td>
<td>17.1 mm Hg 65 mm Hg</td>
<td></td>
<td>Mass spec</td>
<td>150</td>
</tr>
<tr>
<td>Species</td>
<td>Region</td>
<td>Mean PO2 Value</td>
<td>Arterial PO2</td>
<td>Method</td>
<td>Reference</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>----------------</td>
<td>--------------</td>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td>Dog (N=9)</td>
<td>Left ventricular myocardium: deep - before bypass</td>
<td>14.5 mm Hg</td>
<td>65 mm Hg</td>
<td>Mass spec</td>
<td>150</td>
</tr>
<tr>
<td>Dog (N=9)</td>
<td>Left ventricular myocardium: shallow - after bypass</td>
<td>28.3 mm Hg</td>
<td>65 mm Hg</td>
<td>Mass spec</td>
<td>150</td>
</tr>
<tr>
<td>Dog (N=12)</td>
<td>Left ventricular myocardium: 3 mm deep - subepicardium</td>
<td>29.5 ± 2.5 mm Hg</td>
<td>Coronary blood flow in LAD=29.7 ± 3.9 ml/min</td>
<td>polarography</td>
<td>151</td>
</tr>
<tr>
<td>Pig (N=13)</td>
<td>Left ventricle (surface of epicardium)</td>
<td>49 ± 2 mm Hg</td>
<td>23 ± 1 mm Hg</td>
<td>Clark-type electrodes</td>
<td>151</td>
</tr>
<tr>
<td>Human M 38yr</td>
<td>Right ventricular myocardium: 6 mm deep</td>
<td>39.73 mm Hg; (median=28)</td>
<td>168-210 mm Hg</td>
<td>Platinum needle electrode</td>
<td>152</td>
</tr>
<tr>
<td>Human M 42yr</td>
<td>Left ventricular myocardium: 6 mm deep</td>
<td>19.4 mm Hg; (median=17)</td>
<td>78-126 mm Hg</td>
<td>Platinum needle electrode</td>
<td>152</td>
</tr>
<tr>
<td>Human F 8yr</td>
<td>Left ventricular myocardium: 6 mm deep</td>
<td>27.4 mm Hg; (median=24)</td>
<td>48-51</td>
<td>Platinum needle electrode</td>
<td>152</td>
</tr>
<tr>
<td>Human (N=13)</td>
<td>Left ventricle - mid-myocardium</td>
<td>42 mm Hg (n=15)</td>
<td>93 to 470 mm Hg</td>
<td>mass spec</td>
<td>153</td>
</tr>
<tr>
<td>Piglets</td>
<td>Epicardial surface of left ventricle</td>
<td>16.8 ± 4.2 mm Hg</td>
<td>106 ± 5.5 on room air</td>
<td>phosphorescent O2</td>
<td>153</td>
</tr>
</tbody>
</table>
Figure 2.1: Primary Model. The model consists of five major compartments. Mass balance equations were written for CO. CO enters through the lungs and diffuses to the muscle tissue and non-muscle tissue compartments via the arterial blood compartment. CO then enters the venous blood compartments after a time delay. For the detailed figure refer to 35 (Figure also referred in Section 3.1)
Figure 2.2: Basic Concepts of Building a Model. The basic concepts for building a model are determining the principle for the model (conservation of mass), sketching the model diagram, determining the parameters, and choosing suitable software to build the model.
CHAPTER 3
Model Description

Chapter 3 discusses a brief overview of the modifications to the primary model. The chapter explains the general form of the mass balance equations for \(O_2 \) and \(CO \) for a model with two subcompartments. After a brief description of the cardiac compartment of the model, the mass balance equations written for \(O_2 \) and \(CO \) for each blood and cardiac tissue subcompartment are explained in detail. Parameter estimation for the cardiac compartment and development of predictive equations are also discussed in this chapter. Predictive equations are developed for: (i) estimating the volumes of muscular regions (arms, legs and trunk) for males and females (ii) percent increase in cardiac output and heart rate as functions of increased \(HbCO \) levels in the blood, (iii) cardiac output and heart rate as functions of total body oxygen consumption, (iv) percent increase in heart rate as a function of increased \(HbCO \) levels in the blood. Estimation equations were also developed for: (v) myocardial oxygen consumption, and (vi) myocardial blood flow, both as functions of heart rate. Sensitivity analysis is performed and parameters that influence the oxygen tension in the myocardial tissue and vascular \(PO_2 \) are determined. This chapter also explains the validation protocol for the cardiac compartment of the whole body model where predicted data are compared with experimental values (from humans and animals during conditions of normoxia, hypoxia, exercise and hyperoxia).

3.1 Overview of Desired Model

In our lab, the initial model (referred to as the primary model in this thesis, Figure 2.1) developed by Dr. Bruce (2003) was modified to produce a second model (referred to as the modified model in this thesis, Figure 3.1), which accounts for mass balance of oxygen (Bruce, Bruce, and Erupaka, manuscript in preparation). Additions in this model include \(O_2 \) mass balance equations, an algorithm to calculate \(PO_2 \) corresponding to the concentration of oxygen halfway between the inlet and outlet of the vascular subcompartment of a tissue, and a regression equation to predict
the associated increase in cardiac output due to an increase in COHb level in the blood. Also, skeletal muscle mass was distributed into volumes of muscular regions (arms, legs and trunk) for males and females to account for regional heterogeneities in muscle blood flow (Table 2.3) and \(O_2 \) consumption (Table 2.4). The physiological phenomenon of arterio-venous shunting was implemented in the lungs. Later, in an enhancement of the modified model, a two subcompartment cardiac compartment was added (referred to as the final model in this thesis, Figure 3.2). Development of this cardiac compartment in the model is the first main goal of this thesis.

The skeletal and cardiac muscles exhibit major differences in morphology, blood flow and \(O_2 \) demand. Also, cardiac muscle works constantly to pump blood unlike the skeletal muscle, and it would be inappropriate to lump the cardiac muscle with the resting skeletal muscle. In the process of building the cardiac compartment various other prediction equations were developed to estimate parameters needed for the model. Parameters like myocardial \(O_2 \) consumption and myocardial blood flow were predicted as functions of heart rate; cardiac output and heart rate were calculated from body oxygen consumption when values for heart rate and cardiac output were not available. Also, increase in heart rate was predicted as a function of increased COHb levels in blood.

3.2 Modified Model

The modified model consists of five major compartments: 1. The arterial blood, 2. The Lungs, 3. Skeletal Muscle with two subcompartments, 4. Non-muscle tissue and 5. Mixed venous blood compartments (Figure 3.1). Mass balance equations are written for oxygen \((O_2) \) and carbon monoxide \((CO) \) for each of these compartments to model whole body uptake of, and distribution of, \(CO \) and \(O_2 \). Section 3.2.1, explains the mass balance equation of \(O_2 \) for the alveolar compartment, and Sections 3.2.2 and 3.2.3 introduce the general form of mass balance equations of \(O_2 \) and \(CO \) for the vascular and tissue compartments of the modified model.
3.2.1 Mass Balance Equations for the Alveolar Compartment

The O_2 mass balance equation for the alveolar compartment was added to the model as follows,

$$V_L \frac{dC_AO_2(t)}{dt} = [P_iO_2(t) - P_AO_2(t)] \frac{V_A}{P_B} - \text{O}_2 \text{flux}_{LB}$$

where, V_L is lung volume, C_AO_2 is the alveolar O_2 concentration, P_AO_2 is the alveolar partial pressure of oxygen, P_iO_2 is inhaled PO_2, t is time, V_A is alveolar ventilation, P_B is barometric pressure, and $O_2 \text{flux}_{LB}(t)$ is the oxygen flux from lungs to blood, defined as

$$O_2 \text{flux}_{LB}(t) = Q (1 - SF)[C_{ep}O_2(t) - C_{mx}O_2(t)].$$

Where Q is the cardiac output and SF is the shunt fraction, the percentage of pulmonary blood flow that passes from the right to left heart without undergoing oxygenation by the lung. $C_{ep}O_2(t)$ is the end pulmonary oxygen concentration and $C_{mx}O_2(t)$ is the oxygen concentration in the mixed venous compartment. It is assumed that the end pulmonary partial pressure of oxygen ($P_{ep}O_2$) equals alveolar partial pressure of oxygen (P_AO_2). CO mass balance equations for the alveolar compartment are used from the primary model which was discussed in Section 2.1 of chapter 2.

3.2.2 Mass Balance Equations for Blood Compartments

The mass balance equations for O_2 in the arterial, mixed venous and vascular subcompartments of the skeletal muscle tissue are each described by an equation of the general form

$$V_i \frac{dC_iO_2(t)}{dt} = [C_i^{in}(t) - C_iO_2(t)]Q_i - O_2 \text{Flux}_i(t)$$

where i is the index representing the arterial (ar), mixed venous (mx), skeletal muscle (subcompartment m1 or m2), or venous (v) compartments. V_i is volume of the compartment i, C_i^{in} is the concentration of O_2 in blood entering the compartment.
i, \(C_i O_2 \) is the total concentration of \(O_2 \) in the blood compartment \(i \), and \(Flux_i \) is the rate of diffusion of \(O_2 \) out of the vascular compartment \(i \). (Mass balance equations of \(O_2 \) and \(CO \) for individual cardiac compartments are discussed in Section 3.3 of this chapter.)

The flux is zero for the arterial and venous blood compartments. For the non-muscle (other) - tissues (ot) blood compartment, the \(Flux_{ot} \) is defined as

\[
O_2 Flux_{ot}(t) = [P_{bot} O_2(t) - P_{bot} O_2(t)] D_{ot} O_2
\]

where, \(P_{bot} O_2(t) \) is the mean partial pressure of \(O_2 \) in the arterial inflow and venous outflow of the non-muscle vascular compartment. \(P_{ot} O_2(t) \) is the partial pressure of \(O_2 \) in the non-muscle tissue compartment. \(D_{ot} O_2 \) is the blood to tissue diffusion coefficient of oxygen. The non-muscle soft tissue in the model is a single compartment. Because it does not contain Mb, its uptake of \(CO \) is very small.

For the skeletal muscle (m) blood subcompartments, the general form of the equation for \(Flux_{mj} \) is as follows:

\[
O_2 Flux_{mj,j=1,2,3}(t) = G_{mj}(P_{mj} O_2) \cdot [D_{mj} O_2 \cdot (P_{mj} O_2(t) - P_{m(ot)m2} O_2(t))]
\]

\[
G_{mj}(P) = 1 - \left[\frac{P}{1500} \right]^3 \quad \text{and} \quad D_{mj} O_2 = \frac{PS_m * SO_2 * V_{m(ot)m2}}{1.04}
\]

where \(j \) is the index of the blood vascular subcompartments \(j =1,2,3 \) for blood subcompartments 1 ,2 and 3, respectively. \(D_{mj} O_2 \) is the blood to muscle tissue diffusion coefficient. \(P_{mj} O_2(t) \) is the partial pressure of \(O_2 \) corresponding to the concentration of oxygen halfway between the inlet and outlet of the vascular subcompartment of the skeletal muscle. \(P_{m1} O_2(t) \) and \(P_{m2} O_2(t) \) are the two subcompartment (m1, m2) tissue \(O_2 \) tensions. \(V_{m1} \) and \(V_{m2} \) are the volumes of the muscle tissue subcompartment 1 and 2, respectively. \(SO_2 \) is the solubility of oxygen in plasma and \(PS_m \) is the permeability surface area product of the skeletal muscle.
Gsf(P) is a heuristic “gain” whose only purpose is to reduce the diffusion coefficient in hyperbaric O_2 (which is not considered in this thesis). During hyperbaric O_2, hemoglobin is completely saturated with O_2 and dissolved O_2 concentrations increase, thereby resulting in a decrease of the effective diffusion coefficient of O_2. $Gsf = 1$ for all simulations herein. The diffusion coefficient of O_2 is directly proportional to permeability surface area product. Greater permeability of the membrane for O_2 means that the diffusion coefficient of O_2 from blood is greater and efficiency of O_2 transport from blood to tissue is greater. O_2 flux depends on the pressure gradient and the diffusion coefficient, $D_{bm(j=1,2,3)}O_2$.

The total concentration of O_2 in the blood compartment, $C_{(j=1,2,3)}O_2(t)$, is calculated from dissolved and Hb-bound O_2 concentration components so that

$$C_{(j=1,2,3)}O_2(t) = O_2Hb_j(t) + SO_2.P_jO_2(t),$$

where O_2Hb is the oxygen bound to hemoglobin, $P_{(j=1,2,3)}O_2(t)$ is the partial pressure of O_2 in the muscle blood subcompartment j.

Mass balance equations for CO in the arterial, mixed venous and non-muscle tissue are described in reference 35. CO mass balance equations for vascular subcompartments of the skeletal muscle are each described by an equation of the form

$$V_i \frac{dC_iCO(t)}{dt} = [C_i^{in}CO(t) - C_iCO(t)]Q_i - Flux_iCO(t)$$

where $i=m1$ or $m2$, the index representing skeletal muscle subcompartment 1 (m1), or muscle subcompartment 2 (m2). $C_i^{in}CO(t)$ is the concentration of CO in blood entering the compartment i, $C_i CO$ is the total concentration of CO in the blood compartment i,

$$C_i CO(t) = COHb_j(t) + SCO.P_iCO(t)$$
COFlux.j is the rate of diffusion of CO out of the vascular compartment.

\[
COFlux_{m(j=1,2,3)}(t) = \left[D_{b,mj} \cdot \left(P_{b,mj}CO(t) - P_{m1(or)m2}CO(t)\right)\right]
\]

\(D_{b,mj}CO\) is the blood to muscle tissue diffusion coefficient and is estimated by fitting the model to experimental data (35). \(P_{b,mj}CO(t)\) is the average partial pressure of CO of the vascular subcompartment j of the tissue. \(P_{m1}CO(t)\) and \(P_{m2}CO(t)\) are the partial pressures of CO in the muscle tissue subcompartments 1 and 2, respectively. CO mass balance equations for non-muscle tissue are the same as those in the primary model.

3.2.3 Mass Balance Equations for the Tissue Compartments

The mass balance equations for \(O_2\) for the first skeletal muscle subcompartment (m1) in the two subcompartment skeletal muscle model is

\[
\frac{dC_{m1}O_2(t)}{dt} = \frac{Flux_{m1}O_2(t)}{V_{m1}} + \frac{D_mO_2[C_{m2}O_2(t) - C_{m1}O_2(t)]}{D_{xm}}
\]

Second subcompartment m2:

\[
\frac{dC_{m2}O_2(t)}{dt} = \frac{Flux_{m2}O_2(t)}{V_{m2}} + \frac{D_mO_2[C_{m1}O_2(t) - C_{m2}O_2(t)]}{D_{xm}}
\]

where, \(D_mO_2\) is the diffusion coefficient of \(O_2\) between the two subcompartments (m1, m2) of the skeletal muscle tissue. \(C_{m1}O_2(t)\) and \(C_{m2}O_2(t)\) are the partial pressures of \(O_2\) of the two muscle subcompartments 1 and 2. \(D_{xm}\) is the intercapillary distance. The \(Flux_{m1}O_2(t)\) and \(Flux_{m2}O_2(t)\) are defined as

\[
Flux_{m1}O_2(t) = O_2Flux_{m1}(t) + O_2Flux_{m3}(t) - MRO_{2m1}
\]

\[
Flux_{m2}O_2(t) = O_2Flux_{m2}(t) - MRO_{2m2}
\]

where,

\(O_2Flux_{m1}(t), O_2Flux_{m2}(t)\) and \(O_2Flux_{m3}(t)\) are the \(O_2\) diffusion rates of vascular blood compartments 1, 2 and 3, respectively. \(MRO_{2m1}\) and \(MRO_{2m2}\) are the \(O_2\) metabolic rates of the tissue subcompartments 1 and 2, respectively. \(O_2\) diffuses from the vascular to the extra vascular compartments based on the pressure gradient between the compartments and the blood-to-tissue diffusion coefficients.
The CO mass balance equation for the two compartment tissue model is:

First subcompartment m_1:

$$\frac{dC_{m_1}CO(t)}{dt} = \frac{Flux_{m_1}CO(t)}{V_{m_1}} + \frac{D_{m_1}CO[C_{m_2}CO(t) - C_{m_1}CO(t)]}{D_{xm}}$$

Second subcompartment m_2:

$$\frac{dC_{m_2}CO(t)}{dt} = \frac{Flux_{m_2}CO(t)}{V_{m_2}} + \frac{D_{m_2}CO[C_{m_1}CO(t) - C_{m_2}CO(t)]}{D_{xm}}$$

where, the subscripts and parameters are the same as those above, except, $D_{m_1}CO$ is the diffusion coefficient of CO within the two subcompartments of the tissue. $C_{m_1}CO(t)$ and $C_{m_2}CO(t)$ are the CO concentrations of the two tissue subcompartments 1 and 2, respectively. $Flux_{m_1}CO(t)$ and $Flux_{m_2}CO(t)$ are defined as:

$$Flux_{m_1}CO(t) = COFlux_{m_1}(t) + COFlux_{m_3}(t)$$

$$Flux_{m_2}CO(t) = COFlux_{m_2}(t)$$

where $COFlux_{m_1}(t)$, $COFlux_{m_2}(t)$ and $COFlux_{m_3}(t)$ are defined in the blood compartments. The only difference between the mass balance equations for CO and O_2 is that oxygen is metabolized to meet the tissue metabolic demand while CO is not metabolized.

3.2.4 Prediction equations in modified model:

Predictive equations were developed as part of this thesis and added into the model to account for the blood flow and metabolic O_2 demand heterogeneities in the skeletal muscle tissue. Also there is an observed increase in cardiac output during CO exposure (68,69,70). Regulation of cardiac output in response to blood $HbCO$ levels has been implemented into the model.

Prediction equations to estimate the volumes of regions (arms, legs and trunk for males and females) of skeletal muscle model: Muscle metabolic rate (MRO_{2m}) is reported to be 20% (88, 89) of the total body oxygen consumption (MRO_2) during
rest. The metabolic rates of O_2 for leg, arm and trunk muscles are different (Table 2.4). Also the blood flows to different regions of the skeletal muscle vary (Table 2.3). Thus, to incorporate these heterogeneities (different metabolic rates and blood flows) of muscle in various regions, the skeletal mass is distributed into three muscle volume compartments namely leg muscle volume, arm muscle volume, and trunk muscle volume. The derivation of the equation is detailed in the appendix. The equations (Table 3.1) for calculating the masses of trunk, leg and arm muscle are functions of total skeletal muscle mass, V_m (41).

Tabulated blood flows and O_2 consumptions for skeletal muscle tissues are shown in table (Table 2.3 and Table 2.4) of the chapter 2. So after estimating the volumes of the skeletal muscle regions, average values (Table 3.2) for blood flow and oxygen consumption were determined for the muscular regions (arms, legs and trunk). From the Table 2.2 and Table 2.3, blood flow and oxygen consumption heterogeneity within the submuscular regions of arm (biceps, triceps, brachioradialis etc) and leg (gastrocnemius, biceps femoris etc) muscular regions can be clearly seen. Thus to determine the blood flow (or oxygen consumption) for the muscular regions (arms, legs and trunk), an average of the blood flows (or oxygen consumption) from different submuscular regions of the arm was taken. For example, to estimate the blood flow for the arm muscular region an average of all reported blood flows (in ml/min/gm) for the biceps, the triceps and the brachioradialis muscles was considered. Data for blood flow and oxygen consumption for the trunk muscles in healthy humans has not yet been reported in the literature. Hence, blood flow and O_2 consumption for the trunk muscular region was assumed to be equal to that of the leg muscular region. Blood flow for muscles in the trunk region was reported in animals (71, 72), but these values could not be considered due to postural differences in humans (bipedalism) and animals (quadrupedalism). There are some constantly working muscles in the trunk region like diaphragm (aid in breathing) which implies that blood flow and myocardial O_2 consumption must be higher than the arm muscular region. Also the muscles in the leg region work constantly against gravity to maintain postural balance. Since the leg and trunk muscle regions are mildly working
skeletal muscle regions, an assumption of equal blood flow and \(O_2 \) consumption was made.

