Use of Parthenolide Derivatives as Antileukemic and Cytotoxic Agents

Peter A. Crooks
University of Kentucky, pcrooks@uky.edu

Craig T. Jordan
University of Kentucky

Xiaochen Wei
University of Kentucky

Follow this and additional works at: https://uknowledge.uky.edu/ps_patents

Part of the Pharmacy and Pharmaceutical Sciences Commons

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation
Crooks, Peter A.; Jordan, Craig T.; and Wei, Xiaochen, "Use of Parthenolide Derivatives as Antileukemic and Cytotoxic Agents" (2016). Pharmaceutical Sciences Faculty Patents. 159.
https://uknowledge.uky.edu/ps_patents/159

This Patent is brought to you for free and open access by the Pharmaceutical Sciences at UKnowledge. It has been accepted for inclusion in Pharmaceutical Sciences Faculty Patents by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
The present invention provides compounds of the formula (I)

![Chemical Structure](image)

wherein:

- X_1, X_2, and X_3 are heteroatoms;
- R_1, R_2, R_3, R_4, R_5, and R_6 are independently selected from H, halo, $-O-$, $-S-$, $-SO-$, and $-SO_2-$;
- R_8, R_9, and R_{10} are independently selected from H, $-OH$, $-NO_2$, $-CN$, and optionally comprising 1 or more heteroatoms or a group selected from $-CO-$, $-SO-$, and $-SO_2-$.

The compounds are useful as antileukemic and cytotoxic agents.

(Continued)
Related U.S. Application Data

application No. 13/372,178, filed on Feb. 13, 2012, now Pat. No. 8,470,875, which is a division of application No. 12/693,161, filed on Jan. 25, 2010, now Pat. No. 8,124,652, which is a division of application No. 11/031,315, filed on Jan. 7, 2005, now Pat. No. 7,678,904, which is a continuation-in-part of application No. 10/888,274, filed on Jul. 9, 2004, now Pat. No. 7,312,242.

(60) Provisional application No. 60/486,171, filed on Jul. 11, 2003.

References Cited

U.S. PATENT DOCUMENTS

FOREIGN PATENT DOCUMENTS

WO WO 01/45699 6/2001
WO WO 02/40017 5/2002
WO WO 02/655523 7/2002

OTHER PUBLICATIONS

Hwang et al. (1996) STN Accession No. 1996:592356, Abstract of Biochemical and Biophysical Research Communications 226(3):810-818 “Inhibition of the expression of inducible cyclooxygenase lactones in macrophages correlates with the inhibition of MAP kinases”.

Ross, JJ et al. (1999) PMID: 10193202 “Low concentration of the feverfew component parthenolide inhibit in vitro growth of tumor lines in a cytostatic fashion.”

* cited by examiner
HT-1376

UMUC-3

<table>
<thead>
<tr>
<th>HT-1376</th>
<th>UMUC-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMAPT</td>
<td>0 1 2.5 5 10 20</td>
</tr>
<tr>
<td>NF-κB Dimers</td>
<td></td>
</tr>
<tr>
<td>p65-p65</td>
<td>p65-p50</td>
</tr>
<tr>
<td>p50-p65</td>
<td>p50-p50</td>
</tr>
<tr>
<td>p50-p50</td>
<td>OCT-1</td>
</tr>
<tr>
<td>OCT-1</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 10
Figure 11

LC-1 µM 0 2 5

+ TRAIL-R2 antibody (10 ng/ml)
FIGURE 12

LC-1 μM

0

2

5

+TRAIL
(5 ng/ml)

110703.001

110703.004

110703.006

110703.007

110703.010

110703.011
USE OF PARTHENOLIDE DERIVATIVES AS ANTILEUKEMIC AND CYTOTOXIC AGENTS

FIELD OF THE INVENTION

The present invention relates to methods for the structural modification of the sesquiterpene lactone, parthenolide, and the use of these parthenolide derivatives in the treatment of carcinoma. More specifically, the invention relates to the methods to prepare structural analogs of the parent compound, parthenolide, in order to obtain new, pharmacologically active chemical entities with improved water solubility characteristics, and to use them in the treatment of leukemias and other parental and multi-drug resistant cancers.

