Spin Nematics, Valence-Bond Solids, and Spin Liquids in SO(N) Quantum Spin Models on the Triangular Lattice

Ribhu K. Kaul
University of Kentucky, ribhu.kaul@uky.edu

Click here to let us know how access to this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/physastron_facpub

Part of the Astrophysics and Astronomy Commons, and the Physics Commons

Repository Citation
https://uknowledge.uky.edu/physastron_facpub/376

This Article is brought to you for free and open access by the Physics and Astronomy at UKnowledge. It has been accepted for inclusion in Physics and Astronomy Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
We introduce a simple model of SO(N) spins with two-site interactions which is amenable to quantum Monte Carlo studies without a sign problem on nonbipartite lattices. We present numerical results for this model on the two-dimensional triangular lattice where we find evidence for a spin nematic at small N, a valence-bond solid at large N, and a quantum spin liquid at intermediate N. By the introduction of a sign-free four-site interaction, we uncover a rich phase diagram with evidence for both first-order and exotic continuous phase transitions.

\[H_J = -J \sum_{\langle ij \rangle} \hat{P}_{ij}. \]

We make four observations: First, it is possible to create an SO(N) spin singlet with only two spins for all N [in contrast to SU(N) where N fundamental spins are required to create a singlet]. Second, Eq. (1) being a sum of projectors on this two-site singlet is the simplest SO(N) coupling, despite it being a biquadratic interaction in the generators $\hat{L}^{\alpha\beta}$. Third, since the singlet has a positive expansion, \hat{H}_J is Marshall positive on any lattice. Fourth, on bipartite lattices, \hat{H}_J is equivalent to the familiar SU(N) antiferromagnet [6]; i.e., the obvious SO(N) of Eq. (1) is enlarged to an SU(N) symmetry. Since the bipartite SU(N) case has been studied in great detail in past work on various lattices [7,16–23], we shall concern ourselves here with the nonbipartite SO(N) case which is relatively unexplored.

Phases of \hat{H}_J.—Starting at $N = 3$, Eq. (1) becomes $\hat{H} = -(J/3)\sum_{\langle ij \rangle} (\hat{S}_i \cdot \hat{S}_j)^2$ with \hat{S} the familiar SU(3) representation of angular momentum. Previous numerical work has shown that this triangular lattice $S = 1$ biquadratic model [24,25] has an SO(3) symmetry breaking “spin nematic” magnetic ground state (we shall denote this phase by SN). The ground state of \hat{H}_J for $N > 3$ has not been studied in the past.

In the large-N limit, analogous to previous work for SU(N) antiferromagnets on bipartite lattices [26], the ground state is infinitely degenerate and consists of dimer coverings where each dimer is in $|S_i\rangle$. At leading order in $1/N$, \hat{H}_J introduces off-diagonal moves which rearrange parallel dimers around a plaquette, mapping \hat{H}_J at large N to a quantum dimer model on the triangular lattice with only a kinetic term,
\[\hat{H}_{\text{QDM}} = -\epsilon \sum_{\text{plaq}} \left\{ \left(\hat{c}_i \right) \left(\hat{c}_j \right) + \text{H.c.} \right\} \]

where the sum on plaquettes includes all closed loops of length four on the triangular lattice. The ground state of this model has been found in previous analytic [27] and numerical work [28] to be a $\sqrt{12} \times \sqrt{12}$ valence-bond solid (VBS) breaking the lattice translation symmetry. We, thus, expect that at large but finite values of N, \hat{H}_J should restore its SO(N) symmetry and enter this same VBS state.