There is reported to be an increase in cardiac output and heart rate with increase in carboxyhemoglobin levels in blood (68, 69, 70). When simulating experiments, increased carboxyhemoglobin levels in the blood had to be taken into account. Data for cardiac output, heart rate and carboxyhemoglobin (up to 50%) were collected from reference 68 and 69. Linear or nonlinear regression was performed on data, and statistical significance of the equations was tested using SYSTAT 9.0 after outliers were eliminated. The resulting equation was tested with data (70) which were not used in the regression. Then the equation was implemented into the model. A detailed derivation of the equation below is discussed in appendix. Figure 3.3 shows the data points used to build the regression relation and the relation fit developed for predicting the increase in cardiac output as a function of blood \(HbCO \) levels, as shown below

\[
\%\Delta\dot{Q} = 0.572(\%\Delta HbCO)
\]

3.3 The Cardiac Compartment

The myocardial compartment comprises three vascular subcompartments; 1, 2, 3 as shown in the Figure 3.4 and two tissue subcompartments; 1 and 2. The arterial blood which has a partial pressure of \(O_2 \), \(ParO_2 \), flows into the first vascular compartment 1, which has a blood volume of \(V_{bcm1} \). \(O_2 \) in blood is present in two forms: (1) dissolved in plasma and (2) reversibly combined with hemoglobin molecules forming oxyhemoglobin (\(O_2Hb \)). Oxygen continuously diffuses into the tissue compartment 1 as oxygen is being utilized by the tissue to meet metabolic demand (\(MRO_{2cm1} \)), causing tissue \(PO_2 \) to be lower than that of the \(PO_2 \) in the blood. It is assumed that \(O_2 \) diffuses from the vascular subcompartment 1 to the extravascular subcompartment 1 of the tissues at a rate \(O_2flux_{cm1} \) which is based on the oxygen diffusion coefficient \(Db_{cm1}O_2 \) and \(O_2 \) pressure gradients between the blood and tissue. This phenomenon establishes \(O_2 \) concentrations of \(C_{cm1}O_2 \) and \(C_{cmv1}O_2 \) in the first tissue and blood subcompartments, respectively. In all tissue compartments \(O_2 \) bound to myoglobin is considered in addition to the prevailing \(O_2 \).
concentrations. The tissue compartment 1 which has a volume V_{cm1} is assumed to be perfused by small arterioles and small venules, as well as by capillaries (Figure 3.5). The permeability surface area product for O_2 in this tissue compartment is $PS_{cm1}O_2$. The oxygen tension prevailing in the blood exiting from compartment 1, $P_{cmv1}O_2$, is the source for the O_2 supply to the second blood compartment 2 which has a blood volume $V_{b_{cm2}}$. There is diffusion of O_2 from the blood compartment 2 to the tissue subcompartment 2 at rate of O_2flux$cm2$ with the diffusion coefficient being $Db_{cm2}O_2$. The permeability surface area product for O_2 in this tissue compartment is $PS_{cm2}O_2$. The oxygen tension prevailing in the blood exiting from compartment 1, $P_{cmv1}O_2$, is the source for the O_2 supply to the second blood compartment 2 which has a blood volume $V_{b_{cm2}}$. There is diffusion of O_2 from the blood compartment 2 to the tissue subcompartment 2 at rate of O_2flux$cm2$ with the diffusion coefficient being $Db_{cm2}O_2$. The metabolic demand of O_2 ($MRO_{2_{cm2}}$), of this tissue compartment is met by diffusion of oxygen from the vascular compartment 2 and also by diffusion from the tissue compartment 1 with a diffusion coefficient of $D_{cm}O_2$. Approximately 15% of the metabolic rate of the tissue compartment 2 is met by diffusion of O_2 from its neighboring tissue compartment 1. The tissue compartment 2, which has a volume V_{cm2}, is perfused mostly by capillaries (Figure 3.5) and has a permeability surface area product of $PS_{cm2}O_2$. Diffusion of O_2 establishes O_2 concentrations of $C_{cm2}O_2$ and $C_{cmv2}O_2$ in the second tissue and blood subcompartments, respectively. Now the oxygen tension of blood exiting from the vascular subcompartment 2, $P_{cmv2}O_2$ is the O_2 source for the vascular compartment 3 which has a blood volume of $V_{b_{cm3}}$. Based on the pressure gradients established between tissue compartment 1 and the third blood compartment 3, there is flow of O_2 at a rate of O_2flux$cm3$ from the tissue compartment 1 into the blood compartment 3, resulting in an O_2 concentration of $C_{cmv3}O_2$ in the third blood subcompartment. The O_2 diffuses with a coefficient of $Db_{cm3}O_2$. However, when the tissue PO_2 is lower than the PO_2 in the third blood compartment then O_2flux$cm3$ is positive, indicating that O_2 diffuses from the third blood compartment to the tissue compartment 1. Because O_2 diffusivity is similar in plasma and muscle tissue (77), the model assumes that O_2 diffusion coefficients from blood to tissue or vice versa are equal. The concept of the two compartment model was introduced to allow diffusion of oxygen within the tissue and also to implement indirect arterio-venous shunting. Description of cardiac variables are summarized in Table 3.3.
3.3.1 Mass Balance Equation of the Cardiac Vascular Blood Compartments:

The equations below are the mass balance equations for the three vascular blood compartments,

Cardiac vascular blood compartment 1:

<table>
<thead>
<tr>
<th>Mass balance equations for O_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{cm1} \frac{dC_{cm1} O_2(t)}{dt} = \left[C_{cm} O_2(t) - C_{cm1} O_2(t) \right] Q_{cm} - O_2 Flux_{cm1}(t)$</td>
</tr>
<tr>
<td>$O_2 Flux_{cm1}(t) = G_s f \left(P_{a a cm} O_2 \right) \cdot \left[D_{b cm1} O_2 \cdot \left(P_{a a cm} O_2(t) - P_{cm1} O_2(t) \right) \right]$</td>
</tr>
<tr>
<td>$D_{b cm1} O_2 = \frac{P_{S_{cm1}} * S_{O_2} * V_{cm1}}{1.04}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mass balance equations for CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{cm1} \frac{dC_{cm1} CO(t)}{dt} = \left[C_{cm} CO(t) - C_{cm1} CO(t) \right] Q_{cm} - CO Flux_{cm1}(t)$</td>
</tr>
<tr>
<td>$CO Flux_{cm1}(t) = \left[D_{b cm1} CO \cdot \left(P_{b cm1} CO(t) - P_{cm1} CO(t) \right) \right]$</td>
</tr>
<tr>
<td>$P_{b cm1} CO(t) = 0.5(ParCO + P_{cm1} CO)$</td>
</tr>
<tr>
<td>$D_{b cm1} CO = D_{M CO1} \left(\frac{D_{b cm1} O_2}{D_{M1 O_2}} \right)$</td>
</tr>
<tr>
<td>$D_{M CO1} = D_{M CO} \left(\frac{D_{M1 O_2}}{D_{M2 O_2}} \right)$</td>
</tr>
</tbody>
</table>

where, $P_{a a cm}$ is the partial pressure of O_2 corresponding to the concentration of oxygen halfway between the arterial (inlet) and vascular subcompartment 1 (outlet). $P_{a a cm}$ is determined by an algorithm using a gradient search technique, where the average O_2 concentration is calculated and then the $P O_2$ corresponding to the average O_2 concentration is determined using the oxyhemoglobin saturation curve. $P_{b cm1}$ is the average partial pressure of CO in the blood vascular subcompartment 1. $D_{b cm1} CO$ is the blood to tissue CO diffusion coefficient, $D_{M CO1}$ is the blood to muscle diffusion coefficient of CO in blood compartment 1 and $D_{b cm1} O_2$ is the blood to tissue oxygen diffusion coefficients of cardiac blood compartment 1. $D_{M1 O2}$, $D_{bM2 O2}$ and $D_{M CO}$ are blood to tissue O_2 and CO diffusion coefficients of muscle blood compartments described in Section 3.2. All other variables are defined.
Cardiac vascular blood compartment 2:

\[
\frac{dC_{cm2}O_2(t)}{dt} = \left[C_{cm1}O_2(t) - C_{cm2}O_2(t) \right]Q_{cm} - O_2\text{Flux}_{cm2}(t)
\]

\[
O_2\text{Flux}_{cm2}(t) = G_{sf} \cdot \left(P_{b,bcm}O_2 \right) \cdot \left[D_{b,bcm}O_2 \cdot \left(P_{b,bcm}O_2(t) - P_{cm2}O_2(t) \right) \right]
\]

\[
D_{b,bcm}O_2 = \frac{P_{cm,cap} * SO_2 * V_{cm2}}{1.04}
\]

Mass balance equations for \(O_2\)

Cardiac vascular blood compartment 3:

\[
\frac{dC_{cm3}O_2(t)}{dt} = \left[C_{cm2}O_2(t) - C_{cm3}O_2(t) \right]Q_{cm} - O_2\text{Flux}_{cm3}(t)
\]

Where \(P_{b,bcm}\) is the partial pressure of \(O_2\) corresponding to the concentration of oxygen halfway between the inlet \((P_{cm1}O_2)\) and outlet \((P_{cm2}O_2)\) of vascular subcompartment 2. \(D_{b,bcm}O_2\) is the blood to tissue diffusion coefficient. \(P_{b,bcm}\) is the average partial pressures of \(CO\) in the blood vascular subcompartment 2. \(D_{b,bcm}CO\) is the blood to tissue diffusion coefficient, \(D_{M,CO}\) is the blood to muscle diffusion coefficient of \(CO\) in blood compartment 2 and \(D_{b,bcm}O_2\) and \(D_{b,m}O_2\) are blood to tissue oxygen diffusion coefficients of cardiac and muscle blood compartment 2. All other variables are define in Table 3.3

Cardiac vascular blood compartment 3:
\[
O_2 \text{Flux}_{cm3}(t) = G_{of}(P_{ccm}O_2) \cdot \left[Db_{vcm1}O_2 \cdot (P_{ccm}O_2(t) - P_{cm1}O_2(t))\right]
\]

\[
Db_{vcm1}O_2 = Db_{cm1}O_2 \cdot D_{hvcm_on}
\]

Mass balance equations for CO

\[
V_{cm1} \frac{dC_{cmv3}CO(t)}{dt} = [C_{cmv2}CO(t) - C_{cmv3}CO(t) \cdot Q_{vcm} - CO \text{Flux}_{cm3}(t)]
\]

\[
CO \text{Flux}_{cm3}(t) = [Db_{vcm1}CO \cdot (P_{bcm3}CO(t) - P_{cm1}CO(t))]
\]

\[
P_{bcm2}CO(t) = 0.5(P_{cmv2CO} + P_{cmv2CO})
\]

\[
Db_{vcm1}CO = D_MCO3 \left(\frac{Dbvcm1O2}{DbvM1O2}\right)
\]

\[
D_MCO3 = D_MCO2 \left(\frac{DbvM1O2}{DbM2O2}\right)
\]

where \(P_{ccm}\) is the partial pressure of \(O_2\) corresponding to the concentration of oxygen halfway between the inlet \((P_{cmv2O2})\) and outlet \((P_{cmv3O2})\) of vascular subcompartment 3. \(Db_{vcm1}O_2\) is the tissue to blood diffusion coefficient, \(Db_{vcm_on}\) is the fraction of blood volume in cardiac vascular compartment 1 (\(V_{bcm1}\)) available for gas exchange with (venules) cardiac vascular compartment 3 (\(V_{bcm3}\)). \(P_{bcm3}\) is the average partial pressure of \(CO\) in the blood vascular subcompartment 3. \(Db_{vcm1}CO\) is the blood to tissue diffusion coefficient. \(Dbvcm1O2\) is the blood to tissue oxygen diffusion coefficient of cardiac blood compartment 3. \(DbvM1O2, DbM2O2\) and \(D_MCO3\) are blood to tissue \(O_2\) and \(CO\) diffusion coefficients of muscle blood compartments described in Section 3.2. All other variables are defined in Table 3.3.

The \(O_2\) concentration at the input to the mixed venous compartment is determined by a flow-weighted summation of the concentrations of \(O_2\) in the venous outflow from the tissue compartments. This input concentration then passes through the mixed venous compartment and returns to the lungs after a time delay. Thus the \(O_2\) concentration at the input to the mixed venous compartment is

\[
C_rO_2(t) = [C_{vot}O_2(t)\cdot (\frac{Q_{ot}}{Q})] + [C_{vcm}O_2(t)\cdot (\frac{Q_m}{Q})] + [C_{vcm}O_2(t)\cdot (\frac{Q_{cm}}{Q})].
\]
Where,

\[C_{\text{non}}O_2(t), C_mO_2(t), C_{\text{cm}}O_2(t) \] are the \(O_2 \) concentrations in the non-muscle, skeletal muscle, and cardiac muscle tissues, respectively. \(Q_{\text{non}}, Q_m, Q_{\text{cm}} \) are the blood flows to the non-muscle, skeletal muscle, and cardiac muscle tissue compartments, respectively.

3.3.2 Mass balance equation of the cardiac tissue subcompartments:

First cardiac tissue subcompartment:

The mass balance equation for \(O_2 \) in the first tissue subcompartment is

\[
\frac{dC_{\text{cm1}}O_2(t)}{dt} = \frac{\text{Flux}_{\text{cm1}}O_2(t)}{V_{\text{cm1}}} + \frac{D_{\text{cm}}O_2}{D_{\text{cm}}} \left[C_{\text{cm2}}O_2(t) - C_{\text{cm1}}O_2(t) \right]
\]

where \(\text{Flux}_{\text{cm1}}O_2(t) \) is defined as

\[\text{Flux}_{\text{cm1}}O_2(t) = O_2\text{Flux}_{\text{cm1}}(t) + O_2\text{Flux}_{\text{cm3}}(t) - MRO_2\text{cm1} \]

\(C_{\text{cm1}}O_2(t), C_{\text{cm2}}O_2(t) \) are the total \(O_2 \) concentrations in the first and second tissue compartments, \(P_{\text{cm1}}O_2(t) \) and \(P_{\text{cm2}}O_2(t) \) are the partial pressures of \(O_2 \) of the two tissue subcompartments. \(O_2\text{Flux}_{\text{cm1}} \) and \(O_2\text{Flux}_{\text{cm3}} \) are the blood \(O_2 \) fluxes of subcompartments 1 and 3 defined in Section 3.3. \(MRO_2\text{cm1} \) is the metabolic rate of \(O_2 \) in the tissue compartment 1.

The mass balance equation for \(CO \) in the first tissue subcompartment is

\[
\frac{dC_{\text{cm1}}CO(t)}{dt} = \frac{\text{Flux}_{\text{cm1}}CO(t)}{V_{\text{cm1}}} + \frac{D_{\text{cm}}CO}{D_{\text{cm}}} \left[C_{\text{cm2}}CO(t) - C_{\text{cm1}}CO(t) \right]
\]

where \(\text{Flux}_{\text{cm1}}CO(t) \) is defined as

\[\text{Flux}_{\text{cm1}}CO(t) = CO\text{Flux}_{\text{cm1}}(t) + CO\text{Flux}_{\text{cm3}}(t) \]

\(C_{\text{cm1}}CO(t), C_{\text{cm2}}CO(t) \) are the \(CO \) concentrations in the first and second tissue compartments. \(CO\text{Flux}_{\text{cm1}} \) and \(CO\text{Flux}_{\text{cm3}} \) are the rates of \(CO \) fluxes of the blood subcompartments 1 and 3.
Second cardiac tissue subcompartment:
\[
\frac{dC_{cm2}O_2(t)}{dt} = \frac{Flux_{cm2}O_2(t)}{V_{cm2}} - \frac{D_{cm}O_2V_{cm1}}{V_{cm2}D_{xcm}} \left[C_{cm2}O_2(t) - C_{cm1}O_2(t) \right]
\]
where \(Flux_{cm2}O_2(t) \) is defined as
\[
Flux_{cm2}O_2(t) = O_2Flux_{cm2}(t) - MRO_{2cm2}
\]
\(C_{cm1}O_2(t), C_{cm2}O_2(t) \) are the \(O_2 \) concentrations in the first and second tissue compartments, \(Pb_{cm1}O_2(t) \) and \(Pb_{cm2}O_2(t) \) are the partial pressures of \(O_2 \) of the two tissue subcompartments. \(O_2Flux_{cm2} \) is the blood \(O_2 \) flux of subcompartment 2 defined in Section 3.3. \(MRO_{2cm2} \) is the metabolic rate of \(O_2 \) in the tissue compartment 2.

\[
\frac{dC_{cm2}CO(t)}{dt} = \frac{Flux_{cm2}CO(t)}{V_{cm2}} - \frac{D_{cm}COV_{cm1}}{V_{cm2}D_{xcm}} \left[C_{cm2}CO(t) - C_{cm1}CO(t) \right]
\]
where \(Flux_{cm2}CO(t) \) is defined as
\[
Flux_{cm2}CO(t) = COFlux_{cm2}(t)
\]
\(C_{cm1}CO(t) \) and \(C_{cm2}CO(t) \) are the \(CO \) concentrations in the first and second tissue compartments. \(COFlux_{cm2} \) is the \(CO \) flux of the blood subcompartment 2.

3.4 Parameters for the Model

Estimating parameters for a model is a crucial task. The heart muscle is similar to exercising skeletal muscle. Constant exercise results in the heart muscle parameters being different from the skeletal muscle. There are marked regional variations in flow and oxygen consumption (Table 2.1, Table 2.2). Blood flow, oxygen consumption and capillary density of per unit mass are greater in cardiac muscle than in resting skeletal muscle. Capillary density/gm is \(~8\) times greater in cardiac muscle than in skeletal muscle (39). Higher capillary density promotes efficient \(O_2 \) transport from blood to tissues and also within the tissue. Because blood flow and \(O_2 \) consumption increase with workload and as the heart is a vigorously working blood pump, it has a higher blood flow and a vasculature designed for efficient \(O_2 \) delivery to match the \(O_2 \) demand. There is parameter heterogeneity (blood flow, oxygen consumption, regional tissue oxygen tension, capillary density) within the various regions of the heart, the
epicardium, myocardium and endocardium (Table 2.5, 73, 74, 75). Also, the chambers of the heart (right atrium, left atrium, left ventricle and right ventricle) and the septa separating them have varied blood flow and oxygen consumption (Table 2.1, Table 2.2). The weight of the heart varies with age, gender and ethnicity of the subject (76). Keeping in mind the inhomogeneity of heart muscle, parameters were estimated from the available literature.