BACKGROUND OF THE INVENTION

Sesquiterpene lactones are a group of secondary plant metabolites consisting of a 15-carbon structure containing an α-methylene-γ-butylrolactone moiety and other additional functional groups. Over the last two to three decades, these terpenoids have received considerable attention due to the broad spectrum of their biological activities, to the plants which produce them, and most importantly, because of their pharmacological effects in humans. About 4,000 of these terpenoids have been isolated and identified, most of them in Asteraceae (Compositae, sunflower family) (Schmidt, Curr. Org. Chem. 1999, 3, 577-608). Some of these plants have been used for centuries in indigenous medical practices in various cultures worldwide.

Parthenolide (1) is a Germander sesquiterpene lactone with a unique structure. It has been isolated from several different species in Asteraceae (Compositae) family, feverfew (Tanacetum parthenium) being one of them.

Feverfew has been used to reduce fever and pain and in the treatment of migraine and rheumatoid arthritis (Hertirstall et al., ACS Symposium Series (1998), 691 (Phytotherapeutics of Europe), 158-175). The active component is parthenolide (1). Recently, it has been revealed that parthenolide (1) can induce tumor apoptosis by the inhibition of NF-κB activities (Cory et al., Anticancer Research 2002, 22, 3805-9; Cory et al., Anticancer Research 2001, 21, 3807-11; Gefenov et al., Blood, 2000, 98, 2508-17; Kang et al, Brit. J. Pharmacol. 2002, 135, 1235-44; Song et al., Asian. Nat. Prod. Res. 2001, 3, 285-91).

Parthenolide (1) is a lipophilic, neutral lactone with low polarity, and has a low water-solubility, limiting its development as a therapeutic agent. Thus, a need exists for the development of soluble parthenolide derivatives that retain their anti-cancer activity.

SUMMARY OF THE INVENTION

In accordance with the present invention, a novel class of compounds with antileukemic activity is presented. Accordingly, the present invention provides compounds of formula (I):

\[R_1 \rightarrow R_2 \rightarrow R_3 \rightarrow R_4 \rightarrow R_5 \rightarrow R_6 \rightarrow R_7 \rightarrow R_8 \rightarrow R_9 \rightarrow R_{10} \]

wherein:

- \(X_1, X_2 \) and \(X_3 \) are heteroatoms;
- \(R_1, R_2, R_3, R_4, R_5, R_6 \) and \(R_7 \) are independently selected from \(H, \) halo, \(-OH, \) \(-NO_2, \) \(-CN \) and optionally substituted aliphatic, cycloalkyl, heterocycloalkyl, aryl or heteroaryl; and
- \(Z \) is optionally substituted \(C_{1-8} \) straight-chained or branched aliphatic, optionally containing 1 or more double or triple bonds, wherein one or more carbons are optionally replaced by \(R^* \) wherein \(R^* \) is optionally substituted cycloalkyl, heterocycloalkyl, aryl or heteroaryl; an amino acid residue, \(-\text{H}, -\text{CN}, -\text{C(O)}-, -\text{C(O)}\text{C(O)}-, -\text{C(O)NR}^*-\), \(-\text{C(O)NR}^*\text{NR}^*-\), \(-\text{C(O)O}-\), \(-\text{OC(O)}-\), \(-\text{NR}^*\text{CO}-\), \(-\text{O}-\), \(-\text{NR}^*\text{C(O)NR}^*-\), \(-\text{OC(O)}\text{NR}^*-\), \(-\text{NR}^*\text{CO}-\), \(-\text{O}-\), \(-\text{SR}-\), \(-\text{SO}-\), \(-\text{SO}_2-\), \(-\text{NR}-\), \(-\text{SO}_2\text{NR}^*-\), \(-\text{NR}^*-\), or \(-\text{NR}^*\text{SO}_2-\), wherein \(R^1 \) and \(R^2 \) are independently selected from \(H \) and optionally substituted aliphatic, cycloalkyl, heterocycloalkyl, aryl or heteroaryl; or where \(R^* \) is \(\text{NR}^*\text{R}^2\), \(R^1 \) and \(R^2 \) optionally together with the nitrogen atom form an optionally substituted 5-12 membered ring, said ring optionally comprising 1 or more heteroatoms and/or a group selected from \(-\text{CO}-, -\text{SO}-, -\text{SO}_2-\) and \(-\text{PO}-; \) or
- a pharmaceutically acceptable salt, ester or prodrug thereof.