Since \hat{H}_J has SN order for $N = 3$ and is expected to have a nonmagnetic VBS at large N, it is interesting to ask what the nature of the transition is at which SN magnetism is destroyed. The answer to this question is unclear based on current theoretical ideas and is best settled by unbiased numerical simulations. Exploiting that \hat{H}_J has no sign problem, we study it as a function of N on $L \times L$ lattices at temperature β by unbiased stochastic series expansion [29] quantum Monte Carlo simulations, with a previously described algorithm [24]. The SN state is described by the matrix order parameter $\hat{Q}_{\text{adj}} = |\alpha \rangle \langle \beta | - 1/N$. The static structure factor $S_{\text{SN}}(k) = \left(\langle 1/N_{\text{site}} \sum_{ij} e^{ik \cdot (r_i - r_j)} \left\langle \hat{Q}_{m}(i) \hat{Q}_{m}(j) \right\rangle \right)$ is used to detect SN order. For the VBS order, we construct the k-dependent susceptibility of dimer-dimer correlation functions in the usual way from imaginary time-displaced operators: $\chi_{\text{VBS}}(k) = \left(1/N_{\text{site}} \sum_{ij} e^{ik \cdot (r_i - r_j)} / \langle 1/\beta \rangle \times \int dt \langle \hat{P}_{r,x+i}(t) \hat{P}_{r,x+1}(0) \rangle \right)$. Throughout this Letter, we have fixed $\beta = L$ for our finite-size scaling [15].

As shown in Fig. 1, a peak in $S_{\text{SN}}(k)$ is found at the Γ point. Comparing the data at $N = 10$ and $N = 14$, already qualitatively it is possible to see that the peak in $S_{\text{SN}}(k)$ softens as N is increased. In contrast, $\chi_{\text{VBS}}(k)$ develops sharp peaks at the X and M points as N is increased. These are precisely the momenta at which previous numerical studies of the triangular lattice quantum dimer model Eq. (3) have observed Bragg peaks [28], validating the large-N mapping to Eq. (3) made earlier. To detect at which N the magnetic order is destroyed and the VBS order first sets in, we study the ratio $R_{\text{SN}} = 1 - \left\{ [S_{\text{SN}}(\Gamma + a 2\pi/L)] / [S_{\text{SN}}(\Gamma)] \right\}$, where $a = x - y/\sqrt{3}$ as a function of L. R_{SN} must diverge in a phase in which the Bragg peak height scales with volume and becomes infinitely sharp. On the other hand, it must go to zero in a phase in which the correlation length is finite and the height and width of the Bragg peak saturate with system size. At a critical point, standard finite-size scaling arguments imply that the ratio R_{SN} becomes volume independent. All of these facts together imply a crossing in this quantity for different L. Figure 2 shows the R_{SN} and R_{VBS} ratios [an analogous quantity constructed for the VBS order from $\chi_{\text{VBS}}(k)$] close to the M point as a function of the discrete variable N for different L. The data for R_{SN} show that the magnetic order is present for $N \leq 10$. The R_{VBS} data show that the long-range VBS order is present for $N > 12$. From Fig. 2, we find that $N = 12$ is on the verge of developing VBS order; from the system sizes accessible, we are unable to reliably conclude whether $N = 12$ has long-range VBS order or not from our study. However, taken together, the data show definitively that $N = 11$ has neither VBS nor SN order. As we shall substantiate below, at $N = 11$, \hat{H}_J is a QSL.

J-Q models.—In order to clarify the global phase diagram of SO(N) antiferromagnets and access the quantum phase transitions between the SN, VBS, and QSL phases found in \hat{H}_J, it is of interest to find an interaction that can tune between these phases at fixed N. In order to be
meaningful, the new coupling must preserve all the symmetries of \hat{H}_J. To this end, we introduce and study a generalization of the four-site Q term of SU(2) spins [30],

$$\hat{H}_Q = -Q \sum_{\langle ij \rangle \langle kl \rangle} (\hat{P}_{ij} \hat{P}_{kl} + \hat{P}_{ji} \hat{P}_{lk}),$$

(4)

where the sum includes elementary plaquettes of length four on the triangular lattice (with periodic boundary conditions on an $L \times L$ system, there are $3L^2$ such plaquettes). For a fixed N, \hat{H}_Q provides a tuning parameter which preserves both the internal and lattice symmetries of \hat{H}_J and, hence, allows us to study the generic phase diagram of SO(N) magnets. A summary of the phase diagram of $\hat{H}_{Q,J}$ in the N-Q/J plane is in Fig. 3. The Q interaction destroys the SN order and gives way to VBS order only for $N \geq 6$. We have found evidence for direct first-order SN-VBS transitions for $6 \leq N < 10$ and exotic continuous SN-VBS transitions for $N = 10$ and $N = 11$.