Nominal values for most of the parameters were obtained from the literature or directly from the investigators whose data we simulated e.g., total body metabolic rate, heart rate, cardiac output etc. In some cases parameters were estimated with average values from a group of subjects or published predictive formulas in literature e.g., volume of heart, blood volume, myocardial myoglobin concentration etc. Parameter values were also estimated from predictive formulas described previously in this thesis, e.g., myocardial O$_2$ consumption, myocardial blood flow etc. There are parameters like the permeability surface area product of the compartments, which have a value at resting conditions but linearly increase in proportion to the blood flow (90). There are some parameters like cardiac muscle volume fraction (Fvcm) and fraction (Dbvcm_on) of blood volume in the cardiac vascular compartment 1 (Vbcm1) available for gas exchange with (venules) cardiac vascular compartment 3 (Vbcm3) that represent quantities that are very difficult, or even impossible to measure. Values of such parameters are unknown and estimates are made for these values based on physiology. Parameters in this model are classified based on their estimation method:

1. Physiological parameters
2. Model-derived parameters
3. Simulation parameters

3.4.1 Physiological parameters

These parameters are constants whose values can be found from the literature or from experimental measurements available. Some physiological parameters are body weight (BW), solubility of O$_2$ in plasma (SO$_2$), blood flows to a specific compartment, etc. Most of these parameters are estimated by taking an average of
several published values like myoglobin concentration (Table 3.4), values present in literature like the volume of heart, fraction of blood etc or are directly obtained from the experimental database to be simulated. The physiological parameters are listed in Table 3.5

3.4.2 Model-derived parameters
These are the parameters whose values are estimated in the model from predictive equations, e.g., myocardial blood flow, myocardial O_2 consumption etc or from formulas like the diffusion coefficients for O_2 and CO or volumes of tissue compartments. The model-derived parameters are listed in Table 3.6

3.4.3 Simulation parameters
These parameters are intermediate values of the model which help to establish the simulation conditions. These parameters are used in accessory equations that are needed for evaluating the derivative functions for numerical integration; aid in simulating experimental conditions (e.g., TW, TZSS etc.). Simulation parameters specific to ACSL are the time step ($CINT$) of the algorithm, the integration algorithm used ($IALG$), TMAX etc. Simulation parameters are listed in the Table 3.7

3.5 Predictive Equations in the Model
Prediction equations for estimating model parameters were implemented into the model either from the literature (published journals) or were developed especially for the thesis. The following prediction equation for estimating blood volume in humans was reported in reference 78. Thus the prediction equation for estimating blood volume (when its value is not available) was added into the model:

$$\text{Volume of blood} = \frac{70}{\sqrt{\text{BMI}_p / 22(HT)^2}} \quad (78)$$

$$\text{BMI} = \frac{bw}{(HT)^2}$$

$$\text{delta_IBW} = \left(\frac{\text{BMI}}{22}\right)\times100$$
\[\text{BMI}_p = \left(\frac{\text{delta IBW}}{100} \right)^2 + 22, \]

where BMI is the body mass index, bw is the body weight and HT is the height of the subject.

Estimation equations were developed for myocardial oxygen consumption and myocardial blood flow as functions of heart rate, and for cardiac output and heart rate as functions of total body metabolic rate. Data to establish values for parameters of these equations were collected from various papers in the literature. Linear or nonlinear regression was performed on data (different model/order of equations were checked) and statistical significance of the equations was tested using SYSTAT 9.0 after outliers were eliminated. The resulting equation was validated with data which was not used in the regression. Then the equation was implemented into the model. The following prediction equations were developed as part of this thesis to estimate values for unknown parameters of the model.

3.5.1 Prediction Equations for Myocardial Oxygen Consumption and Blood Flow

Myocardial oxygen supply and oxygen demand balance are very important for the tissue to be viable. Data from various published papers (80-86) of myocardial oxygen consumption and myocardial blood flow were tabulated. The strategy followed for developing the prediction equation is shown in Figure 3.6. The data used to develop the prediction equation had values obtained during rest and exercise conditions. Most of the blood flow data for humans was from studies that used the nitrous oxide dilution method. But the nitrous oxide method is reported to have certain limitations (87) which tend to under-estimate the true blood flow; values based on this method resulted in oxygen supply and demand mismatch when implemented into the model. Thus, to predict the myocardial blood flows, data from a published experiment (79) was used to derive the predictive formulas. The steps described below were followed to establish the relations.
1. Constructed regression relation for myocardial blood flow as a function of heart rate. Data for regression relation was obtained from the reference 79. Myocardial blood flow in their study was measured by dynamic PET (Positron Emission Tomograph) accompanied by intravenous injection of labeled water (\[^{15}\text{O}]\text{H}_2\text{O}\). Data used for deriving the relation and its fitted equation using linear regression is shown in Figure 3.7.

2. The next step was to correct the myocardial oxygen consumption data which was calculated using FICK’s method, where oxygen consumption is measured as a product of myocardial blood flow and Arterio –Venous oxygen differences. Myocardial oxygen consumption data had to be corrected as the papers from which (80-86) myocardial oxygen consumption data was available used blood flow measurements based on the nitrous oxide method to calculate oxygen consumption. The approach taken for correcting the myocardial oxygen consumption is as follows:

 (i) A-V difference was calculated as ratio of myocardial oxygen consumption and myocardial blood flow values obtained from studies using the nitrous oxide method.

 (ii) Corrected myocardial oxygen consumption = Product of blood flow calculated for heart rates in the nitrous oxide papers using regression relation developed in step 1 and A-V differences (calculated in step 2(i)).

3. After the myocardial oxygen consumption values were corrected for the differences in the methods, a non-linear curve fit was done using MATLAB to establish myocardial oxygen consumption as a function of heart rate. Data used to derive the relation and its fitted equation using nonlinear regression is shown in Figure 3.8. The relation obtained is as follows:

 Myocardial Oxygen Consumption = \frac{a-d}{1 + (c/HR)^b} + d

where,
HR= heart rate,
a= 56.3217, asymptotic maximum,
b= 4.8485, defines the slope of the function,
c= 122.6617, c is the value of the independent variable x at the inflection point.
d= 9.7643, asymptotic minimum.

Thus, to determine the myocardial oxygen consumption (ml/min/100gm) and myocardial blood flow (ml/min/100gm), the following predictive formulas were developed:

Myocardial Blood Flow (Qcm) = 2.18 * (HR) – 27.3

Myocardial Oxygen Consumption (MRO2cm) = \(\frac{56.3217 - 9.7643}{1 + \left(\frac{122.6617}{HR}\right)^{4.8485}} \) + 9.7643

3.5.2 Prediction Equations for Cardiac Output

Cardiac output (\(Q \)) was previously estimated as a function of body weight and gender. This equation could be used only during conditions of basal rest. Since we wanted to simulate experimental conditions of exercise where the cardiac output increases, we developed equations to predict cardiac output as a function of total body oxygen consumption (\(MRO_2 \)). Cardiac output and total body oxygen consumption values were collected from various papers in the literature (See the appendix.). The data were obtained at rest and various loads of exercise. The tabulated aggregated data were fit with a 2nd-order polynomial as shown in the appendix. Thus the equation developed is

\[Q' = 3.186 + 7.346xMRO_2 - 0.535x(MRO_2)^2 \]

3.5.3 Prediction Equations for Heart Rate

Often for the experiments we simulated, the investigators provided heart rates of the subjects at rest. In simulation cases where heart rate data were not provided we estimated the heart rate as function of total body oxygen consumption from the equation below. The procedure for developing the equation is detailed in the appendix. The heart rate parameter is used for estimating the myocardial oxygen
consumption and myocardial blood flow which is discussed in Section 3.5.1 of this chapter.

\[
\text{Heart Rate (HR)} = 42.819 + 68.884(MRO_2) - 8.26(MRO_2)^2
\]

Predicting percent increase in the heart rate (HR) as a function of percent change of carboxyhemoglobin (\(\%\Delta\text{COHb}\)) levels in blood: There is reported to be an increase in cardiac output and heart rate with increases in carboxyhemoglobin levels in blood (68,69,70). While simulating experiments involving carbon monoxide (\(\text{CO}\)) exposures, increased heart rate due to increased carboxyhemoglobin levels in the blood had to be taken into account. These increases were implemented by introducing the following equation whose derivation is discussed in the appendix.

\[
\%\Delta\text{HR} = 0.012(\%\Delta\text{COHb})^2 + 0.26(\%\Delta\text{COHb})
\]

The heart rate (HR) was increased by \(\%\Delta\text{HR}\) respectively, calculated from the above equations every 0.001 min of simulated time.

3.6 Sensitivity Analysis:

Sensitivity analysis is used to determine how “sensitive” a model is to changes in the value of the parameters of the model and to changes in the structure of the model. It surveys how a given model output depends upon its parameter values. It is an important method for checking the quality, robustness and reliability of analyses and for building confidence in the model by studying the uncertainties that are often associated with parameters in models. It helps to determine the level of accuracy needed for a parameter to make the model sufficiently useful and valid. The process involves varying model parameters (one at a time, keeping other parameters constant) over a reasonable range (especially when there is an uncertainty in values of the varied parameter) and observing the relative changes in model response. If the testing process reveals that the parameter varied has no significant effects on the model response, then it may be possible to use an estimate rather than a value with greater accuracy. But if the system behavior greatly changes with the varied parameter then an accurate value should be determined for that parameter. If the value of the
sensitive parameter is unknown in from the literature, then doing sensitivity analysis helps to estimate deviations in model predictions with the parameter variation. Thus sensitivity analysis was done to analyze the effect of model parameters on the model predictions of myocardial tissue PO_2 and coronary venous PO_2. It was found that the predicted myocardial tissue PO_2 and coronary venous PO_2 are most sensitive to variations in the myocardial blood flow (Q_{cm}), myocardial oxygen consumption (MRO_2_{cm}), permeability surface area product (P_{Scm}), and volume distribution fraction of the tissue (F_{Vcm}). Table 3.9 shows the values of predicted myocardial tissue PO_2 and coronary venous PO_2 with variations in the input parameters. In this table myocardial O_2 consumption (MRO_2_{cm}), myocardial blood flow (Q_{cm}), PS product (P_{Scm}), AV Shunt fraction ($Dbvcm_{on}$), volume distribution (F_{Vcm}) and, inter capillary distance (D_{xcm}) were increased (and decreased) by 50% and the response of the model predictions - i.e. tissue and blood oxygen tensions - to variation of these parameters was tabulated (Table 3.8).

After doing the sensitivity analysis, a standard set of values for the following parameters (P_{Scm}, F_{Vcm},$Dbvcm_{on}$, D_{xcm}), whose values were difficult to estimate (due to unavailability of data) was determined. The values for these parameters are shown in table 3.7. This standard set of parameters was arrived at after analyzing the coronary physiology, vasculature density in myocardium and other experimental facts such as the extent of hypoxia, exercise or CO exposure which did not cause permanent injury or death of the subject. The volume of the cardiac compartment (V_{cm}) is divided into two subcompartments of volume V_{cm1} and V_{cm2} by means of the cardiac muscle volume fraction (F_{Vcm}). The value for F_{Vcm} was estimated to be 0.2 in order to make best estimates for tissue PO_2. The permeability surface area product of O_2 for cardiac muscle model was reported to be 200 ml/min/Torr/gm by Beard and Bassinghwaite (90). When the above reported value for permeability surface area product was used, final model predicted myocardial tissue PO_2’s were very low. The best estimates for tissue $PO2$ predictions were obtained when the PS for the first and second cardiac subcompartments were 180 ml/min/Torr/gm and 450 ml/min/Torr/gm, respectively. There is reported to be capillary recruitment during
exercise in skeletal muscle (102). However, the extent of capillary recruitment in myocardium during exercise is unknown. Increase in capillary recruitment would increase the PS as the surface area available for oxygenation would increase. PS is reported to increase with blood flow (90), thus in the final model PS increases with increases in blood flow. The intercapillary distance in skeletal muscle in the modified model is 0.1 cm. The capillary density in cardiac muscle is approximately 8 times greater than that of the skeletal muscle (39), thus the intercapillary distance for cardiac compartment in the final model is 0.0353 cm (0.1/√8). Fraction (Dbvcm_on) of blood volume in cardiac vascular compartment 1 (Vbcm1) available for gas exchange with (venules) cardiac vascular compartment 3 (Vbcm3) was estimated by analyzing the coronary vasculature (103,104). Also from the sensitivity analysis, it can be seen that Dbvcm_on does not have a significant impact on the model predictions of myocardial tissue PO_2 and coronary venous PO_2. A value of 9.5% was chosen for Dbvcm_on as better estimates for coronary venous PO_2 and myocardial tissue PO_2 were obtained for that value.

3.7 Validation Schema for the Cardiac Compartment

The final model (Figure 3.4) was used for the simulations to test the validity of the predicted O_2 related variables of the cardiac compartment. Predictions from the model were compared with published observations on human subjects and animal data. The model was tested for conditions of normoxic rest (91,92,95,99,100), hypoxic rest (91,92,93,98), hypoxic exercise (91) and hyperoxia (93,94,96,97,98) with regard to its predictions of coronary venous PO_2 and tissue PO_2. For validation of human data, subject morphological data like body weight, age, etc., were used. The protocol for validation of the model was as follows:

1. Inspired levels of O_2 were set equal to the experimental values. Ventilation was adjusted to achieve the measured arterial PO_2 in the steady state.
2. Experimentally measured values for myocardial O_2 consumption and myocardial blood flow were used in the simulations.
3. Each simulation was allowed a stabilization time of 12 min (simulation time) and the model predictions were noted after reaching steady state.

54
4. The model predictions of cardiac oxygen tensions and coronary venous \(PO_2 \)’s for various conditions were compared to experimental data.

5. Usually, experimental tissue \(PO_2 \) values were available as either mean values or as histograms. When a mean value was published, based on the size of the electrode used to measure \(PO_2 \), it was either classified as the average first compartment (large electrode, assuming it was close to an arteriole) or second compartment \(PO_2 \). In the case of histograms, the mean value was used to represent the average tissue \(PO_2 \). An average of the \(PO_2 \) in the histogram above the mean was considered as the first compartment oxygen tension and an average of the \(PO_2 \) in the histogram below the mean represented the second compartment oxygen tension.

6. Other variables validated were arterial hemoglobin saturations, venous hemoglobin saturations and capillary \(PO_2 \). But very scarce experimental data were available for validation of these variables.

The figures showing the validation of model predicted values to the experimental measured values for oxygen tension and coronary venous \(PO_2 \) are shown in Figures 4.1-4.3. It can be seen from the figures that the model is fairly capable of predicting the experimental values using a standard parameter set. This set shall be used for simulating various experimental strategies in the Results Section. For a human subject weighing 70 kg, 1.75 m tall and 30 years old, the predicted steady state cardiac tissue and blood oxygen tensions during normoxia (arterial \(PO_2 = 99 \) Torr) are tabulated in Table 3.10.

3.8 Algorithms

In order to determine the partial pressure of oxygen (\(PO_2 \)), partial pressure of carbon monoxide (\(PCO \)) and \(O_2 \) flux in each blood compartment of the model, it is necessary to solve three simultaneous algebraic equations:

1. Oxyhemoglobin dissociation curve (Section 2.2, chapter 2).
2. Haldane’s equation (Section 2.2, chapter 2).
3. Blood to Tissue oxygen flux equations (Section 3.1.2, chapter 3).
The solutions for these equations were obtained by using algorithms based on gradient search methods which were developed for the modified model. An additional algorithm is also developed (bisection halving) to determine the PO_2 corresponding to the average O_2 concentration in the blood compartment. The technique used is a closed domain bracketing method and the root is trapped in the interval using interval halving (bisection) method. In this algorithm, two estimates for the root ($x = PO_2$) are passed as arguments, which are generally the inlet (PO_{2max}) and outlet (PO_{2min}) variables (blood O_2 tension, tissue O_2 tension, total concentration of O_2, volume of blood or the tissue etc) of the blood vascular subcompartments. Now the root, $x = PO_2$ lies in the interval (PO_{2max}, PO_{2min}). The interval is systematically reduced based on the evaluate function decision and the error criterion, ϵ. The algorithm for the search technique is shown in Figure 3.9.
Table 3.1: Prediction Equation for Estimating Volumes of Muscular Regions (Arms, Legs and Trunk) for Males and Females

<table>
<thead>
<tr>
<th>Region</th>
<th>Volume in Men</th>
<th>Volume in Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leg</td>
<td>(46.63* V_m/100)</td>
<td>(49.53* V_m/100)</td>
</tr>
<tr>
<td>Arm</td>
<td>(15.64* V_m/100)</td>
<td>(13.96* V_m/100)</td>
</tr>
<tr>
<td>Trunk</td>
<td>(37.73* V_m/100)</td>
<td>(36.51* V_m/100)</td>
</tr>
</tbody>
</table>

Table 3.2: Blood flow and Oxygen Consumption Values for Muscular Regions

<table>
<thead>
<tr>
<th>Muscular Region</th>
<th>Blood Flow (ml/min/g)</th>
<th>Oxygen consumption (ml/min/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arm</td>
<td>0.021</td>
<td>0.0014</td>
</tr>
<tr>
<td>Leg</td>
<td>0.03</td>
<td>0.002</td>
</tr>
<tr>
<td>Trunk</td>
<td>0.03</td>
<td>0.002</td>
</tr>
</tbody>
</table>
Table 3.3: Cardiac Compartment Variables and Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_{cm}</td>
<td>Blood flow to the myocardium</td>
</tr>
<tr>
<td>SO_2</td>
<td>Solubility of oxygen in plasma</td>
</tr>
<tr>
<td>$D_{cm}O_2$</td>
<td>Diffusion coefficient of O_2 between the two tissue subcompartments</td>
</tr>
<tr>
<td>D_{xcm}</td>
<td>Intercapillary distance</td>
</tr>
<tr>
<td>$D_{cm}CO$</td>
<td>Diffusion coefficient of CO between the two tissue subcompartments</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blood Subcompartment 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_{cmv1}O_2$</td>
</tr>
<tr>
<td>$C_{ar}O_2$</td>
</tr>
<tr>
<td>O_2Flux_{cm1}</td>
</tr>
<tr>
<td>$PS_{cm,av}$</td>
</tr>
<tr>
<td>$Db_{cm1}O_2$</td>
</tr>
<tr>
<td>V_{cm1}</td>
</tr>
<tr>
<td>$C_{cmv1}CO$</td>
</tr>
<tr>
<td>$C_{ar}CO$</td>
</tr>
<tr>
<td>$COFlux_{cm1}$</td>
</tr>
<tr>
<td>ParCO</td>
</tr>
<tr>
<td>Pcmv1CO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blood Subcompartment 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{cm2}</td>
</tr>
<tr>
<td>$C_{cmv2}O_2$</td>
</tr>
<tr>
<td>O_2Flux_{cm2}</td>
</tr>
<tr>
<td>PS_{cap}</td>
</tr>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>C_{cmv2CO}</td>
</tr>
<tr>
<td>$COFlux_{cm2}$</td>
</tr>
<tr>
<td>Pcmv2CO</td>
</tr>
<tr>
<td>Blood Subcompartment 3</td>
</tr>
<tr>
<td>C_{cmv3O_2}</td>
</tr>
<tr>
<td>O_2Flux_{cm3}</td>
</tr>
<tr>
<td>C_{cmv3CO}</td>
</tr>
<tr>
<td>$COFlux_{cm3}$</td>
</tr>
<tr>
<td>Pcmv3CO</td>
</tr>
</tbody>
</table>
Table 3.4: Myoglobin Concentration of the Heart. Concentrations of myoglobin were measured by BNII nephelometer technique in various regions of the human heart. The values were reported by CJM Joost et al (Am J Clin pathol 2001:115:770-777)