The invention also provides a pharmaceutical composition comprising an effective amount of a compound of formula (I), or a pharmaceutically acceptable salt, ester or prodrug thereof, in combination with a pharmaceutically acceptable diluent or carrier.

The invention also provides a method of inhibiting cancer cell growth and metastasis of cancer cells, comprising administering to a mammal afflicted with cancer, an amount of a compound of formula (I), effective to inhibit the growth of said cancer cells.
The invention also provides a method comprising inhibiting cancer cell growth by contacting said cancer cell in vitro or in vivo with an amount of a compound of formula (I), effective to inhibit the growth of said cancer cell.

The invention also provides a compound of formula (I) for use in medical therapy (preferably for use in treating cancer, e.g., solid tumors), as well as the use of such compound for the manufacture of a medicament useful for the treatment of cancer and other diseases/disorders described herein.

The invention further provides methods of treating inflammatory diseases and disorders, including, for example, rheumatoid arthritis, osteoarthritis, allergies (such as asthma), and other inflammatory conditions, such as pain (such as migraine), swelling, fever, psoriasis, inflammatory bowel disease, gastrointestinal ulcers, cardiovascular conditions, including ischemic heart disease and atherosclerosis, partial brain damage caused by stroke, skin conditions (eczema, sunburn, acne), leukotriene-mediated inflammatory diseases of lungs, kidneys, gastrointestinal tract, skin, prostatitis and pseudomembranous colitis.

The invention further provides methods of treating immune response disorders, whereby the immune response is inappropriate, excessive or lacking. Such disorders include allergic responses, transplant rejection, blood transfusion reaction, and autoimmune disorders such as systemic lupus erythematosus and rheumatoid arthritis.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows the effectiveness of parthenolide and derivatives of the present invention against prostate cancer cell line CWR22 in a clonogenic assay.

FIG. 2 shows the effectiveness of parthenolide and derivatives of the present invention against lung cancer cell line A-549 in a cellular proliferation MTS-PMS assay.

FIG. 3 shows the effectiveness of parthenolide and derivatives of the present invention against lung cancer cell line H-522 in a cellular proliferation MTS-PMS assay.

FIG. 4 shows the effectiveness of parthenolide and derivatives of the present invention against lung cancer cell line H-23 in a cellular proliferation MTS-PMS assay.

FIG. 5 shows the effectiveness of parthenolide and derivatives of the present invention against lung cancer cell line H-460 in a cellular proliferation MTS-PMS assay.

FIG. 6 shows the effectiveness of parthenolide and derivatives of the present invention against breast cancer cell line HBL-100 in a clonogenic assay.

FIG. 7 shows the effectiveness of parthenolide and derivatives of the present invention against breast cancer cell line MD-231 in a clonogenic assay.

FIG. 8 shows the effectiveness of parthenolide and derivatives of the present invention against breast cancer cell line MD-468 in a clonogenic assay.

FIG. 9 shows parthenolide and DMAPT plasma concentrations at one hour following oral gavage in mice.