As an example of our observed first-order behavior, we present in Fig. 4 our study of the $N = 7$ QMC data for the spin stiffness $\rho_s = \langle W_s^2 \rangle / L$ (where W_s is the winding number of the spin world lines), which acts as a sensitive order parameter for the SN phase, and the VBS order parameter $\rho_{VBS} = \chi_{VBS}(M) / N_{\text{site}}$. Clear evidence for a direct first-order SN-VBS transition at $N = 7$ is found.

The nature of the transition changes at $N = 10$, where evidence for two phase transitions is found. As shown in Fig. 5, the SN order vanishes at a Q/J smaller than the value at which VBS order develops. Although the difference is small for $N = 10$, it is significant. The data for $N = 11$ in Fig. 5 show that the SN and VBS orders do not vanish at the same point (for a detailed analysis see [15]). In fact, R_{SN} indicates that the SN order has vanished already at $Q/J = 0$, consistent with our previous analysis of \hat{H}_J. As illustrated by the dashed and solid lines in Fig. 3, the appearance of the QSL phase is consistent with a global phase diagram for the SO(N) magnets.

QSL phase and criticality.—We have identified the ground state between SN and VBS as a QSL, since it does not show evidence for any Landau order. Were the intermediate phase characterized by a conventional order parameter, we would have expected strong first-order transitions of the kind between SN and VBS (see Fig. 4); instead, we find continuous transitions.

There are field theoretic reasons to expect a QSL on quantum disordering a spin nematic. The long-distance description of our SO(N) models is given by a RP$^{N-1}$ theory [in contrast to the CP$^{N-1}$ description of SU(N) models [31]], which can be described as N real matter fields coupled to a Z_2 gauge field. Such a theory is expected to host three phases [32]: a symmetry breaking phase in which the matter condenses (which we identify in our spin model as the SN), a stable phase in which the matter gets a gap and the Z_2 gauge theory is deconfined (identified here as the QSL), and a phase in which matter is gapped and the Z_2 is confined (identified here as the VBS). Thus, the SN-QSL critical point should be in the universality class of the $O(N)^+$ critical point [3]. The QSL-VBS phase transition should be in the same universality class as the critical point between these identical phases in the quantum dimer model since the magnetic fluctuations are gapped in both the QSL.

FIG. 3 (color online). Phase diagram of $\hat{H}_{Q,J}$ [Eqs. (2) and (4)] for different values of N. The left panel shows the phase diagram for small N, where a first-order SN-VBS transition is found for $6 \leq N \leq 9$ (see Fig. 4). As N is increased, we find the first-order transition weakens. The right panel shows how an intermediate QSL phase emerges for $N = 10$ and $N = 11$. Transitions from the QSL to both SN and VBS phases are continuous on the large systems studied; see Fig. 5.

FIG. 4 (color online). First-order SN-VBS transition in $H_{Q,J}$ at $N = 7$. The upper panel shows the VBS order parameter and the stiffness as a function for Q/J for different L indicating a direct SN-VBS transition. The lower panel shows MC histories (and histograms in the inset) at $Q/J = 1.26$, providing clear evidence that the SN-VBS transition at $N = 7$ is direct and first order.
FIG. 5 (color online). Crossings of R_{SN} (above) and R_{VBS} (below) signaling the location of the onset of long-range SN and VBS orders at $N = 10$ (left) and $N = 11$ (right). At $N = 10$, R_{SN} and R_{VBS} cross at close but significantly different couplings, $Q_c = 0.100(5)$ and $Q_c = 0.117(2)$, respectively. At $N = 11$, R_{SN} appears to have crossed at $Q/J < 0$ (we cannot study this region because of the sign problem), whereas R_{VBS} crosses at $Q_c = 0.042(3)$. From the location of the crossings, for both $N = 10$ and $N = 11$, we can infer an intermediate phase which is neither SN nor VBS, as shown in Fig. 3(b). We present arguments that this phase is a QSL. No direct evidence for first-order behavior is found at either of the transitions, though a weakly first-order SN-QSL cannot be ruled out. The QSL-VBS transitions show good scaling behavior with unconventional critical exponents.