<table>
<thead>
<tr>
<th>Region</th>
<th>Mb Value (g/gm wet wt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right ventricle</td>
<td>1.9</td>
</tr>
<tr>
<td>Right atrium</td>
<td>1.0</td>
</tr>
<tr>
<td>Left ventricle</td>
<td>2.4</td>
</tr>
<tr>
<td>Left atrium</td>
<td>0.8</td>
</tr>
<tr>
<td>Left ventricle</td>
<td>2.4 (0.25-11.7)</td>
</tr>
<tr>
<td>Posterior wall</td>
<td>2.4 (0.78-4.05)</td>
</tr>
<tr>
<td>Lateral wall</td>
<td>2.5 (0.67-5.21)</td>
</tr>
<tr>
<td>Anterior wall</td>
<td>2.2 (0.38-11.7)</td>
</tr>
<tr>
<td>Septum</td>
<td>2.4 (0.25-3.69)</td>
</tr>
</tbody>
</table>
Table 3.5: Physiological Cardiac Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description and references</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBVcm_on</td>
<td>Fraction of blood that allows gas exchange with tissue compartment 1 (Section 3.6)</td>
<td>0.095</td>
</tr>
<tr>
<td>rho</td>
<td>Density of cardiac muscle (35)</td>
<td>1.04 (gm/cm³)</td>
</tr>
<tr>
<td>KcmO2</td>
<td>Michales-Menton coefficient of cardiac muscle(35)</td>
<td>0.2</td>
</tr>
<tr>
<td>DXcm</td>
<td>Intercapillary distance in cardiac muscle (Section 3.6)</td>
<td>0.0353(cm)</td>
</tr>
<tr>
<td>PScm_cap</td>
<td>Permeability surface area product of O₂ for capillaries (Section 3.6)</td>
<td>450(ml/min/Torr/gm)</td>
</tr>
<tr>
<td>PScm_av</td>
<td>Permeability surface area product of O₂ for arterioles/venules (Section 3.6)</td>
<td>180(ml/min/Torr/gm)</td>
</tr>
<tr>
<td>ConcMgb</td>
<td>Concentration of myoglobin (Mb) (Table 3.4)</td>
<td>0.0023 (mg/g wet wt. muscle)</td>
</tr>
<tr>
<td>Vcm</td>
<td>Volume of heart (L Reiner, 1959)</td>
<td>254(M),180(F) (gm)</td>
</tr>
<tr>
<td>Vlv</td>
<td>Volume of left ventricle (75)</td>
<td>94(M), 67(F) (gm)</td>
</tr>
<tr>
<td>Vrv</td>
<td>Volume of right ventricle (75)</td>
<td>46(M), 33(F) (gm)</td>
</tr>
<tr>
<td>Va</td>
<td>Volume of atria (75)</td>
<td>49(M), 39(F) (gm)</td>
</tr>
<tr>
<td>Viv</td>
<td>Volume of intra ventricular septum (75)</td>
<td>64(M), 49(F) (gm)</td>
</tr>
<tr>
<td>Volfraccm</td>
<td>Distribution fraction of blood volume to the tissue (A Indermuhle,2006)</td>
<td>0.1161(ml/gm)</td>
</tr>
<tr>
<td>FVcm</td>
<td>Fraction of muscle volume in comp. around arteriole and venial blood comp.(Section 3.6)</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Table 3.6: Model Derived Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vcm1</td>
<td>Volume of cardiac muscle in compartment 1 perfused by arterioles/venules</td>
<td>FVcm.Vcm</td>
</tr>
<tr>
<td>Vcm2</td>
<td>Volume of cardiac muscle in compartment 2 perfused by capillaries</td>
<td>(1.-FVcm).Vcm</td>
</tr>
<tr>
<td>MRO2cm</td>
<td>Metabolic rate (MR) of O(_2) of cardiac muscle tissue</td>
<td>Refer Section 3.5.1</td>
</tr>
<tr>
<td>MRO2_cm1</td>
<td>MR of O(_2) of skeletal muscle tissue 1</td>
<td>MRO2cm.Vcm1/(Vcm1+Vcm2)</td>
</tr>
<tr>
<td>MRO2_cm2</td>
<td>MR of O(_2) of skeletal muscle tissue 2</td>
<td>MRO2cm.Vcm2/(Vcm1+Vcm2)</td>
</tr>
<tr>
<td>Qdotcm</td>
<td>Blood flow to the cardiac muscle tissue</td>
<td>2.18 (\cdot) (HR) – 27.3</td>
</tr>
<tr>
<td>DemCO</td>
<td>Cardiac Muscle diffusion coefficient for CO</td>
<td>(D_{N2CO} \cdot (Dbm2O2/DbmO2))</td>
</tr>
<tr>
<td>Vbcm</td>
<td>Volume of blood in cardiac compartment</td>
<td>Volfraccm.Vcm</td>
</tr>
<tr>
<td>Vbcm1</td>
<td>Blood volume of cardiac blood compartment 1</td>
<td>(Fvcm.Vbcm) -Vbcm3</td>
</tr>
<tr>
<td>Vbcm2</td>
<td>Blood volume of cardiac blood compartment 2</td>
<td>(1.0-Fvcm).Vbcm</td>
</tr>
<tr>
<td>Vbcm3</td>
<td>Blood volume of cardiac blood compartment 3</td>
<td>Fvcm.Vbcm .Dbvcm_on</td>
</tr>
<tr>
<td>DemO2</td>
<td>Intercardiac tissue diffusion coefficient of O(_2)</td>
<td>60.DO2.10.</td>
</tr>
<tr>
<td>DemCO</td>
<td>Intercardiac tissue diffusion coefficient of CO</td>
<td>fac.DcmO2</td>
</tr>
<tr>
<td>Dbcm1O2</td>
<td>Diffusion coefficient of O(_2) from blood compartment 1 to cardiac tissue compartment 1;</td>
<td>(Pscm_av.SO2.Vtm1/rho)</td>
</tr>
<tr>
<td>Dbcm2O2</td>
<td>Diffusion coefficient of O(_2) from blood compartment 2 to cardiac tissue compartment 2;</td>
<td>(Pscm_cap.SO2.Vtm2/rho)</td>
</tr>
<tr>
<td>DcmCO_1</td>
<td>Diffusion coefficient of O(_2) from blood compartment 1 to cardiac tissue compartment 2</td>
<td>((Dbm1O2/Dbm2O2).DcmCO)</td>
</tr>
<tr>
<td>DcmCO_2</td>
<td>Diffusion coefficient of O(_2) from blood compartment 2 to cardiac tissue compartment 2</td>
<td>DcmCO</td>
</tr>
<tr>
<td>DcmCO_3</td>
<td>Diffusion coefficient of O(_2) from blood compartment 2 to cardiac tissue compartment 3</td>
<td>(DMCO _3.(Dbvcm1o2/Dbvm1o2))</td>
</tr>
<tr>
<td>fac</td>
<td>Diffusion coefficient for CO in tissues is 75% of O(_2) diffusion coefficient</td>
<td>0.75</td>
</tr>
</tbody>
</table>
Table 3.7: Simulation Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PbO2wi</td>
<td>Atmospheric pressure during CO exposure</td>
<td>Simulation specific</td>
</tr>
<tr>
<td>PbO2wo</td>
<td>Atmospheric pressure during treatment</td>
<td>Simulation specific</td>
</tr>
<tr>
<td>TW</td>
<td>Time by which the model reached steady state.</td>
<td>12 minutes</td>
</tr>
<tr>
<td>COcm0pc</td>
<td>Initial %CO in cardiac compartment(cpt)</td>
<td>Subject specific (%)</td>
</tr>
<tr>
<td>COcvm0pc</td>
<td>Initial %CO in cardiac venous cpt.</td>
<td>Subject specific (%)</td>
</tr>
<tr>
<td>Gmix_cm</td>
<td>O₂ mix gain of cardiac tissues</td>
<td>1</td>
</tr>
<tr>
<td>CINT</td>
<td>Time step of the integration algorithm</td>
<td>0.001</td>
</tr>
<tr>
<td>Tmax</td>
<td>Maximum time of the simulation</td>
<td>Simulation specific</td>
</tr>
<tr>
<td>IALG</td>
<td>Integration algorithm used</td>
<td>8 (Runge kutta Fehlberg)</td>
</tr>
<tr>
<td>Tzss, Tco</td>
<td>Time at which CO exposure begins (or is present) in the simulation</td>
<td>Simulation specific</td>
</tr>
<tr>
<td>COppm</td>
<td>Concentration of CO in part per million</td>
<td>Simulation specific</td>
</tr>
<tr>
<td>VdotWI</td>
<td>Ventilation at the time of CO exposure</td>
<td>Subject specific</td>
</tr>
<tr>
<td>VdotWO</td>
<td>Ventilation at the time of treatment</td>
<td>Subject specific</td>
</tr>
</tbody>
</table>
Table 3.8: Sensitivity Analysis of the Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Variation</th>
<th>Tissue PO2_1</th>
<th>Tissue PO2_2</th>
<th>Venous PO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>O2 consumption</td>
<td>↑ 50%</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Mro2cm</td>
<td>↓ 50%</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Blood Flow</td>
<td>↑ 50%</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Q.cm</td>
<td>↓ 50%</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>PS product</td>
<td>90</td>
<td>21.78</td>
<td>22.05</td>
<td>20.76</td>
</tr>
<tr>
<td>Pscm_av</td>
<td>270</td>
<td>44.7</td>
<td>20.98</td>
<td>20.74</td>
</tr>
<tr>
<td>PS product</td>
<td>225</td>
<td>37.97</td>
<td>12.711</td>
<td>20.86</td>
</tr>
<tr>
<td>Pscm_cap</td>
<td>675</td>
<td>39.38</td>
<td>24.47</td>
<td>20.73</td>
</tr>
<tr>
<td>AV Shunt fraction</td>
<td>0.0475</td>
<td>40.34</td>
<td>21.69</td>
<td>20.74</td>
</tr>
<tr>
<td>Dbvcm_on</td>
<td>0.1425</td>
<td>37.86</td>
<td>21.28</td>
<td>20.74</td>
</tr>
<tr>
<td>Volume distribution</td>
<td>0.1</td>
<td>49.52</td>
<td>23.25</td>
<td>20.74</td>
</tr>
<tr>
<td>fvcm</td>
<td>0.3</td>
<td>32.45</td>
<td>19.98</td>
<td>20.7</td>
</tr>
</tbody>
</table>

Table 3.9: Values for Standard Set of parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pscm_av</td>
<td>180</td>
</tr>
<tr>
<td>Pscm_cap</td>
<td>450</td>
</tr>
<tr>
<td>Dbvcm_on</td>
<td>0.095</td>
</tr>
<tr>
<td>fvcm</td>
<td>0.2</td>
</tr>
<tr>
<td>Dxcm</td>
<td>0.0353</td>
</tr>
</tbody>
</table>

Table 3.10: Steady State Values in human

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value(torr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCM1O2</td>
<td>39</td>
</tr>
<tr>
<td>PCM2O2</td>
<td>21.47</td>
</tr>
<tr>
<td>PCMV1O2</td>
<td>50.91</td>
</tr>
<tr>
<td>PCMV2O2</td>
<td>20.23</td>
</tr>
<tr>
<td>PCMV3O2</td>
<td>20.74</td>
</tr>
</tbody>
</table>
Figure 3.1: Modified Model. The model consists of lungs, arterial and mixed venous blood, non-muscle tissue and two subcompartments within the muscle tissue. (Bruce, Bruce, Erupaka)

(Figure also referred in Section 3.2)
Figure 3.2: Final Model. The model consists of lungs, arterial and mixed venous blood, non-muscle tissue, two subcompartments within the muscle tissue and the cardiac compartment with two subcompartments.
Figure 3.3: Cardiac Output and Carboxyhemoglobin. Figure shows the plot of the data (o) used (68,69,70) to build the relationship and the predicted data (*). The percent increase in carboxyhemoglobin levels of blood, $\%\Delta COHb$ is plotted on the x-axis and the percent increase in cardiac output, $\%\Delta Q^*$ on the Y-axis. Test data points (o) were considered from experiments whose data were not included in building the relation to check with the values (o) obtained from the predictor equation.
Figure 3.4: Two Subcompartment Cardiac Tissue. *The figure shows the two cardiac tissue compartments -1, 2 and the three cardiac blood compartments -1, 2, and 3 surrounding the cardiac tissue.*

Figure 3.5: Vasculature of Cardiac Compartment. *The tissue compartment 1 is assumed to be perfused by small arterioles (a) and small venules (v), as well as by capillaries The tissue compartment 2, is perfused mostly by capillaries (Ca, Cv).*
Collect HUMAN data from various journals for
1. Myocardial oxygen consumption
2. Myocardial blood flow
3. Heart Rate

Exclude data with measurement limitations like myocardial blood flow measured using Nitrous oxide dilution method had many limitations which tented to underestimate the myocardial blood flow prediction.

Tabulate and plot the data

Perform regression analysis

Choose statistically significant prediction and validate it for data set not used to build the relation

Implement the relation into the model

Figure 3.6: Strategy for Developing Prediction Equations for the Model
Figure 3.7: Heart Rate and Myocardial Blood Flow. Figure shows the plot of the data (o) used to build the relationship (79) and predicted data (*). The heart rate is plotted on the x-axis and the myocardial blood flow is plotted on the y-axis. Test data points (o,o) were considered from experiments whose data (161) were not included in building the relation to check with the values(*,*) obtained from the predictor equation.
Figure 3.8: Heart Rate and Myocardial Oxygen Consumption. Figure shows the plot of the data (o) used to build the relationship (80-86) and predicted data (*). The heart rate is plotted on the x-axis and the myocardial oxygen consumption is plotted on the y-axis. Test data points (o,o) were considered from experiments whose data was not included in building the relation to check with the values(*,*) obtained from the predictor equation.
Start with interval (a=PO2max, b=PO2 min)

c = (PO2max + PO2 min)/2

Compute f(a)f(c)

<0 >0

=0

a=a
b=c
(a,c)

x=c

END

a=c
b=b
(c,b)

Compute f(a)f(c)
Continue iteration until a-b ≤ ε

Figure 3.9: Flow chart for the Algorithm
Chapter 4 presents both the validation results for the cardiac compartment and model predictions of extravascular burden of CO, and the resulting PO_2 levels, for various simulations. This chapter describes the simulation conditions in detail like the inputs to the model, levels of CO exposures, time of CO exposure, type of treatment (room air or 100% O_2) and data source etc. Also in this chapter, model predictions are graphed and tabulated for various experimental conditions that were simulated using the developed model.

The final model (Figure 3.2) is used for validating the cardiac compartments and for all other simulations listed below. The validation protocol for the cardiac compartment has already been described in Section 3.7 of Chapter 3. Predictions from the model were compared with published observations on human subjects and animal data (Table 4.1). The model of the cardiac compartment is validated for conditions of hypoxia, exercise and hyperoxia.

4.1 Model Validation

Model predictions for the blood and tissue PO_2 were compared with experimentally measured values from various experiments reported in the literature (Table 4.1). These variables (myocardial tissue and blood PO_2) were evaluated for conditions of hypoxia, hyperoxia and exercise in the absence of CO. Most of the available experimental data are from anesthetized animal studies. Figure 4.1, Figure 4.2, and Figure 4.3 show the comparison of model predictions (myocardial tissue and coronary venous PO_2) with experimentally measured values. From Figure 4.1 it can be seen that the model predictions of coronary venous tend to overestimate the coronary venous PO_2 when compared to the experimental data reported in the literature. The model estimates are ~34.7% greater than the experimentally measured coronary venous PO_2 values. Figure 4.2 shows the comparison of model predictions of
myocardial tissue PO_2 in subcompartment 1 with experimentally measured myocardial tissue PO_2 (measurement sites close to arterioles or generally a large electrode or the average value of the upper half of PO_2 histograms was used). The model predictions of the first compartment tissue PO_2 match well with the experimentally measured values reported in the literature. However, at lower experimental PO_2 the model tends to slightly overestimate the predicted PO_2’s. In Figure 4.3, comparison of model predictions of myocardial tissue PO_2 in subcompartment 2 with experimentally measured myocardial tissue PO_2 is shown. The experimental measurement made with electrodes whose size is comparable to that of a capillary and the average value of the lower half of PO_2 histograms was assumed to represent the tissue PO_2 in the second compartment. The predictions made by the model for myocardial tissue PO_2 of subcompartment 2 slightly underestimate the experimentally made measurements by 28.37%. At very low experimentally measured PO_2’s, the model predicts negative tissue PO_2. Values of certain parameters like PS (permeability surface area product) and FVcm (volume distributing fraction of cardiac compartment) were determined to best fit the model predictions with the experimental data. Thus, model validation also helped to determine the values (Section 3.6) for some parameters.

4.2 Model Simulations

The major goal of the thesis was to predict myocardial $MbCO$ levels and tissue PO_2 levels (extravascular burden) during CO exposures and treatment sessions. Estimating the extravascular burden of CO on the heart will aid in understanding the severity of myocardial tissue hypoxia during (or after) CO poisoning. The various simulations done below explain the data source, experiment protocol, relevance of simulation, inputs to the model available (provided by the investigators of the experiment), model parameters determined, and predictions of extravascular burden of CO on heart and coronary venous PO_2 (outputs). In all the simulations extravascular
(myocardial tissue PO_2 and $MbCO$) burden of CO on human heart is predicted. The following simulations have been analyzed in this thesis:

1. Simulation of short-high concentration CO exposure.

2. Simulation of long-low concentration CO exposure.

3. CO rebreathing during 100% O_2 administration.

4. CO exposure during Rest and Exercise Sessions

4.2.1 Short Duration-High Concentration CO Exposure:

Data Source for the Simulation: Subject 120, Reference 154. Benignus et.al exposed human subjects to high concentration of CO (6683 PPM) during room air breathing for 4-6 Minutes, followed by washout on air for 4-5 hrs.

Experiment Protocol:

\[
\begin{array}{c}
T=0 & T_W & T_{CO} & T_{RA} & T_{end} \\
5min & 283mins & 6683ppm & 12min & 5min & 283mins
\end{array}
\]

$T_W =$ Time for the model to reach a steady state (12 min)

$T_{CO} =$ Start time of CO exposure

$T_{RA} =$ Start time for treatment with room air

$T_{end} =$ End time of simulation

Simulation Relevance: This kind of simulation would find relevance when trapped for 5-10 mins in a house or a coal mine which is on fire, or in a car with its exhaust blocked.
Parameters Provided by Investigators: age, gender, height, body weight, concentration of CO, hemoglobin concentration in blood, barometric pressure, temperature, cardiac output, ventilation, volume of blood, exposure and treatment times, room air treatment, HbCO levels in radial artery and antecubital vein sampled every minute for the first 6 min, then intermittently thereafter.

Parameters Determined: Total body O₂ consumption (233 ml/min/Kg), heart rate (Section 3.5.3), ventilation adjusted, diffusion coefficient for CO (Bruce, Bruce and Erupaka), myocardial blood flow (Section 3.5.1), myocardial O₂ consumption (Section 3.5.1), increases in cardiac output (Section 3.2.4) and increases in heart rate (Section 3.5.3) with increases in blood HbCO levels. These parameters are the values determined from regression relationships or from the literature.