FIG. 10 shows DMAPT dose-dependent inhibition of NF-κB DNA binding in two transitional cell carcinoma cell lines HT-1376 and UMUC-3 in electrophoretic mobility gel shift assay (EMSA).

FIG. 11 shows FSCScan analysis of TRAIL-induced apoptosis assay using MDA-MB-231 breast cancer cells treated first with DMAPT, then TRAIL-R11-activating antibodies.

FIG. 12 shows FSCScan analysis of TRAIL-induced apoptosis assay using MDA-MB-231 breast cancer cells treated first with DMAPT, then TRAIL.

DETAILED DESCRIPTION OF THE INVENTION

As used herein, the following definitions shall apply unless otherwise indicated.

The phrase “optionally substituted” is used interchangeably with the phrase “substituted or unsubstituted.” Unless otherwise indicated, an optionally substituted group may have a substituent at each substitutable position of the group, and each substitution is independent of any other. Also, combinations of substituents or variables are permissible only if such combinations result in stable compounds. In addition, unless otherwise indicated, functional group radicals are independently selected. Where “optionally substituted” modifies a series of groups separated by commas (e.g., “optionally substituted A, B or C”; or “A, B or C optionally substituted with”), it is intended that each of the groups (e.g., A, B and C) is optionally substituted.

The term “aliphatic” or “aliphatic group” as used herein means a straight-chain or branched C_{1-12} hydrocarbon chain that is completely saturated or that contains one or more units of unsaturation, or a monocyclic C_{3-8} hydrocarbon or bicyclic C_{8-12} hydrocarbon that is completely saturated or that contains one or more units of unsaturation, but which is not aromatic (also referred to herein as “carbo cycle” or “cycloalkyl”), that has a single point of attachment to the rest of the molecule wherein any individual ring in said bicyclic ring system has 3-7 members. For example, suitable aliphatic groups include, but are not limited to, linear or branched or alky, alkenyl, alkyne and hybrids thereof such as (cycloalkyl)alkyl, (cycloalkeny)alkyl or (cycloalkyl)alkenyl.

The terms “alkyl,” “alkoxy,” “hydroxyalkyl,” “alkoxyalkyl” and “alkoxyalkenyl,” used alone or as part of a larger moiety include both straight and branched chains containing one to twelve carbon atoms. The terms “alkenyl” and “alkynyl” used alone or as part of a larger moiety shall include both straight and branched chains containing two to twelve carbon atoms.

The terms “haloalkyl,” “haloalkenyl” and “haloalkoxy” means alkyl, alkenyl or alkoxy, as the case may be, substituted with one or more halogen atoms. The term “halo” means F, Cl, Br or I.

The term “heteroatom” means nitrogen, oxygen, or sulfur and includes any oxidized form of nitrogen and sulfur, and the quaternized form of any basic nitrogen. Heteroatom further includes Se, Si and P.

The term “aryl” used alone or in combination with other terms, refers to monocyclic, bicyclic or tricyclic carboxylic acid ring systems having a total of five to fourteen ring members, wherein at least one ring in the system is aromatic and wherein each ring in the system contains 3 to 8 ring members. The term “aryl” may be used interchangeably with the term “aryl ring”. The term “aryalkyl” refers to an alky group substituted by an aryl. The term “arylalkoxy” refers to an alkoxy group substituted by an aryl.