and VBS phases. A previous analysis of this phase transition has predicted an $O(4)^+$ phase transition [27], where the VBS order parameter is identified with a bilinear of the primary field.

A detailed study of the critical phenomena at $N = 10$ and $N = 11$ is clearly beyond the scope of this Letter. We shall be satisfied here with a brief analysis: at the QSL-VBS critical point, we are able to carry out reasonable data collapses [15] at both $N = 10$ and $N = 11$ for O_{VBS} (for both X and M ordering vectors, see Fig. 1) and R_{VBS}, where we find, $\eta_{VBS} = 1.3(2)$ and $\nu_{VBS} = 0.65(20)$ for the anomalous dimension of O_{VBS}. The unusually large value of η_{VBS} is a direct consequence of fractionalization in the intermediate QSL phase and is often regarded as a smoking gun diagnostic of exotic critical points (see, e.g., Ref. [33]). More quantitatively, our critical exponents are in rough agreement with the best estimate of $\eta = 1.375(5)$ of the bilinear field and $\nu = 0.7525(10)$ in the $O(4)$ model [34]. We note that the values for η_{VBS} and ν_{VBS} agree within the quoted errors for $N = 10$ and $N = 11$. Taken together, this bolsters the case that the intermediate QSL phase has Z_2 fractionalization, albeit more work is needed for a definitive identification. Unfortunately, the SN-QSL transition observed only at $N = 10$ has large corrections to scaling, and we are unable to reliably determine its critical exponents or determine whether it is a weakly first-order transition (no direct evidence for a first-order transition has been found of the type shown for the $N = 7$ case).

In summary, we have introduced a new family of sign-free $SO(N)$ spin models, which can be regarded as non-bipartite generalizations of their popular $SU(N)$ cousins. The triangular lattice model which we have studied thoroughly here hosts a spin nematic, a VBS with a large unit cell, a quantum spin liquid phase, and unusual quantum critical points. The absence in the $SO(N)$ models of a direct continuous “deconfined quantum critical point” [33] is in striking contrast to previous simulations of the related bipartite $SU(N)$ models [8,23]. We have offered a plausible field theoretic scenario that naturally explains this difference. It is interesting that the absence (presence) of a QSL in bipartite $SU(N)$ [nonbipartite $SO(N)$] spin models seems to track the absence or presence of this phase in the kind of quantum dimer models that our model maps to at large N [35].

While the study in this Letter has focused on the triangular lattice, our family of models [Eqs. (2) and (4)] may be constructed sign free on any two- or three-dimensional nonbipartite lattice. Because of the larger degree of frustration, the kagome system may provide a wider swath of the QSL phase and, hence, could possibly allow a more detailed study of this phase, even if the phase diagram is of the same form found here. Exploring the phase diagram and quantum phase transitions of the three-dimensional pyrochlore system is an exciting open direction for future work.

The author is grateful to J. Chalker, T. Lang, M. Levin, R. Mong, G. Murthy, A. Nahum, A. Sandvik, T. Senthil, and M. Zaletel for helpful discussions. This research was supported in part by National Science Foundation Grant No. DMR-1056536.

[14] Strictly speaking, the symmetry of our model is an SO(\(N\)) for odd \(N\) and an O(\(N\))/\(Z_2\) for even \(N\). This point is discussed further in the Supplemental Material [15].