Model Predictions: Figure 4.4 shows the predicted HbCO levels in arterial blood, coronary venous partial pressure of O₂ (PcvO₂), oxygen tension in cardiac subcompartment 1 (Pcm₁O₂), MbCO levels in cardiac subcompartment 1 (MbCOcm₁), oxygen tension in cardiac subcompartment 2 (Pcm₂O₂) and MbCO levels in cardiac subcompartment 2 (MbCOcm₂). The values of the predicted variables are as shown below:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Values before begin of CO Exposure</th>
<th>Values at End of CO Exposure</th>
<th>Values at End of Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>% HbCO</td>
<td>0.73</td>
<td>14.17</td>
<td>6.19</td>
</tr>
<tr>
<td>%MbCOcm₁, %MbCOcm₂</td>
<td>0.25, 0.32</td>
<td>5.39, 7.38</td>
<td>2.34, 3.08</td>
</tr>
<tr>
<td>Pcm₁O₂, Pcm₂O₂(Torr)</td>
<td>36.52, 19.33</td>
<td>21.45, 13.26</td>
<td>36.01, 21.08</td>
</tr>
<tr>
<td>PcvO₂ (Torr)</td>
<td>19.06</td>
<td>12.84</td>
<td>16.46</td>
</tr>
</tbody>
</table>
As seen in Figure 4.4 MbCO levels in compartment 2 are higher than in compartment 1, resulting in a lower tissue \(PO_2 \) in compartment 2 after CO exposure. The \(HbCO \) level in arterial blood increases, resulting in increased cardiac output. Increase in cardiac output is achieved by increased myocardial \(O_2 \) consumption accompanied with increase in myocardial blood flow. More CO load is delivered to the tissues due to increase in blood flow to the tissue. Also, the myocardial \(O_2 \) consumption increases and the tissue \(PO_2 \) falls resulting in higher MbCO levels. Figure 4.5 shows comparison of the MbCO levels and tissue \(PO_2 \) of resting skeletal muscle and cardiac muscle tissues for the same CO exposure protocol. It can be seen from the Figure 4.5 that the MbCO levels are lower and the tissue \(PO_2 \) are greater in skeletal muscle than that of cardiac muscle. Lower MbCO levels in resting skeletal muscle are due to lower oxygen consumption, lower blood flow, less CO load delivered and higher \(PO_2 \) than that of cardiac muscle, which is a rigorously working muscle. The values for the resting skeletal muscle are as shown below

<table>
<thead>
<tr>
<th>Variable</th>
<th>Values before begin of CO Exposure</th>
<th>Values at End of CO Exposure</th>
<th>Values at End of Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>% HbCO</td>
<td>6.19</td>
<td>0.73</td>
<td>14.1</td>
</tr>
<tr>
<td>%MbCOcm1,%MbCOcm2</td>
<td>1.99, 2.05</td>
<td>0.39, 0.48</td>
<td>2.3, 1.57</td>
</tr>
<tr>
<td>Pm1O2, Pm2O2 (Torr)</td>
<td>42.03, 27.75</td>
<td>35.9, 22.16</td>
<td>39.16, 25.09</td>
</tr>
</tbody>
</table>

4.2.2 Long Duration-Low Concentration CO Exposure

Data Source for the Simulation: The same parameters used in section 4.2.1 were used for this simulation. But the experiment protocol is different for this simulation. Subject 120 is exposed to 90 ppm of CO for a period of 8 hrs. There is no treatment in this protocol.
Simulation Relevance: This kind of simulation would find relevance when there is a faulty heater at work place or a faulty furnace at home.

Experiment Protocol:

Model Predictions: Figure 4.6 shows the predicted HbCO levels, coronary venous PO2, PcvO2, MbCO levels, MbCOcm1 and MbCOcm2 and myocardial oxygen tensions, Pcm1O2 and Pcm2O2. The predicted values before CO exposure are similar to the values of the simulation above (Section 4.2.1). Simulating this experimental protocol would help to understand the impact of CO load on the heart for a greater length of time and its resulting effect on the myocardial O2 tension. Concentration of CO exposure is lower in this simulation but is present for a greater length of time. The HbCO levels in blood reach ~9.6% resulting in MbCO levels of 3.84% and 5.24% in cardiac subcompartments 1 and 2. The tissue PO2 in the first subcompartment is 32 Torr, which is a reasonable PO2 however, the tissue PO2 is slightly lower in the subcompartment 2 (which is a major subcompartment of the heart model) for a long duration of time, resulting in tissue hypoxia. If the duration of CO exposure or concentration of CO would be increased, then the cardiac tissue would be O2 impaired for longer duration of time resulting in imbalance of homeostasis of O2 delivery and metabolism of heart. The values of the predicted variables are as follows:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Values at End of CO Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>% HbCO</td>
<td>9.5904</td>
</tr>
<tr>
<td>% MbCO</td>
<td>3.84, 5.24</td>
</tr>
<tr>
<td>Tissue PO2 (Torr)</td>
<td>32, 15.12</td>
</tr>
<tr>
<td>Cardiac Venous Po2 (Torr)</td>
<td>14.91</td>
</tr>
</tbody>
</table>
4.2.3 CO Rebreathing During 100% O₂ Administration

Data Source for the Simulation: Subject 1, Reference 155. Burge & Skinner had conducted CO rebreathing experiments in hyperoxia (100% O₂) to estimate the total blood volume. Subjects in this study rebreathed 60-70ml of CO for a period of 40 mins while breathing 100% oxygen.

Simulation Relevance: This method is a standard one used for determining total blood volume of a subject. Also, the closed breathing design of the experiment helps in estimating the blood-to-tissue diffusion coefficient of CO because the slow decrease in %HbCO after 10 min is sensitive to this coefficient.

Experiment Protocol:

Parameters Provided by Investigators: age, gender, height, body weight, injected volume of CO, barometric pressure, temperature, volume of blood, exposure and hyperoxia breathing times, and volume of the rebreathing circuit.

Parameters Determined: Total body O₂ consumption (233 ml/min/kg), cardiac output (Section 3.5.2), heart rate (Section 3.5.3), ventilation is assumed to be 0 during rebreathing, diffusion coefficient for CO (Bruce, Bruce and Erupaka), myocardial blood flow (Section 3.5.1), myocardial O₂
consumption (Section 3.5.1), increases in cardiac output (Section 3.2.4) and increases in heart rate (Section 3.5.3) with increases in blood $HbCO$ levels. The parameters during 100% oxygen breathing are not known. Regression equations developed for determining parameters during normoxia were applied for predicting cardiac output, heart rate etc., during hyperoxia.

Model Predictions: Figure 4.7 shows the predicted $HbCO$ and $MbCO$ levels in arterial blood and tissue subcompartments, coronary venous partial pressure of O_2 ($PcvO_2$) and myocardial oxygen tensions. $MbCO$ levels of subcompartment 1 are greater by 2% than the subcompartment 2 during the initial 5-6 mins of the experiment and then the $MbCO$ levels in the two subcompartments reach equilibrium. The tissue PO_2 falls approximately by 46 Torr in the subcompartment 1 and 7 Torr in the subcompartment 2. However after the end of CO exposure, the tissue PO_2 of cm1 increases approximately to 92 (close to value before CO exposure) Torr, and the PO_2 of cm2 increases to 20.31 Torr. However the tissue PO_2 in cm2 does not increases as much as expected during 100% O_2 breathing. This could be due to errors in determining the parameters during treatment protocol. The values of the predicted variables are as follows:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Values before begin of CO Exposure</th>
<th>Values at End of CO Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>% HbCO</td>
<td>1.07</td>
<td>10.94</td>
</tr>
<tr>
<td>%MbCOcm1,%MbCOcm2</td>
<td>1.07, 0.92</td>
<td>3.96, 3.56</td>
</tr>
<tr>
<td>Pcm_1O_2, Pcm_2O_2(Torr)</td>
<td>96.4, 22.56</td>
<td>50, 17.3</td>
</tr>
<tr>
<td>$PcvO_2$ (Torr)</td>
<td>23.29</td>
<td>17.07</td>
</tr>
</tbody>
</table>

4.2.4 CO Exposure During Exercise

Data Source for the Simulation: Subject 21, Reference 69. Kizakevitch et al. conducted experiments where the subjects performed lower body
exercise using a treadmill. Subjects underwent air exposures at their base level \(HbCO\) (0-2\%) and CO exposures to four levels of \(HbCO\) (5\%, 10\%, 15\%, 20\%). At each level of \(HbCO\), subjects underwent exercise sessions comprised of rest and three 5 min exercise periods (R, E1, E2, E3). The exercise intensity was increased in a step wise fashion and the experiment was conducted over two days.

Simulation Relevance: Working groups exposed to CO concentrations higher than the permissible levels are more susceptible to severe tissue hypoxia because increased work increases the oxygen demand in the tissue, but CO interferes with \(O_2\) delivery by binding to hemoglobin. Myoglobin functionality is also impaired as CO binds to myoglobin, further impairing \(O_2\) availability. Predicting tissue oxygenation and \(MbCO\) levels in the cardiac compartment during CO exposures will estimate the extent of tissue hypoxia in the heart.

Parameters Provided by Investigators: age, gender, height, body weight, concentration of CO in inspired air (1000 ppm for 5\% \(HbCO\), 3000 ppm for 10\%, 15\% and 20\% \(HbCO\) levels. 27 ppm, 55ppm, 83ppm and 100 ppm were used to maintain \(HbCO\) concentrations at 5\%, 10\%, 15\% and 20\% respectively), total body metabolic rate, ventilation, cardiac output, heart rate, times for begin of exercise stages and time of 100\% \(O_2\) exposure.

Experiment Protocol:

The protocol the authors followed was as follows:

E = Exercise; R= Rest

Day 1: Baseline \(HbCO\) (R, E1, E2, E3) - 5\% \(HbCO\)(R, E1, E2, E3) - 15\% \(HbCO\) – (R, E1, E2, E3)- Administer 100\% O2

Day 2: Baseline \(HbCO\) (R, E1, E2, E3) - 10\% \(HbCO\)(R, E1, E2, E3) - 20\% \(HbCO\) – (R, E1, E2, E3) - Administer 100\% O2.
Parameters Determined: Diffusion coefficient for CO (2.5 ml/min/Torr), myocardial blood flow (Section 3.5.1), myocardial O₂ consumption (Section 3.5.1), blood volume, ventilation adjusted to maintain normoxic arterial PO₂, cardiac output (Section 3.5.2, 3.5.3) and heart rate during O₂ administration.

Model Predictions:

4.2.4.1 Baseline HbCO (1.9%) at Rest and Three Levels of Exercise: (Figure 4.8). Myocardial tissue and venous PO₂ decrease from rest in a stepwise fashion with exercise stages 1 and 2. At the beginning of exercise stage 3, the PO₂ in the myocardial tissue and blood subcompartments increase. The MbCO levels in the subcompartments increase but are insignificant. There is a significant decrease in tissue PO₂ (decreases by 10 Torr and 6 Torr, respectively) of cm1 and cm2 at the end of exercise stage 2. There is an increase in tissue oxygen tensions during exercise stage 3. With increased exercise load one would expect the tissue PO₂ to fall, but the tissue PO₂ increases because the cardiac output increases by 2.6 times the resting value. Increase in cardiac output results in increased blood flow to the heart and there is more O₂ available for delivery to the tissues. Also the HbCO
levels are minimal, resulting in noncompetitive binding of \(O_2\) with hemoglobin, thereby resulting in increased tissue \(PO_2\). The values are

<table>
<thead>
<tr>
<th>Variables</th>
<th>Rest</th>
<th>Exercise 1</th>
<th>Exercise 2</th>
<th>Exercise 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>% HbCO</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>% MbCO</td>
<td>0.68, 0.87</td>
<td>0.73, 0.98</td>
<td>0.86, 1.24</td>
<td>0.73, 0.95</td>
</tr>
<tr>
<td>Tissue (PO_2) (Torr)</td>
<td>34.26, 18.66</td>
<td>28, 15.8</td>
<td>24.43, 12.36</td>
<td>32.5, 18.2</td>
</tr>
<tr>
<td>Cardiac Venous (PO_2)</td>
<td>20.9 Torr</td>
<td>17.8 Torr</td>
<td>15.09 Torr</td>
<td>19.54 Torr</td>
</tr>
</tbody>
</table>

4.2.4.2 HbCO (10%) at Rest and Three Levels of Exercise (Figure 4.9)

The subcompartment \(MbCO\) levels increase with stages of exercise, though the \(HbCO\) levels are maintained at 10%. The \(PO_2\) (tissue and blood) in the cardiac subcompartments decrease and \(MbCO\) levels increase linearly till the constant \(HbCO\) levels of 10% are attained. There is a negligible increase noticed in \(MbCO\) levels during the 5 min rest period, followed by a steep increase during exercise stages 1 and 2 and then a linear increase during exercise stage 3.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Rest</th>
<th>Exercise 1</th>
<th>Exercise 2</th>
<th>Exercise 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>% HbCO</td>
<td>9.94</td>
<td>10</td>
<td>9.97</td>
<td>10</td>
</tr>
<tr>
<td>% MbCO</td>
<td>3.76, 5.09</td>
<td>4.12, 5.62</td>
<td>4.05, 5.51</td>
<td>4.8, 7.1</td>
</tr>
<tr>
<td>Tissue (PO_2) (Torr)</td>
<td>32.03, 15.33</td>
<td>31.14, 14.15</td>
<td>31.22, 14.17</td>
<td>25.15, 10.45</td>
</tr>
<tr>
<td>Cardiac Venous (Po2)</td>
<td>16.61 Torr</td>
<td>15.76 Torr</td>
<td>15.74 Torr</td>
<td>12.85 Torr</td>
</tr>
</tbody>
</table>

The tissue and blood \(PO_2\)’s of heart decrease by 1-2 Torr initially during the rest session, then fall by few Torr and are maintained constant during stages 1 and 2 of exercise. There is a significant drop of \(PO_2\) in tissue and blood subcompartments during exercise stage 3, especially in tissue subcompartment 2. The heart rate during stage 3 increases approximately by 98% due to exercise and increase in blood \(HbCO\) levels. Increased heart rate increases
myocardial O_2 consumption and myocardial blood flow. Also the cardiac output increases due to exercise and CO exposure. This results in more CO load being delivered to the heart, as CO has more affinity than O_2 to bind to hemoglobin. It results in higher $MbCO$ levels and lower tissue PO_2 in the subcompartments of the heart.

4.2.4.3 HbCO (20%) at Rest and Three Levels of Exercise (Figure 4.10)

The subcompartment $MbCO$ levels increase with stages of exercise, though the $HbCO$ levels are maintained at 20%. After reaching constant $HbCO$ level of 20%, there is a step wise decrease in PO_2’s (of myocardial tissue and blood subcompartments) with exercise stages. There is a decrease of tissue and blood PO_2 in the cardiac subcompartments with linear increase of tissue $MbCO$ levels. There is a significant large drop in the oxygen tensions of tissue subcompartment 2 during exercise stage 1 and exercise stage 2 compared to exercise stage 3. The cardiac output increases by 81%, 102% and 119% respectively compared to the rest session at 20% HbCO levels. Increasing metabolic demand of $O2$ with exercise stages and poor tissue oxygenation due to increased CO load (due to increasing blood flow) results in PO_2 of 3.7 Torr and 2.28 Torr. If these tissue PO_2 persists for longer time, then the metabolic oxygen demands may be met with anaerobic metabolism.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Rest</th>
<th>Exercise 1</th>
<th>Exercise 2</th>
<th>Exercise 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>% HbCO</td>
<td>19.78</td>
<td>19.73</td>
<td>19.7</td>
<td>19.6</td>
</tr>
<tr>
<td>% MbCO</td>
<td>8.81, 12.74</td>
<td>11.07, 17.49</td>
<td>14.25, 25.25</td>
<td>18.75, 33.93</td>
</tr>
<tr>
<td>TissuePO2 (Torr)</td>
<td>23.8, 10.29</td>
<td>20.03, 6.66</td>
<td>14.55, 3.71</td>
<td>9.19, 1.92</td>
</tr>
<tr>
<td>Cardiac Venous Po2</td>
<td>11.91 Torr</td>
<td>8.8 Torr</td>
<td>5.6 Torr</td>
<td>2.28 Torr</td>
</tr>
</tbody>
</table>
4.2.4.4 HbCO (20%) at Rest and Three Levels of Exercise Followed with 100% O2 Treatment:

After the third stage of exercise, the subject breathed 100% O_2 for 60 mins (Figure 4.11). The model predictions at the end of 60 mins are as follows

<table>
<thead>
<tr>
<th>Variables</th>
<th>Rest</th>
<th>End of therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>% HbCO</td>
<td>1.9</td>
<td>13.78</td>
</tr>
<tr>
<td>% MbCO</td>
<td>0.68, 0.87</td>
<td>6.97, 8.38</td>
</tr>
<tr>
<td>TissuePO2 (Torr)</td>
<td>34.26, 18.66</td>
<td>108, 17</td>
</tr>
<tr>
<td>Cardiac Venous Po2</td>
<td>20.9 Torr</td>
<td>18.45 Torr</td>
</tr>
</tbody>
</table>

100 % O_2 breathing after CO exposure decreases the $HbCO$ and $MbCO$ levels in arterial blood and the cardiac tissue subcompartment (Figure 4.11). There is an increase in myocardial blood and tissue PO_2’s with 100% O_2 breathing. A significant increase in the tissue PO_2 of cardiac subcompartment 1 is observed with 100% O_2 breathing. However, the PO_2 of tissue subcompartment 2 only increases to 17 Torr after 100% O_2 breathing. The $MbCO$ levels in cm2 are 8.38% after breathing 100% O_2. The cardiac output for this session (breathing 100% O_2) was determined from the predictive equation considering the total body O_2 consumption at rest (during 20% $HbCO$). Making this assumption may have effected the prediction for second compartment myocardial tissue PO_2. The determined cardiac output may have been underestimated for the hyperoxia session which resulted in lower blood flow to the heart compartment. Also the $MbCO$ levels were higher in the second compartment accompanied with lower blood flow during hyperoxia which resulted in lower tissue PO_2 in cm2 at end of therapy (recovery) session. Figure 4.12 compares the model predictions for extravascular burden of CO (PO_2 and $MbCO$) while breathing 100% O_2 vs Room air after CO exposure. It can be seen from the figure that breathing 100% O_2 after exposure shows higher tissue PO_2 and lower $MbCO$ levels than breathing room air.
4.2.4.5 Baseline HbCO (1.9%) - HbCO (5%) - HbCO (15%) (Each session at Rest and Three Levels of Exercise) Followed with 100% O2 Treatment.

Figure 4.13

There is a step wise decrease in PO$_2$’s (of myocardial tissue and blood subcompartments) with exercise stages and increasing HbCO levels. There is an increase in myocardial blood and tissue PO$_2$’s with 100% O$_2$ breathing. Also, the HbCO and MbCO levels in arterial blood and the cardiac tissue subcompartment decreases with 100 % O$_2$ breathing after CO exposure. The responses of decreases in PO$_2$ and increases in MbCO levels (of the cardiac subcompartments) are qualitatively similar to the exercise simulations discussed above for 10% and 20% HbCO levels but the values reach are quantitatively different as the current simulation involves lower HbCO levels of 5% and 15 % compared to 10% and 20%. Thus we can expect that with increasing HbCO levels, the quantitative values attained may be different but the same qualitative response pattern may be followed.
Table 4.1: Validation of the Model.