The term “heterocycloalkyl,” “heterocycle,” “heterocyclic” or “heterocyclic” as used herein means monocyclic, bicyclic or tricyclic ring systems having five to fourteen ring members in which one or more ring members is a heteroatom, wherein each ring in the system contains 3 to 7 ring members and is non-aromatic.
The term “heteroaryl,” used alone or in combination with other terms, refers to monocyclic, bicyclic and tricyclic ring systems having a total of five to fourteen ring members, and wherein: 1) at least one ring in the system is aromatic; 2) at least one ring in the system contains one or more heteroatoms; and 3) each ring in the system contains 3 to 7 ring members. The term “heteroaryl” may be used interchangeably with the term “heteraryl ring” or the term “heteroaromatic.” Examples of heteroaryl rings include 2-furanyl, 3-furanyl, N-imidazolyl, 2-imidazolyl, 4-imidazolyl, 5-imidazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 2-oxadiazolyl, 5-oxadiazolyl, 2-oxazolyl, 5-oxazolyl, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 1-pyrazolyl, 3-pyrazolyl, 4-pyrazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrimidyl, 4-pyrimidyl, 5-pyrimidyl, 3-pyridazinyl, 4-thenyl, 5-thenyl, carbazolyl, benzimidazolyl, benzothei­nyl, benzo­furanyl, indolyl, quinolinyl, benzotriazolyl, benzothiazolyl, benzo­thiazolyl, benzo­oxazolyl, benzo­imidazolyl, isoquinolinyl, indazolyl, iso­indolyl, acridinyl, and benzo­isoxazolyl. The term “heteroarylalkoxy” refers to an alkyl group substituted by a heteroaryl. The term “heteroaryalkoxy” refers to an alkox­y group substituted by a heteroaryl.

An aryl (including aralkyl, aralkoxy, arylox­alkyl and the like) or heteroaryl (including heteroaralkyl, heteroaryalkoxy and the like) group may contain one or more substitu­ents. Suitable substitu­ents on an unsaturated carbon atom of an aryl, heteroaryl, aralkyl or heteroary­alkyl group may be selected from those listed in the Pre­vious paragraph. When R is a 5-6 membered heteroaryl or heterocyclic ring, phenyl (Ph), ---O(Ph), or 4-halo(Ph) aliphatic), ---O(halo C1-4 aliphatic), or -halo(C1-4 aliphatic); wherein each C1-4 aliphatic is optionally substituted.

Substituents on a nitrogen of a non-aromatic heterocyclic ring are selected from

-OR; -OH, -NH-, or -OMe;
-N=O,
-C(O)R, -C(O)OR,
-NH-, -O(C1-4 aliphatic), -N(C1-4 aliphatic2), -S(O)(C1-4 aliphatic), -SO2(C1-4 aliphatic), or -halo(C1-4 aliphatic); wherein each C1-4 aliphatic is optionally substituted.

Substituents on a nitrogen of a non-aromatic heterocyclic ring are selected from

-OR; -OH, -NH-, or -OMe;
-N=O,
-C(O)R, -C(O)OR,
-NH-, -O(C1-4 aliphatic), -N(C1-4 aliphatic2), -S(O)(C1-4 aliphatic), -SO2(C1-4 aliphatic), or -halo(C1-4 aliphatic); wherein each C1-4 aliphatic is optionally substituted.

Substituents on a nitrogen of a non-aromatic heterocyclic ring are selected from

-OR; -OH, -NH-, or -OMe;
-N=O,
-C(O)R, -C(O)OR,
-NH-, -O(C1-4 aliphatic), -N(C1-4 aliphatic2), -S(O)(C1-4 aliphatic), -SO2(C1-4 aliphatic), or -halo(C1-4 aliphatic); wherein each C1-4 aliphatic is optionally substituted.

Substituents on a nitrogen of a non-aromatic heterocyclic ring are selected from

-OR; -OH, -NH-, or -OMe;
-N=O,
-C(O)R, -C(O)OR,
-NH-, -O(C1-4 aliphatic), -N(C1-4 aliphatic2), -S(O)(C1-4 aliphatic), -SO2(C1-4 aliphatic), or -halo(C1-4 aliphatic); wherein each C1-4 aliphatic is optionally substituted.

Substituents on a nitrogen of a non-aromatic heterocyclic ring are selected from

-OR; -OH, -NH-, or -OMe;
-N=O,
-C(O)R, -C(O)OR,
-NH-, -O(C1-4 aliphatic), -N(C1-4 aliphatic2), -S(O)(C1-4 aliphatic), -SO2(C1-4 aliphatic), or -halo(C1-4 aliphatic); wherein each C1-4 aliphatic is optionally substituted.