<table>
<thead>
<tr>
<th>R</th>
<th>Species</th>
<th>Exp. Par. O₂</th>
<th>Model Par O₂</th>
<th>Exp. PcmvO²</th>
<th>Model PcmvO₂</th>
<th>Exp. PtO₂</th>
<th>Model Pcm1 O₂</th>
<th>Model Pcm2 O₂</th>
<th>Qem</th>
<th>Mr O₂ cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
<td>Human</td>
<td>99</td>
<td>98.98954</td>
<td>17.25</td>
<td>20.50</td>
<td>-</td>
<td>34.84992</td>
<td>19.69238</td>
<td>118</td>
<td>15</td>
</tr>
<tr>
<td>91</td>
<td>Human</td>
<td>42</td>
<td>43.66366</td>
<td>15.75</td>
<td>12.96</td>
<td>-</td>
<td>16.6563</td>
<td>13.77764</td>
<td>167</td>
<td>17</td>
</tr>
<tr>
<td>157</td>
<td>Dog</td>
<td>92</td>
<td>91.76348</td>
<td>18.8</td>
<td>25.39</td>
<td>19.9</td>
<td>48.66612</td>
<td>29.18559</td>
<td>90</td>
<td>6.6</td>
</tr>
<tr>
<td>157</td>
<td>Dog</td>
<td>92</td>
<td>91.76348</td>
<td>26</td>
<td>25.39</td>
<td>-</td>
<td>48.66612</td>
<td>29.18559</td>
<td>90</td>
<td>6.6</td>
</tr>
<tr>
<td>96</td>
<td>Swine</td>
<td>103</td>
<td>103.4311</td>
<td>27.33</td>
<td>27.34</td>
<td>50</td>
<td>41.64232</td>
<td>27.36177</td>
<td>94</td>
<td>6.7</td>
</tr>
<tr>
<td>96</td>
<td>Swine</td>
<td>57</td>
<td>57.94478</td>
<td>22.77</td>
<td>30.84952</td>
<td>35</td>
<td>40.77736</td>
<td>33.06806</td>
<td>129</td>
<td>7.2</td>
</tr>
<tr>
<td>96</td>
<td>Swine</td>
<td>44</td>
<td>44.08298</td>
<td>19.75</td>
<td>27.27827</td>
<td>26</td>
<td>30.6389</td>
<td>27.93219</td>
<td>147</td>
<td>5.8</td>
</tr>
<tr>
<td>96</td>
<td>Swine</td>
<td>189</td>
<td>190.4437</td>
<td>31.8</td>
<td>24.08567</td>
<td>-</td>
<td>59.21405</td>
<td>27.35737</td>
<td>125</td>
<td>11.3</td>
</tr>
<tr>
<td>94</td>
<td>Swine</td>
<td>39</td>
<td>39.42103</td>
<td>21</td>
<td>17.97635</td>
<td>-</td>
<td>23.59683</td>
<td>19.52166</td>
<td>175</td>
<td>12.5</td>
</tr>
<tr>
<td>94</td>
<td>Swine</td>
<td>40</td>
<td>40.54051</td>
<td>17</td>
<td>20.95588</td>
<td>-</td>
<td>26.80393</td>
<td>22.58181</td>
<td>173</td>
<td>9.8</td>
</tr>
<tr>
<td>93</td>
<td>Dog</td>
<td>64.2</td>
<td>64.1</td>
<td>18.3</td>
<td>19.314</td>
<td>18.9</td>
<td>35.456</td>
<td>24.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>Dog</td>
<td>326</td>
<td>325.36</td>
<td>-</td>
<td>20.93615</td>
<td>49/26</td>
<td>61.77243</td>
<td>23.12536</td>
<td>0.8</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Table 4.1: Validation of the Model (Continued)

<table>
<thead>
<tr>
<th>R</th>
<th>Species</th>
<th>Exp. Par O₂</th>
<th>Model Par O₂</th>
<th>Exp. PcmvO₂</th>
<th>Model PcmvO₂</th>
<th>Exp. PtO₂</th>
<th>Model Pcm1 O₂</th>
<th>Model Pcm2 O₂</th>
<th>Qcm</th>
<th>mr O₂cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>Rat</td>
<td>99</td>
<td>100.1104</td>
<td>-</td>
<td>20.80742</td>
<td>20/20</td>
<td>42.32027</td>
<td>21.26861</td>
<td>4.5</td>
<td>0.54</td>
</tr>
<tr>
<td>93</td>
<td>Rat</td>
<td>89</td>
<td>88.34195</td>
<td>-</td>
<td>20.24898</td>
<td>15/35</td>
<td>38.95486</td>
<td>19.60096</td>
<td>4.5</td>
<td>0.54</td>
</tr>
<tr>
<td>94</td>
<td>swine</td>
<td>150</td>
<td>150.178</td>
<td>-</td>
<td>26.8472</td>
<td>30.3±4.7</td>
<td>59.84115</td>
<td>30.68439</td>
<td>94</td>
<td>6.7</td>
</tr>
<tr>
<td>161</td>
<td>swine</td>
<td>150</td>
<td>150.178</td>
<td>-</td>
<td>26.8472</td>
<td>42±4</td>
<td>59.84115</td>
<td>30.68439</td>
<td>94</td>
<td>6.7</td>
</tr>
<tr>
<td>95</td>
<td>Rat</td>
<td>99</td>
<td>100.094</td>
<td>-</td>
<td>20.685</td>
<td>48/18</td>
<td>41.1873</td>
<td>21.41581</td>
<td>4</td>
<td>0.4</td>
</tr>
<tr>
<td>96</td>
<td>Dog</td>
<td>143</td>
<td>142.191</td>
<td>46</td>
<td>19.43323</td>
<td>42±7</td>
<td>47.515</td>
<td>21.56576</td>
<td>0.8</td>
<td>0.1</td>
</tr>
<tr>
<td>97</td>
<td>swine</td>
<td>359</td>
<td>358.476</td>
<td>-</td>
<td>29.10781</td>
<td>112±8.48</td>
<td>77.4706</td>
<td>33.0111</td>
<td>94</td>
<td>6.7</td>
</tr>
<tr>
<td>98</td>
<td>swine</td>
<td>90</td>
<td>90.4641</td>
<td>23.25</td>
<td>24.90368</td>
<td>46±7.5</td>
<td>47.8475</td>
<td>28.38637</td>
<td>94</td>
<td>6.7</td>
</tr>
<tr>
<td>99</td>
<td>Rat</td>
<td>99</td>
<td>100.1104</td>
<td>-</td>
<td>20.80742</td>
<td>10</td>
<td>42.32027</td>
<td>21.26861</td>
<td>4.5</td>
<td>0.54</td>
</tr>
<tr>
<td>44</td>
<td>swine</td>
<td>99</td>
<td>98.1135</td>
<td>-</td>
<td>25.2926</td>
<td>49±2</td>
<td>49.9177</td>
<td>28.86385</td>
<td>94</td>
<td>6.7</td>
</tr>
<tr>
<td>100</td>
<td>Rat</td>
<td>87</td>
<td>20</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R= Reference, Exp.= Experimental, ParO₂ = Arterial PO₂, PcmO₂ = Coronary Venous PO₂, PtO₂ = Cardiac Tissue PO₂, Pcm1O₂ = Cardiac Subcompartment 1 PO₂, Pcm2O₂ = Cardiac Subcompartment 1 PO₂, Qcm= Myocardial Blood Flow, mrO₂cm = Myocardial Oxygen Consumption.
Figure 4.1: Comparison of Coronary Venous PO2. Comparison of model predictions of coronary venous PO_2 (y-axis) with experimentally measured coronary venous PO_2 (x-axis). (Table 4.1). The dashed line represents the regression equation.

Statistical Significance:

Model Coronary Venous $PO_2 = 0.742 \times$ Experimental Coronary Venous $PO_2 + 6.812$

Standard error of estimate: 3.566

Regression coefficient, R: 0.743
Figure 4.2 : Comparison of Myocardial Tissue PO_2 in Subcompartment 1. Comparison of model predictions of myocardial tissue PO_2 (y-axis) in subcompartment 1 with experimentally measured (x-axis) myocardial tissue PO_2 (measurement sites close to arterioles or generally large electrode was used). *(Table 4.1).* The dashed line represents the regression equation.

Statistical Significance:

Model Compartment 1 $PO_2 = 0.918 \times$ Experimental Compartment 1 $PO_2 + 6.532$

Standard error of estimate: 6.387

Regression coefficient, R: 0.643
Figure 4.3: Comparison of Myocardial Tissue PO_2 in Subcompartment 2. Comparison of model predictions of myocardial tissue PO_2 (y-axis) in subcompartment 2 with experimentally measured (x-axis) myocardial tissue PO_2 (measurements made with electrodes whose size is comparable to that of size of a capillary). (Table 4.1). The dashed line represents the regression equation.

Statistical Significance:

Model Compartment 2 $PO_2 = 1.396 \times$ Experimental Compartment 2 $PO_2 - 8.007$

Standard error of estimate: 2.803

Regression coefficient, R: 0.913
Figure 4.4: Prediction for Short Duration-High Concentration CO Exposure. Figure shows the predicted %HbCO levels in arterial blood, coronary venous partial pressure of O_2 (P_{cmvO_2}), oxygen tension in cardiac subcompartment 1 (P_{cm1O_2}), MbCO levels in cardiac subcompartment 1 (%MbCOcm$_1$), oxygen tension in cardiac subcompartment 2 (P_{cm2O_2}) and MbCO levels in cardiac subcompartment 2 (%MbCOcm$_2$) for a short (5min) CO exposure (6683 ppm). The point (•) shows the start of therapy (room air administration) at $t = 5$ min, lasting for 283mins after CO exposure. Simulation time is plotted on the x-axis and the model predicted variables are plotted on the y-axis.
Figure 4.5: Prediction Summary for Short Duration-High Concentration CO Exposure. Figure shows the predicted %HbCO (blue) levels in arterial blood, %MbCO levels in cardiac subcompartment 1 (red solid) and cardiac subcompartment 2 (red dashed), oxygen tension in cardiac subcompartment 1 (green solid) and cardiac subcompartment 2 (green dashed); %MbCO levels in resting skeletal muscle subcompartment 1 (magenta solid) and resting skeletal muscle subcompartment 2 (magenta dashed), oxygen tension in skeletal muscle subcompartment 1 (cyan solid) and skeletal muscle subcompartment 2 (cyan dashed) for a short (5min) CO exposure (6683 ppm). Simulation time is plotted on the x-axis and the model predicted variables are plotted on the y-axis.
Figure 4.6: Prediction for Long Duration-Low Concentration CO Exposure. Figure shows the predicted %HbCO levels in arterial blood, coronary venous partial pressure of O_2 (PcvmO_2), oxygen tension in cardiac subcompartment 1 (PcmO_2), MbCO levels in cardiac subcompartment 1 (%MbCOcm_1), oxygen tension in cardiac subcompartment 2 (PcmO_2) and MbCO levels in cardiac subcompartment 2 (%MbCOcm_2) for a long (480 min) CO exposure (90 ppm). The point (•) shows the start time of CO exposure. Simulation time is plotted on the x-axis and the model predicted variables are plotted on the y-axis.
Figure 4.7: CO Rebreathing During 100% O₂ Administration. Figure shows the predicted %HbCO (blue) levels in arterial blood, % MbCO levels in cardiac subcompartment 1 (red solid) and cardiac subcompartment 2 (red dashed), coronary venous PO₂ (blue solid) oxygen tension in cardiac subcompartment 1 (green solid) and cardiac subcompartment 2 (green dashed) for a period 480 mins with CO concentrations being 90ppm. The point (•) shows the start of CO exposure. Simulation time is plotted on the x-axis and the model predicted variables are plotted on the y-axis.
Figure 4.8: Baseline HbCO (1.9%) at Rest and Three Levels of Exercise. Figure shows the predicted %HbCO levels in arterial blood, coronary venous partial pressure of O2 (PcmvO2), oxygen tension in cardiac subcompartment 1 (Pcm1O2), MbCO levels in cardiac subcompartment 1 (%MbCOcm1), oxygen tension in cardiac subcompartment 2 (Pcm2O2) and MbCO levels in cardiac subcompartment 2 (%MbCOcm2). The points (•) show the end times of 5 min sessions of rest, exercise 1, exercise 2 and exercise 3. The sessions are simulated at baseline HbCO levels of 1.9%. Simulation time is plotted on the x-axis and the model predicted variables are plotted on the y-axis.
Figure 4.9: HbCO (10%) at Rest and Three Levels of Exercise. Figure shows the predicted %HbCO levels in arterial blood, coronary venous partial pressure of O₂ (PcmvO₂), oxygen tension in cardiac subcompartment 1(Pcm₁O₂), MbCO levels in cardiac subcompartment 1(%MbCOcm₁), oxygen tension in cardiac subcompartment 2(Pcm₂O₂) and MbCO levels in cardiac subcompartment 2(%MbCOcm₂). The points (•) show the start times of 5 min sessions of rest, exercise 1, exercise 2 and exercise 3. The sessions are simulated at baseline HbCO levels of 10%. Simulation time is plotted on the x-axis and the model predicted variables are plotted on the y-axis.
Figure 4.10: HbCO (20%) at Rest and Three Levels of Exercise. Figure shows the predicted %HbCO levels in arterial blood, coronary venous partial pressure of O$_2$ (PCmvO$_2$), oxygen tension in cardiac subcompartment 1 (PCm1O$_2$), MbCO levels in cardiac subcompartment 1 (%MbCOcm1), oxygen tension in cardiac subcompartment 2 (PCm2O$_2$) and MbCO levels in cardiac subcompartment 2 (%MbCOcm2). The points (•) show the start times of 5 min sessions of rest, exercise 1, exercise 2 and exercise 3. The sessions are simulated at baseline HbCO levels of 20%. Simulation time is plotted on the x-axis and the model predicted variables are plotted on the y-axis.
Figure 4.11: HbCO (20%) at Rest and Three Levels of Exercise Followed with 100% O₂ Treatment. Figure shows the predicted %HbCO levels in arterial blood, coronary venous partial pressure of O₂ (PcmvO₂), oxygen tension in cardiac subcompartment 1(Pcm₁O₂), MbCO levels in cardiac subcompartment 1(%MbCOcm₁), oxygen tension in cardiac subcompartment 2(Pcm₂O₂) and MbCO levels in cardiac subcompartment 2(%MbCOcm₂). The points (•) show the end times of 5 min sessions of rest, exercise 1, exercise 2, exercise 3 and start time of 100% O₂ breathing for period of 60 mins. The sessions are simulated at baseline HbCO levels of 20%. Simulation time is plotted on the x-axis and the model predicted variables are plotted on the y-axis.
Figure 4.12: Comparison of 100% O2 and Room Air breathing after CO exposure. Comparison of 100% O2 VS. Room Air Treatment During 20% HbCO at Rest and Three Levels of Exercise: Figure shows the predicted %HbCO levels in arterial blood, coronary venous partial pressure of O_2 (PcmvO$_2$), oxygen tension in cardiac subcompartment 1(Pcm1O$_2$), MbCO levels in cardiac subcompartment 1(%MbCOcm$_1$), oxygen tension in cardiac subcompartment 2(Pcm2O$_2$) and MbCO levels in cardiac subcompartment 2(%MbCOcm$_2$). The points (•) show the start times of 5 min sessions of rest, exercise 1, exercise 2, exercise 3 and start time of 100% O_2 (blue) or room air (red) breathing for period of 60 mins. The sessions are simulated at baseline HbCO levels of 20%. Simulation time is plotted on the x-axis and the model predicted variables are plotted on the y-axis.
Figure 4.13: Baseline HbCO (1.9%) - HbCO (5%) - HbCO (15%) (Each session at Rest and Three Levels of Exercise) Followed with 100% O2 Treatment. Figure shows the predicted %HbCO (blue) levels in arterial blood, % MbCO levels in cardiac subcompartment 1 (red solid) and cardiac subcompartment 2 (red dashed), oxygen tension in cardiac subcompartment 1 (green solid) and cardiac subcompartment 2 (green dashed). The point (•) shows the 5 min end time session of rest (-), exercise 1 (--), exercise 2 (---) and exercise 3 (----). The HbCO level attained are **1.9%**, **5%** and **15%**. Simulation time is plotted on the x-axis and the model predicted variables are plotted on the y-axis.
This chapter summarizes the modifications made to the selected primary model (Figure 2.1), and discusses the limitations of the current model, issues related to parameter estimations, and concerns regarding the model validation and results.

The most essential step in modeling is to determine the exact need for the model. In this thesis we need the model to predict the amount of CO entering the blood and the cardiac tissues and to determine the effects of CO on tissue oxygenation (PcmO2, tissue PO2 of the cardiac compartment). Uptake of CO by blood can be determined by measuring the COHb levels in the venous blood. But it is difficult to measure MbCO (carboxymyoglobin) levels and tissue PO2 in the human heart noninvasively. It is not expected from the model that the predictions be literally true but one can insist that the models provide useful approximations and their usefulness is measured against the value of the proposed objectives.

5.1 Model Modifications

The following modifications were made to enhance the model predictions:

5.1.1 Implementing O2 Mass Balance Equations

The primary model (35) has been enhanced and modified in many aspects. CO impairs O2 delivery to the tissues, so the primary issue is to predict impairment of O2 delivery in the presence of CO and its effect on tissue PO2. At the same time, the extravascular burden of CO depends on the O2 levels of the tissue. That is, the CO - O2 interaction involves a feedback loop, making it difficult to calculate the deliveries of O2 and CO unless the O2 mass balance equations are included. Thus to predict the CO load delivered, it is important to understand O2 availability (PO2) in the tissue. Hence mass balance equations for O2 were added for all compartments of the model. In the initial model O2 parameters were passed as constants, while in the current
model all O_2 parameters are calculated within the model. They are determined by solving simultaneous algebraic equations for oxyhemoglobin dissociation curves, and integrating the differential mass balance equations as described in Section 3.8 of chapter 3. We know that impaired O_2 delivery (CO hypoxia, hypoxic hypoxia, increased demand for oxygen while performing high stress exercise), and insufficient O_2 availability (coronary artery diseases, occlusion and ischemia) can disturb the homeostasis of energy metabolism (ATP production), blood flow and O_2 pressure gradients. Incorporating O_2 mass balance equations into the model has enhanced the ability of the model to predict O_2 tensions (which are difficult to measure experimentally) in the cardiac compartment and extended its application to simulate hypoxia, exercise and other conditions resulting in O_2 insufficiency.

5.1.2 Model Architecture and Flow Design

Modifying the model design to incorporate two subcompartments instead of a single compartment to represent the heart and the skeletal muscle helped in addressing the limitations related to O_2/CO diffusion and arterio-venous shunting, and the well-known fact that PO_2 is not the same throughout a tissue. Maintaining the balance of the O_2 supply and demand is very important in determining tissue oxygen tension. Attributing the skeletal muscle with regional flow and metabolic demand has allowed a better prediction of O_2 tension and CO load. Blood to tissue oxygen flux equations (Section 2.1.3, chapter 1) were modified by estimating them as a function of pressure gradients and the diffusion coefficient of O_2 (Section 3.2.2, chapter 3) instead of making an assumption of equality between O_2 flux and metabolic demand of the compartment (35). Also, in the current model, the nonlinear changes in O_2 and CO are being better accounted for due to improved algorithms (Section 3.8, chapter 3). I also implemented a new algorithm to solve the simultaneous algebraic equations to calculate the partial pressure of O_2 corresponding to the concentration of oxygen halfway between the inlet and outlet of the vascular subcompartment of the tissue (Section 3.8, chapter 3).

Adding a Cardiac Compartment to the Model: A two-subcompartment cardiac compartment was added to the model which is one of the main goals of the thesis.
The skeletal and cardiac muscle exhibit major differences in anatomy, blood flow, and O_2 demand. Unlike skeletal muscle, cardiac muscle works constantly to pump blood and it would, therefore, be inappropriate to lump the cardiac muscle with the resting skeletal muscle. Implementing a cardiac compartment made noninvasive predictions of $MbCO$ levels and oxygen tension in the tissues possible. These values are difficult to measure experimentally (noninvasively) in the human heart.

5.1.3 Physiological Relevance

Regulation of cardiac output with respect to increased blood $HbCO$ (carboxyhemoglobin) levels was implemented into the model by means of a predictive equation (68, 69, 70). Blood volume was estimated for individual subjects by means of a regression equation reported in the literature (78). Estimating myocardial O_2 consumption and myocardial blood flow as a function of heart rate (increases in heart rate would increase the work load of the heart resulting in higher O_2 demand and increased O_2 supply to meet the increased O_2 demand) helps in calculating estimates close to physiological values with increased heart rate. Permeability surface area product increases linearly with increases in blood flow, contributing to efficient diffusion of O_2 in times of O_2 impairment; this phenomenon was also added to the model.

Model application: Applying these modifications has enhanced the capability of the model to make predictions of tissue oxygen tension in the human heart during hypoxic hypoxia, exercise, higher altitude and other O_2 insufficiency conditions.

5.2 Model Limitations

The foremost limitation of the model is that it has lumped component parameters causing aggregation errors. This results in loss of anatomic resolution and functional representation of the organ, such as in the case of cardiac component layers of the heart (epicardium, midmyocardium, endocardium) and chambers of the heart (atria and ventricles) which display varied heterogeneity in blood flow, O_2 consumption, capillary density and tissue volume. But if one had to model the cardiac
muscle tissue for the purpose of this thesis, the best choice to model would be the region of left ventricular mid myocardium, as this region is especially susceptible to injury during CO exposure due to its high O₂ demand and the fact that CO interferences cause impairment of O₂ delivery. The heart is a dual pump, the left and right sides of the heart pump blood separately, but simultaneously, into the systemic and pulmonary systems. In order to pump blood efficiently, it is required for the right and left atria to contract first followed immediately by contraction of the right or left ventricle, respectively. Spreading of action potentials from one myocyte to other and depolarization of the plasma membrane triggers contraction of the cardiac muscle. Thus, mismatch of O₂ supply and demand in the most susceptible left ventricular myocardial region may cause alterations in myocyte functionality (spreading of action potential) in this region, resulting in disruption of synchronous functionality (sequence of excitation) of the heart leading to arrhythmia. Thus, most of the predictive equations for determining the blood flow and O₂ consumption were built for the left ventricular region (left ventricle and intraventricular septum) of the heart. When the model was tested using experimentally measured values of regional myocardial blood flow and O₂ consumption as inputs, model predictions of experimental coronary venous PO₂ were able to match the experimental values obtained as seen from Figure 4.1 of chapter 4. However, limitations due to diffusion and capillary heterogeneity were overcome to an extent by implementing two subcompartments. This allowed intertissue diffusion of O₂ and CO. Also, using two subcompartments allowed indirect arterio-venous O₂ and CO shunting within the tissue. However, the design for incorporating two subcompartments instead of a single compartment raises issues regarding the maximum number of subcompartments that can be implemented. This concern must be considered in relation to the thesis objective of predicting injury to the heart due to CO exposure.

Our main concern here is to model the CO uptake by the blood and the cardiac tissue. We are basically predicting the average MbCO and PO₂ levels of the tissue by means of the model. Thus by distributing cardiac muscle into two compartments, we assume that the first compartment is the tissue perfused with small arterioles and small venules, as well as by capillaries, and the second compartment is perfused by
capillaries. By making this assumption, we are making an attempt to understand the behavior of tissue with respect to its distance from a capillary, arteriole or venule during CO hypoxia. The MbCO levels and tissue PO$_2$ in the first compartment would reflect experimental measurements of values made near an arteriole while the second compartment predictions would be comparable to measurements made in the tissue close to a capillary. Also, one has to make a trade off between computational expense and achieved numerical accuracy in model predictions. Thus, considering all these issues, the two subcompartment cardiac model seems to be a reasonable compromise.

Another limitation of the model is that it does not incorporate details of metabolic pathways (change from aerobic to anaerobic metabolism), coupling with electro-physiological events (action potential due to K$^+$, Na$^+$ Ca$^{2+}$ channels) regulating coronary venous PO$_2$ (156) and biochemical events (Pcr, pH). The human heart, being a complex system, has many other backup regulation modules to restore homeostasis during conditions of diminished O$_2$ availability such as CO exposure or increase in O$_2$ demand as in exercise. Regulation of cardiac output and heart rate was implemented into the model by adding predictive equations to estimate variations in both cardiac output and heart rate as functions of blood HbCO levels. The effect of vasodilatation and capillary recruitment on blood-tissue gas exchange was implemented by increasing the permeability surface area product (PS_{cm}) as a linear function of increases in blood flow to the heart. Apart from increases in cardiac output, HR and vasodilatation which are implemented into the model, there are other functional mechanisms taking place like the change of metabolic pathways from aerobic cycle to anaerobic cycle due to diminished O$_2$ levels in tissue, variation in blood pressure, etc. Also, the role of myoglobin facilitated diffusion and cytochrome C oxidase interactions with CO is not clear (130,150). Gutierrez (1986), Waller et al., (1988), Forster (1970), Holland (1970), Roughton (1964), Sharan et al., (1990) , Corpes et al., (1989) have shown the dependence of rate of CO uptake by blood on a series of chemical reactions of O$_2$ and CO in the blood (association and dissociation rate coefficients of O$_2$ and CO with Hb), pH and PO$_2$. Representation of kinetics of O$_2$ and CO with hemoglobin (Hb) in modeling O$_2$ and CO transport in the blood flowing through pulmonary and systemic circulation is difficult as the order of
magnitude of association and dissociation rate coefficients of O_2 and CO with Hb are unknown (Sharan et al., 1989). pH was found to have second order effect on CO uptake. The effects of PO_2 were considered in models built by Benignus et al., Bruce et al. and also in the present model (by solving for the oxyhemoglobin dissociation curves for Hb and Mb (myoglobin), Haldane equation and blood to tissue O_2 flux equations).

5.3 Parameter Estimation Concerns

Estimating the parameters for a model is a crucial issue. Models have several parameters, some of which may greatly impact the model behavior while other parameters may not affect the model behavior at all. The impact of the parameters on the model behavior becomes important when there is scarce or no data available for the parameters. In such cases sensitivity analysis is conducted for the parameters to determine their impact on model behavior. For the cardiac compartment in the model, average values from experimental data were considered for most of the parameters. Predictive equations were developed for estimating myocardial blood flow and oxygen consumption.

Prediction formulas were also used to estimate cardiac output and heart rate when actual values were not available. Subject variability is one major concern in using average values or prediction equations to estimate parameters. The estimates made for the parameters using predictive formulas would be valid for a specific group (age, ethnicity, gender, geographical area being at higher altitudes or below sea level, method of measurement) from which they were developed. Applying a prediction equation or an average value obtained from a specific subject group to a varied population set may tend to underestimate or overestimate the model predictions. However, after developing these formulas, their statistical significance and validity were tested for data which were not used for developing the relationships (Section 3.5, chapter 3). For predicting the myocardial O_2 consumption and myocardial blood flow, a more reliable prediction could have been made by calculating the estimates from heart rate-blood pressure product. But blood pressure was unavailable for many databases we planned to simulate although heart rate was a parameter which was
readily available and can also be calculated from total body metabolic rate. But no such relationship could be applied to estimate blood pressure as it is a greatly varying physiological parameter. Predicting myocardial O_2 consumption and blood flow as functions of cardiac output seems to be an alternative estimation approach, but information supporting functional relations between cardiac output, myocardial O_2 consumption and blood flow is currently unavailable in the literature.

Estimating a value for resting permeability surface area product for the two cardiac subcompartments was very difficult due to unavailability of data. The initial guess values were obtained from models from Beard and Bassinghwaite and then the resting values were scaled to match the size of the tissue, type of the tissue, and the species. The permeability surface area products increased as a linear function of blood flow. This was to indirectly implement coronary vasodilatation and capillary recruitment into the model.

The values for distribution of volume in each of the compartments (F_{vcm}) and for the fraction of venous cardiac blood compartment 3 perfusing the tissue compartment 1 was estimated by analyzing data available on vascular distribution in heart, coronary physiology, and statistics on density of arterioles, capillaries and venules in the heart (103,104). The sensitivity analysis of these parameters is shown in table 3.8 of chapter 3, so that one can estimate the deviations in the predicted model values for variation in the parameters (to which model predictions are sensitive).

5.4 Model Validation Concerns

The major concern in validating the model was unavailability of human data for testing the model predictions. Animal data, however, were available for model validation. Data are shown in table 4.1. One can see from the table the extent of variability and heterogeneity in the data available. Though data for dogs, swine and rats were available, the experimental values obtained from experiments involving swine were emphasized due to the similarity with human coronary anatomy and vasculature. Also, most of the data available are from anesthetized animals. Type of anesthesia used in the experiment can have a significant effect on the experimental
values measured (96). Another issue related to the experimental data available is the method of measurement. Most of the methods available for measuring myocardial tissue O_2 tension are invasive. Reported values may have 10-15% error due to the measurement electrodes consuming O_2, errors due to diffusion of oxygen from blood or tissue to the electrode, shift in electrode position due to beating of the heart etc. Also insertion of the some electrodes (like needle electrodes) causes damage to tissue and cells and bleeding, thereby possibly contaminating the measured values. From the Figures 4.1-4.3 shown in chapter 4, it can be seen that coronary venous PO_2 and compartmental tissue PO_2 model predictions are close to the experimental values. Also, the predicted myocardial tissue PO_2’s are in agreement with other models (95, 101,104) that utilized a single heart compartment or a distributed (finite-element) model.

5.5 Concerns Related to Simulated Experiments

In this model heart rate is required to estimate myocardial O_2 consumption and blood flow. In the experimental data provided by Benignus et. al and Burge & Skinner, heart rate information is unavailable. Heart rate might have been estimated by using the regression equation described in Section 3.5.3 of chapter 3, where heart rate is calculated as a function of total body O_2 consumption. But total body O_2 consumption was not measured by the investigators (Benignus et. al and Burge & Skinner), thus heart rate for simulations in Section 4.2.1-4.2.3 was estimated using an average metabolic rate of 0.0032 ml/gm/min. Total body O_2 consumption, heart rate, myocardial O_2 consumption and blood flow estimated in the model may differ from actual values at the time of experiments. Errors in estimation of the above parameters, especially heart rate, may have significant effects on the model predictions. For simulations having exercise sessions (Section 4.2.4), CO diffusion coefficient of lungs ($DLCO$), shunt fraction SF are assumed to be constants. Zavorsky et al. (2004), Demirjian (1980) and Paoletti (1985) have reported age dependent changes in $DLCO$ with varying exercise intensity. Also the shunt fraction is reported to increase with increases in exercise intensity (159, 160).
5.6 Simulation Findings

In all the simulations of Section 4.2, except for the simulation in Section 4.2.3 (where the subject rebreathes CO during 100% O₂), the MbCO levels of cardiac subcompartment 2 (MbCOcm₂) are higher than the MbCO levels in subcompartment 1 (MbCOcm₁). Higher MbCO levels in subcompartment 2 may be explained as follows: when CO is inhaled, it diffuses through the lung and binds with Hb in blood, resulting in elevated HbCO levels. CO then leaves blood and diffuses into the cardiac subcompartment 1, resulting in increased MbCO levels in the compartment initially. CO then diffuses into subcompartment 2 from the blood subcompartment 2 and also from the tissue subcompartment 1, thereby resulting in higher MbCO levels in subcompartment 2. Also, with increase in blood HbCO levels the cardiac output increases. Increased cardiac output would result in increased myocardial O₂ consumption and myocardial blood flow. This means that CO delivery to the heart increases with increase in cardiac blood flow, resulting in increased myocardial O₂ consumption and fall in tissue PO₂, facilitating an increase in MbCO. This effect is more significant in the subcompartment 2 as the amount of CO delivered, blood flow and metabolic rate of this subcompartment is greater than subcompartment 1 resulting in lower tissue PO₂ and higher MbCO levels. In the case of the simulation of CO rebreathing during 100% O₂, the MbCO levels in the two subcompartments reach equilibrium after few minutes as seen in Figure 4.7 of chapter 4. The HbCO and MbCO levels are 10% and 4.5%, respectively, and the PO₂ in the cardiac subcompartments decreases by ~1-2 Torr from base line. The reason for the heart compartments not being hypoxic during CO rebreathing is that the subject is breathing 100% O₂. During hyperoxia, dissolved O₂ plays a major role in tissue oxygenation. At the end of the simulation although the subject breaths 100% O₂, a significant increase in PO₂ of cardiac subcompartment 2 is not seen.

Another interesting observation in all the simulations discussed in Section 4.4.4 is that the MbCO levels of the two tissue subcompartments increase with exercise, though the HbCO levels are maintained constant. This means that increase in exercise increases the CO load on heart due to increased blood flow. Also, increased intensity of exercise causes a rise in O₂ consumption, requiring higher O₂ demand, thus
resulting in tissue hypoxia. This observation also supports the reported observations of a higher risk of cardiac injury in a working population exposed to CO.

The developed model is capable of predicting myocardial tissue and blood PO_2 during all transients (different exercise sessions at different $HbCO$ levels, long and short CO exposures etc) in the simulations. However, tissue PO_2 in cardiac subcompartment 2 being maintained at 19 torr during hyperoxia (administration of 100% O_2 after 3 graded levels of exercise with 20% HbCO) after 60 min of breathing 100% O_2 seems to be a concern. Prediction of lower PO_2 during hyperoxia may be due to the following reason: insufficient treatment time (simulation can be done by increasing the treatment time from 60 mins to 300-400 mins and see if the PO_2 in subcompartment 2 increases), or due to errors in model parameters in the treatment protocol (as parameters were not measured by the investigators).

Decreases in coronary venous PO_2 with increased exercise intensity have been reported (156). The cardiac compartment venous PO_2 decreases with exercise as seen from Figure 4.5. However changes in coronary venous PO_2 during combined exercise and CO exposure have not been reported in human or swine in the current literature. Thus validating the simulation results becomes difficult. Tissue PO_2 of 6-7 Torr have been reported in mild exercising skeletal muscle tissue of humans whose steady state resting values at baseline $HbCO$ levels are 35 Torr (158). An average myocardial tissue PO_2 of 3.36 Torr at the end of third stage of moderate exercise (E3) at 20% HbCO levels seems reasonable. Prediction of tissue PO_2 by the model in the range of 0.5-1 Torr for a time span of 8-9 mins may be considered lethal (75,130,132,133). The model can be validated further if experimentally measured data for myocardial blood and tissue PO_2 would be available in humans or swine during CO exposures at rest, exercise, hyperoxia and O_2 hypoxia.

As seen in Figure 4.5 there is a sharp increase in the $MbCO$ levels of the cardiac compartments with increase in $HbCO$ levels of the blood, whereas the $MbCO$ levels of the skeletal muscle increase gradually after the $HbCO$ blood levels decrease. This sharp immediate increase in $MbCO$ levels suggest that the CO released from hemoglobin binds to the myoglobin present in the cardiac muscle. Also the cardiac
tissue PO_2 decreases with increases in $HbCO$ and $MbCO$ levels, suggesting greater risk of injury than skeletal muscle. The cardiac muscle has higher O_2 consumption, blood flow and capillary density than that of resting skeletal muscle and unavailability of O_2 store would result in greater degree of hypoxia. As seen in Figure 4.6, during long-low CO exposure the $MbCO$ levels of the cardiac compartment increase with increase in $HbCO$ levels and after a certain amount of time exceed $HbCO$ levels in the blood, suggesting that myocardial tissue hypoxia is the combination of impaired O_2 carrying capacity of blood and impaired O_2 storage in myoglobin. Thus one can confirm that the response of various tissue to CO exposure is different, based on their functionality and oxygen consumption. Thus it would not be valid to apply the same response to all the tissues.

The hypothesis tested for the thesis was that during CO exposures and subsequent therapies, the temporal changes of $%MbCO$ in the heart differ from those of $%HbCO$ was tested. From the various simulations, it was found that $HbCO$ and $MbCO$ levels in the heart greatly depend on the type of CO exposure. In the case of short-high CO exposures, the $MbCO$ levels positively correlate with $HbCO$, while in long-low CO exposures, the $MbCO$ levels increase with increasing $HbCO$ initially but later increase to levels higher than blood $HbCO$ levels. During exercise though the $HbCO$ levels are constant, the $MbCO$ levels increase resulting in decreased tissue oxygen tensions. Thus, the results obtained support the hypothesis made. The CO load is related to both $%HbCO$ in arterial blood perfusing the heart and $%MbCO$ in cardiac tissue. In long-low CO exposures myocardial hypoxia occurs due to impaired O_2 transport (decrease in $%HbO_2$) and unavailability of O_2 storage ($%MbO_2$) where as in short-high CO exposures, tissue hypoxia is mainly due to impaired O_2 transport and in exercise protocols the cardiac hypoxia is mainly due to unavailability of O_2 storage ($%MbCO$). Thus basing the treatment on the currently-used clinical indicator of potential injury (i.e., $%HbCO$) will be inaccurate and possibly misleading. Thus, determining the total CO load on the cardiac cells (or its effect on tissue PO_2) is likely to be a better predictor of injury.
Overall, the developed model proves to be an excellent tool for predicting extravascular burden (MbCO levels and tissue PO$_2$) of CO on human heart.
Noninvasive measurement of myocardial tissue \(PtO_2 \) and \(MbCO \) levels during or after \(CO \) exposure is difficult. The main goal of the thesis was to develop a model that is capable of predicting extravascular burden of \(CO \) in the human heart and its effects on tissue oxygenation. A multi compartment model was developed consisting of six major compartments: 1. The arterial blood, 2. The Lungs, 3. Skeletal Muscle with two subcompartments, 4. Non-muscle tissue, 5. Cardiac Muscle with two subcompartments and 6. Mixed venous blood compartments. Mass balance equations are written for \(O_2 \) and \(CO \) for each of these compartments. In each blood compartment, to determine \(PO_2 \), \(PCO \) and \(O_2 \) flux we solve three simultaneous algebraic equations: the oxyhemoglobin dissociation curve, Haldane’s equation, and the blood-to-tissue flux equation for oxygen. Myocardial blood flow and oxygen consumption are estimated from regression equations developed for the thesis. The model is simulated on a Windows XP system using ACSL™ software which is capable of solving nonlinear differential equations. Sensitivity analysis is performed and the myocardial tissue \(PO_2 \) (\(PtO_2 \)) is shown to be sensitive to myocardial blood flow, myocardial oxygen consumption, volume distribution fraction of the tissue, diffusion coefficient of \(O_2 \) and the permeability surface area product. The developed model was used for the simulations to test the validity of the predicted variables of the cardiac compartment with published observations on human subjects and anesthetized animals. The model was validated for conditions of normoxic rest, hypoxic rest, hypoxic exercise and hyperoxia with regard to its predictions of coronary venous \(PO_2 \) and tissue \(PO_2 \). Simulation of short-high concentration \(CO \) exposure, long-low concentration \(CO \) exposure, \(CO \) rebreathing during 100% \(O_2 \) administration and \(CO \) exposure during rest and exercise sessions for different levels of \(HbCO \) have been analyzed. In short-high concentration exposures, the tissue \(MbCO \) levels increase sharply unlike in long-low concentration exposures where the \(MbCO \) levels increase gradually. The tissue \(PO_2 \) levels seem to be correlated more with \(%HbCO \) levels than with \(%MbCO \) levels in short-high \(CO \) exposures. This
would suggest that there is impaired O_2 delivery to tissues due to impaired O_2 transport. During long-low CO exposures, the tissue PO_2 correlates with MbCO levels i.e., it decreases with increase in $MbCO$. In the simulation where subject rebreathes CO during 100% O_2 administration, the tissue PO_2's correlate with %HbCO levels and %MbCO levels increase with corresponding decreases in %HbCO levels suggesting that during hyperoxia, CO dislodged from hemoglobin is taken up by myoglobin. During exercise, the tissue PO_2's are strongly correlated with MbCO levels, suggesting that myocardial tissue hypoxia occurs during elevated levels of MbCO. Also, during room air treatment the MbCO and HbCO levels fall slowly compared to treatment with 100% O_2, indicating that 100% O_2 can be an effective treatment for CO hypoxia in cardiac muscle. The hypothesis that CO load (%HbCO, %MbCO) delivered to the heart impairs oxygen delivery further affecting the tissue oxygen tension (PtO_2). Thus during CO exposures and therapies, the temporal changes of %MbCO in the heart differ from those of %HbCO depending on the type of exposure. %MbCO levels can increase when %HbCO is maintained constant (during exercise) or is decreasing (in case of hyperoxia treatment). This CO load is related to both %HbCO in arterial blood perfusing the heart and %MbCO in cardiac tissue. The correlation of %HbCO, %MbCO and tissue PO_2 should be clearly understood for different types of CO exposure to consider them as clinical indicators of potential injury. The decreasing tissue PO_2 in the cardiac muscle during short-high CO exposure correlates with increasing %HbCO levels while the %MbCO of skeletal muscle shows a correlation with %HbCO after a delay. The %MbCO levels of the cardiac compartment show sharp increases unlike gradual increases as seen in skeletal muscle. This is a very important observation as it emphasizes the fact that cardiac muscle is at higher risk than resting skeletal muscle. During elevated %MbCO levels, the PO_2 stores may diminish resulting in the tissue being further hypoxic.