Substituents on a nitrogen of a non-aromatic heterocyclic ring are selected from

-OR; -OH, -NH-, or -OMe;
-N=O,
-C(O)R, -C(O)OR,
-NH-, -O(C1-4 aliphatic), -N(C1-4 aliphatic2), -S(O)(C1-4 aliphatic), -SO2(C1-4 aliphatic), or -halo(C1-4 aliphatic); wherein each C1-4 aliphatic is optionally substituted.

Substituents on a nitrogen of a non-aromatic heterocyclic ring are selected from

-OR; -OH, -NH-, or -OMe;
-N=O,
-C(O)R, -C(O)OR,
-NH-, -O(C1-4 aliphatic), -N(C1-4 aliphatic2), -S(O)(C1-4 aliphatic), -SO2(C1-4 aliphatic), or -halo(C1-4 aliphatic); wherein each C1-4 aliphatic is optionally substituted.

Substituents on a nitrogen of a non-aromatic heterocyclic ring are selected from

-OR; -OH, -NH-, or -OMe;
-N=O,
-C(O)R, -C(O)OR,
-NH-, -O(C1-4 aliphatic), -N(C1-4 aliphatic2), -S(O)(C1-4 aliphatic), -SO2(C1-4 aliphatic), or -halo(C1-4 aliphatic); wherein each C1-4 aliphatic is optionally substituted.
compounds are sufficiently basic or acidic to form stable nontoxic acid or base salts, administration of the compounds as salts may be appropriate. Examples of pharmaceutically acceptable salts are organic acid addition salts formed with acids that form a physiological acceptable anion, for example, tosylate, methanesulfonate, acetate, citrate, malonate, tartarate, succinate, bencenate, ascorbate, α-keto-glutamate, and α-glycerophosphate. Suitable inorganic salts may also be formed, including hydrochloride, sulfate, nitrate, bicarbonate, and carbonate salts.

Pharmaceutically acceptable salts include quaternary ammonium salts formed with RY; where Y is selected from halogen, tosylate, methanesulfonate, benzenesulfonate, trifluoromethanesulfonate and the like; and R* is selected from an optionally substituted cycloalkyl, heterocycloalkyl, aryl or heteroaryl.

Suitable acids include hydrofluoric acid, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, carbonic acid, boric acid, selenious acid, hydrogen sulfide, phosphomolybdic acid, phosphorous acid, sulfuric acid, hydrobromic acid, hydriodic acid, carbonic acid, glycolic acid, thioglycolic acid, glycine, sarcosine, serine, threonine, alanine, valine, leucine, serine, threonine, isoleucine, cysteine, cystine, aspartic acid, glutamic acid, proline, arginine, histidine, lysine, ornithine, cationic amino acids and peptides which is incorporated in its entirety herein by reference. For example, certain lipid prodrugs are described in Hostetler et al., (1999 Med. Chem., 12: 118-12), and by Freeman et al., (2000 Bioorganic & Med. Chem Letters 10: 2075-2078) each of which is incorporated in their entirety herein by reference.

The invention relates to the ability of the α-methylene-β-hydroxylactone moiety in sesquiterpene lactones to be structurally modified by, for example, Michael addition with amines or thiolis. Modification of the parthenolide (1) molecule by this methodology using primary and/or secondary amines to form water-soluble amino derivatives, affords amine adducts that can easily be obtained as different inorganic or organic salts to further increase water solubility. Thus, a novel class of more water-soluble parthenolide analogs is described. When compounds in this class were evaluated for antileukemic activity, it was found that these compounds were either equipotent as, or more potent than the parent compound, parthenolide. More importantly, these novel analogs showed greater cytotoxicity towards leukemia cells than towards normal cells. Thus, the present invention provides a new class of parthenolide derivatives with potent and selective anticancer activities.