The cardiac muscle is a rigorously working muscle with high metabolic demands for oxygen. Myoglobin provides the storage site for O_2 in times of increased O_2 demand. During CO exposure the storage site of O_2 is lost as CO binds to myoglobin, resulting in increased %MbCO levels and tissue oxygen deprivation, thus resulting in severe hypoxia. A tissue PO_2 in the range of 0.5 to 1 Torr is assumed to be indicative
of injury. O_2 is needed for the heart to maintain its functions and lack of O_2 supply can cause severe injury to the tissue. Thus the risk of injury would be greater when someone is exercising and is exposed to CO. Also in a patient population with congestive heart failure or coronary artery disease where myocardial perfusion is not normal, exercise or exposure to CO may be fatal to the myocardial tissue. Thus, determining the CO load on the cardiac tissue seems to be an important predictor of injury. The model proves to be an effective tool for noninvasive determination of the $MbCO$ levels and oxygen tensions in a human heart during and after CO exposure.
CHAPTER 7
Future Work

1) Compare CO dose to myocardium with occurrence of abnormal features in ECG (ElectroCardioGram). Myocardial hypoxia during CO exposures has been reported to produce changes in ECG (S-T segment elevation, QT dispersion, T wave changes). The extent to which the CO load ($HbCO$ and $MbCO$ levels) contributes to ECG alterations seen in CO poisoning victims is unknown. Assessing the correlations between the occurrence of predicted peak $MbCO$ and $HbCO$ levels with occurrence of abnormalities in ECG will aid in understanding the CO poisoning related increased risk of cardiac injury.

2) Investigate effects of $DcmCO$ (diffusion coefficient of CO for cardiac muscle) in exercise. Determination of $DcmCO$ is difficult. The time for blood-tissue equilibrium of partial pressure of CO is dependent on $DcmCO$. The rate of exchange of CO between tissues and blood is determined by the value of $DcmCO$, thus determining the values for this parameter is important. If a large value of $DcmCO$ better explains data, it would imply that the equilibrium between tissue and blood occurs at a faster rate, but if a smaller value for $DcmCO$ would better fit the data, then it would support the concept of slow equilibration between tissue and blood. Understanding the effects of $DcmCO$ during exercise will result in further understanding the value for $DcmCO$.

3) Prediction of the extravascular burden for all subjects of references 69,154,155. Applying the model to predict extravascular burden and assessing the produced response for different types of CO exposure conditions and population will help in improving the validation of the model. Also, if the same kind of response is displayed by the subject population, then the result can be better trusted. By fitting the model to a number of individuals, we can determine the mean as well as the range of responses in the normal population.

4) Implement changes in $DLCO$ (diffusion coefficient of CO in lungs) and SF (shunt fraction) with exercise. Adding effects of changing $DLCO$ and SF into the model
as function of exercise intensity, age, gender etc. will further enhance the accuracy of model predictions.

5) Predict CO burden on different regions (epicardium, endocardium) and chambers of the heart. Knowing that the heart displays heterogeneity in blood flow, capillary density, oxygen consumption etc., it would be interesting to predict cardiac injury in various regions to determine the region at higher risk for injury with CO exposure.

6) Conduct experiments in swine to measure myocardial O_2 consumption, myocardial blood flow, heart rate, blood lactate levels, weight of the heart, multiple measurements of myocardial tissue PO_2 in various regions of the heart, coronary venous PO_2, myocardial arterial PO_2 during rest, graded levels of exercise, hypoxic hypoxia and CO hypoxia in order to validate the model. There is scarce data available in the literature for efficiently validating the model. Thus, if one conducts an experiment and measures all the above parameters, then the model can be better validated and also determination of parameters like permeability surface area product etc., will be more reasonable.

7) Design effective treatment protocols. As seen from the results, the CO load would differ with type (short-high, long-low or during exercise) of CO exposure, thus it would not be advisable to treat all the CO-poisoned victims with the same protocol. Using the model to simulate different treatment protocols that may include mixed session of room air, 100% O_2 breathing or hyperbaric treatment to improve tissue oxygenation will be an effective approach for efficient treatment strategies. The model may use the CO victim’s parameters and simulate different treatment protocols, which would be quick and easy to accomplish unlike conducting clinical trials.

8) Estimate concentration and duration of CO exposure after the fact. Knowing the concentration and time for which the victim was subjected to CO would better determine the load of CO on organs at high risk like heart and brain during exposure and treatment. If it is a short CO exposure at high concentrations, then myocardial hypoxia would be produced due to impaired O_2 capacity of blood unlike in long-low CO concentration CO exposures, where tissue hypoxia is
produced due to impaired O_2 transport accompanied with impaired O_2 storage as hemoglobin as well as myoglobin are bound to CO. Thus, estimating concentration and duration of CO exposure would be very crucial in designing an effective treatment protocol.

9) Implement equations for CO_2 into the model. During both exercise and hypoxic hypoxia, the tissue PO_2 are dependent on the partial pressure of CO. Thus implementing equation for CO_2 into the model will enhance the model to better predict the tissue PO_2 and also conditions of hypoxic hypoxia can be better predicted. Also the effects of pH can be implemented into the model. These additions will result in enhanced model predictions as the oxygen dissociation curve which is solved to determine tissue PO_2 and PCO would be dependent on CO_2 and pH.

10) Modify the model to predict myocardial oxygen tension in patient population with coronary artery diseases etc. The model can also be used to predict myocardial O_2 tensions apart from using it for predicting $MbCO$ and $HbCO$ levels. Generally in patients with coronary artery diseases, there is decreased blood flow to the heart due to narrowed or blocked arteries. Thus the blood flow to the myocardium can be reduced depending on the degree of blockage and myocardial oxygen tensions can be predicted. Also, conditions of exercise can be simulated for this population and the predicted myocardial tissue PO_2’s can be correlated with abnormalities in ECG.

11) The model can also be modified for predicting outcomes of hyperbaric O_2 treatment. It is often debated if hyperbaric (breathing 100% O_2 at 2-3 ATA) treatment would have better treatment outcomes than hyperoxia treatment (breathing 100% O_2).

12) Implementing metabolic pathways into the model may be suggested to understand the effects on model prediction with changes in metabolic cycles from aerobic to anaerobic during exercise, hypoxia or ischemia.

13) Introduce interactions of cytochrome c oxidase with CO. Cytochrome c oxidase is also known to bind irreversibly with CO. Understanding the contribution of this protein will further enhance the knowledge database for CO toxicity.
Appendix

Skeletal muscle mass distributed to trunk muscle, leg muscle and arm muscle:
Oxygen consumption for the skeletal muscle was found to be 250% of total body oxygen consumption at rest when calculated in the simulated model. According to the following books:

1. An introduction to cardiovascular physiology by J.Rodney Levick
2. Medical physiology by Philip Bard

Muscle metabolic rate (MRO₂m) should be 20% of the total body oxygen consumption (MRO₂). It is known that metabolic rates of leg, arm and trunk muscles are different. Thus, to incorporate different metabolic rates of muscle in various regions we distributed the skeletal mass into three muscle volume compartments namely leg muscle volume, arm muscle volume and trunk muscle volume. Distributions of skeletal mass were calculated from the references 105-115. From the papers we had data for lean mass of trunk, arms, legs, upper legs, upper arms and also total skeletal mass. Data were entered only from normal men and women. The abbreviations used are as follows:

%asm: percent arm skeletal mass
%tsm: percent trunk skeletal mass
%lsm: percent leg skeletal mass

The final result obtained after taking average of data obtained:

<table>
<thead>
<tr>
<th></th>
<th>MEN:</th>
<th>WOMEN:</th>
</tr>
</thead>
<tbody>
<tr>
<td>%lsm</td>
<td>46.63981</td>
<td>49.52738</td>
</tr>
<tr>
<td>%asm</td>
<td>15.66698</td>
<td>13.96499</td>
</tr>
<tr>
<td>%tsm</td>
<td>37.76795</td>
<td>36.50763</td>
</tr>
</tbody>
</table>

Validation for the relationship obtained was done by selecting a random subject record from the database and calculating the values using the obtained relationship and comparing them with the measured values. The differences in the values can be explained as follows:

1. Total lean soft tissue included muscle as well as soft tissue
2. Reference involved study on Japanese subjects in the age group of 19-24yrs. We know that muscle mass is affected with age and also ethnicity.
3. Also one can consider errors due to averaging, pooling data from various sources which have different methods of measurement, varying number of subjects, different age population, ethnicity etc.

<table>
<thead>
<tr>
<th>gender</th>
<th>Men (total lean soft tissue= 57.8kg)</th>
<th>Women (total lean soft tissue= 40kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>parameter</td>
<td>lsm</td>
<td>asm</td>
</tr>
<tr>
<td>measured</td>
<td>20.9</td>
<td>8.7</td>
</tr>
<tr>
<td>calculated</td>
<td>26.9</td>
<td>9.05</td>
</tr>
</tbody>
</table>

Prediction equation for cardiac output:

Equation to predict the cardiac output in the initial model was based on gender and body weight.

\[
Q = (54.1 + 7.9G) \cdot BW + 1400 - 200G
\]

But after modifying the model, we intended to simulate experiments that involved exercise, CO exposure etc. It was clear that cardiac output \(Q' \) changed with exercise, postural changes and age. Thus to implement variation of cardiac output, we implemented the following prediction equation,

\[
Q' = 3.186 + 7.346 \cdot (MRO_2) - 0.535 \cdot (MRO_2)^2
\]

Where, cardiac output \(Q' \) is calculated as a quadratic expression function of total body metabolic rate (MRO_2). Also this equation was very helpful in predicting the cardiac output when experimental data did not provide the value. Literature survey established the fact that cardiac output can best be predicted as a function of total body oxygen consumption (references). Thus, to work on this idea, various journals were searched for data from humans at rest and exercise for cardiac output and total body oxygen consumption (MRO_2). The inclusive criterion for the data was that it was considered from healthy, non smoking untrained individual subjects. The method of measurement for MRO_2 was either Fick’s method or the Douglas bag method. Cardiac output was calculated from dye dilution method, Fick’s method etc. Though the measurement techniques were different, the values obtained for cardiac output for specific oxygen body consumption did not vary significantly. Data from references 137-144 were used to implement the relationship. The reason for building a quadratic expression was to have a
regression relation with strong statistical significance and also cardiac output is known to reach a plateau as maximal body oxygen consumption is reached.

Figure above shows the plot of the data (o) used to build the relationship and predicted data (*). On the X-axis we have the myocardial O2 consumption and on the Y-axis is the cardiac output. Test data points (o,o) were considered from experiments whose data were not included in building the relation to check with the values(*,*) obtained from the predictor equation. Cardiac output (Q^\prime) and myocardial oxygen consumption (MRO2) are specified and calculated in the unit of liter/min. When implemented into the model they are converted into milliliter. MRO2 is in STPD and is converted to BTPS in the model.

<table>
<thead>
<tr>
<th>Order of relation</th>
<th>Regression coefficient</th>
<th>Error of estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q^\prime = b \cdot MRO2 + c$</td>
<td>0.907</td>
<td>1.949</td>
</tr>
<tr>
<td>$Q^\prime = a \cdot (MRO2)^2 + b \cdot MRO2 + c$</td>
<td>0.962</td>
<td>1.75</td>
</tr>
</tbody>
</table>

Prediction equations for Heart rate: In most of the experiments, heart rate was mentioned. But in the case of data where information regarding heart rate was missing, it
was estimated from the following equation: Heart Rate (HR) = 42.819 + 68.884 * (MRO2) - 8.26 * (MRO2)^2

The main purpose for developing a prediction equation for heart rate was to estimate the myocardial blood flow and myocardial oxygen consumption for the cardiac compartment discussed in Chapter 3. Heart rate is often considered to be a predictor of extent of myocardial activity. Heart rate and blood pressure product would have been a better predictor of myocardial parameters like myocardial blood flow and oxygen consumption than just heart rate. But it was difficult to predict blood pressure from body oxygen consumption or cardiac output due to unavailability of sufficient data. Thus, heart rate was expressed as a function of MRO2. The following references (68-70), were considered to obtain a relationship between heart rate (HR) and body oxygen consumption (MRO2).

Figure above shows the plot of the data (o) used to build the relationship and predicted data (*). On the X-axis we have the myocardial O2 consumption and on the Y-axis is the Heart rate. Test data points (o,o) were considered from experiments whose data was not
used to estimate the above regression relation to check with the values(*,*) obtained from the predictor equation.

<table>
<thead>
<tr>
<th>Order of relation</th>
<th>Regression coefficient</th>
<th>Error of estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>$HR = b.MRO_2 + c$</td>
<td>0.592</td>
<td>23.678</td>
</tr>
<tr>
<td>$HR = a.(MRO_2)^2 + b.MRO_2 + c$</td>
<td>0.664</td>
<td>21.5</td>
</tr>
</tbody>
</table>

Predicting percent increases in cardiac output (Q') and heart rate (HR) as functions of percent carboxyhemoglobin ($\%\Delta COHb$) levels in blood:

There is a reported increase in cardiac output and heart rate with increase in carboxyhemoglobin levels in blood (68, 69). While simulating experiments involving carbon monoxide (CO) exposures, increased cardiac output and heart rate due to increased carboxyhemoglobin levels in the blood had to be taken into account. These increases were implemented by introducing the following equations

\[
\%\Delta Q' = 0.572 \times (\%\Delta COHb)
\]

\[
\%\Delta HR = 0.012 \times (\%\Delta COHb)^2 + 0.26 \times (\%\Delta COHb)
\]

The cardiac output Q' and heart rate (HR) were increased by $\%\Delta Q$ and $\%\Delta HR$, respectively, calculated from the above equations in the discrete section of the program.

Data for cardiac output, heart rate and carboxyhemoglobin (up to 50%) were tabulated from references 68, 69.

Linear regression was performed on the data. Outliers of the data were removed. Statistical significance of the relationships was tested and the best relation was chosen and implemented into the model to incorporate the changing effects in cardiac output and heart rate with increasing CO levels in the body.

Cardiac output and Carboxyhemoglobin levels in blood:

<table>
<thead>
<tr>
<th>Order of relation</th>
<th>Regression coefficient</th>
<th>Error estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>$%\Delta Q' = a (%\Delta COHb) + c$</td>
<td>0.377</td>
<td>15.155</td>
</tr>
<tr>
<td>$%\Delta Q' = a(%\Delta COHb)^2 + b(%\Delta COHb) + c$</td>
<td>0.178</td>
<td>15.184</td>
</tr>
<tr>
<td>$%\Delta Q' = a (%\Delta COHb)$</td>
<td>0.713</td>
<td>12.483</td>
</tr>
</tbody>
</table>
Figure above shows the plot of the data (o) used to build the relationship and predicted data (*). On the X-axis we have the percent increase in carboxyhemoglobin levels of blood, %ΔCOHb and on the Y-axis is the percent increase in cardiac output, %ΔQ∗.

Cardiac output and Carboxyhemoglobin levels in blood:

Figure below shows the plot of the data (o) used to build the relationship and predicted data (*). On the X-axis we have the percent increase in carboxyhemoglobin levels of blood, %ΔCOHb and on the Y-axis is the percent increase in cardiac output, %ΔHR.
Order of relation	Regression coefficient	Error estimate
\%\Delta HR = a(\%\Delta COHb)^2 + b(\%\Delta COHb) + c | 0.422 | 9.962
\%\Delta HR = a(\%\Delta COHb)^2 + c | 0.422 | 9.961
\%\Delta HR = a(\%\Delta COHb)^2 + b(\%\Delta COHb) | 0.612 | 9.958
References

33. Massahiro Endo, Tsunekazu Hino, Toshinari Itaoka, Hisae Hayashi and Juro Wada., Continuous Measurement of Human Myocardial Tissue Oxygen Tension.

37. A. Jonathan Kaye, Shaojie Wang, The Interactive Oxyhemoglobin Dissociation Curve, Department of Medicine, June 2001.

45. Naihong Zhu and Harvey R. Weiss, Effect of hypoxic and carbon monoxide-induced hypoxia on regional myocardial segment work and O2 consumption, Volume 194, Number 1 December, 1994.

57. Deussen A, Local myocardial glucose uptake is proportional to, but not dependent on blood flow, Pflugers Arch. 1997 Feb;433(4):488-96.

71. Bell, Hales, King and Fawcett, Exercise, Heat Stress, And Blood Distribution.

90. James H. Caldwell, Gary V. Martin, Gary M. Raymond, and James B. Bassingthwaigthe, Regional myocardial flow and capillary permeability surface area products are nearly proportional, 1993.

98. Jonny Hobbhahn, Peter F.M. Conez, Alwin Goetz, Gabriele Seidl, Peter Gonschior., Myocardial Surface PO₂ – an indicator of myocardial tissue oxygenation

99. Tokunaga, Chiho; Bateman, Ryon M.; Boyd, John; Wang, Yingjin BSc; Russell, James A.; Walley, Keith R., Albumin resuscitation improves ventricular contractility and myocardial tissue oxygenation in rat endotoxemia.

114. Mariëlle PKJ Engelen, Annemie MWJ Schols, Joan D Does, Emiel FM Wouters. Skeletal muscle weakness is associated with wasting of extremity fat-free mass but

129. Seymour S. Ketty, Carl F. Schmidt, The Determination of cerebral Blood Flow in Man by the use of Nitrous Oxide in Low Concentrations

139. L. Hermansen, B. Ekblom, and B. Saltin, Cardiac output during submaximal and maximal treadmill and bicycle exercise, J Appl Physiol 29: 82-86, 1970;

140. Per-Olof Åstrand, T. Edward Cuddy, Bengt Saltin, and Jesper Stenberg, Cardiac output during submaximal and maximal work, J Appl Physiol 19: 268-274, 1964;

VITA

Date and place of birth:

○ 02-09-1982, Hyderabad, INDIA

Educational institutions attended and degrees already awarded:

○ B. E., Bachelors in Biomedical Engineering, Jawaharlal Nehru Technological University, AP, INDIA
○ Post Graduate Diploma in Information Technology, AP, INDIA

Professional positions held:

○ Biomedical Engineer, Apollo Hospitals, Hyderabad, India
○ Research Assistant, Computational Physiology Laboratory, U of KY

Professional publications:

○ Prediction of the Rate of Uptake of Carbon Monoxide From Blood by Extravascular Tissues, Bruce, Bruce and Erupaka (In preparation)

Typed name of student on final copy

○ Kinnera Erupaka