In accordance with the present invention, there are provided compounds of formula (I):

$$\text{(I)}$$

wherein:

- X_1, X_2 and X_3 are heteroatoms;
- $R_a, R_b, R_{c}, R_d, R_e$ and R_f are independently selected from H, halo, —OH, —NO$_2$, —CN and optionally substituted aliphatic, cyclicalkyl, heterocyclicalkyl, aryl or heteroaryl; and
- Z is optionally substituted C_{1-8} straight-chained or branched aliphatic, optionally containing 1 or more double bonds, wherein one or more carbons are optionally replaced by R* wherein R* is optionally substituted cyanoalkyl, heterocycloalkyl, aryl or heteroaryl; an acid residue, H, —CN, —C(O), —C(O)C(O)—, —C(O)NR1—, —C(O)NR1NR2—, —C(O)NR1—, —OC(O)—, —NR1CO$_2$—, —O—, —NR1C(O)NR2—, —OC(O)
NR¹—, NR²—, NR³—, NR³C(O)—, S—, SO—,
SO₂—, SO₃—, NR⁴—, NR⁵—, NR⁶—, or
NR⁷SO₂—, wherein R¹ and R² are independently selected
from H and optionally substituted aliphatic, cycloalkyl,
hetarycloalkyl, aryl or heteroaryl; or where R⁴ is
NR⁵R⁶, R⁵ and R⁶ are independently selected
from optionally substituted C₁ to C₄ alkyl, H and
R⁵ is C₁ to C₄ alkyl. Further preferred embodiments
include compounds wherein R⁴ and R⁸ are independently
selected from H, hydroxy, —CN or optionally substituted
C₁ to C₄ alkyl. In one preferred embodiment, R⁴ is
—CH₃, and in another, R⁴ and R₈ are each
—CH₃.

In one embodiment, X₁, X₂ and X₃ are each
—CH₃. In one particular embodiment, m is 1. In other
embodiments, R¹ and R² are —CH₂H₇-NR₁R₂, where Y
is NR₁—, -NR₁NR₂—, -NR₁C(O)—, -S—, -SO—,
-SO₂—, -SO₃—, -NR₁—, or
-NR₁SO₂—, wherein R¹ and R² are independently
selected from H and optionally substituted aliphatic,
cycloalkyl, hetarycloalkyl, aryl or heteroaryl; or where R⁴ is
NR⁵R⁶, R⁵ and R⁶ are independently selected
from optionally substituted C₁ to C₄ alkyl, H and
R⁵ is C₁ to C₄ alkyl. Further preferred embodiments
include compounds wherein R⁴ and R⁸ are independently
selected from H, hydroxy, —CN or optionally substituted
C₁ to C₄ alkyl. In one preferred embodiment, R⁴ is
—CH₃, and in another, R⁴ and R₈ are each
—CH₃.

According to a further embodiment of the invention, Z is
—(CH₂)n—S(O)n—R¹ where m is an integer from 0 to 4,
n is an integer from 0 to 2, where preferably, R₂, R₆, R₈,
and R₁₀ are each H; and R₄ and R₉ are each —CH₃. In
one particular embodiment, m is 1. In another embodiment
n is 0. In other embodiments, R¹ is independently selected
from hydrogen, —CN, optionally substituted C₁ to C₄ alkyl or aryl.
In particular embodiments, R¹ is selected from
—CH₂(CH₂O)(HNH₂)₄ and
—CH₂(CH₂CO)(H)₂(NH₂)₈.

Exemplary compounds of the present invention include:

11, 13-Dihydro, 13-dimethylaminoparthenolide
(DMAPT);

11, 13-Dihydro, 13-diethylaminoparthenolide;

11, 13-Dihydro, 13-(tert-butylamino)parthenolide;

11, 13-Dihydro, 13-(pyrrolidin-1-yl)parthenolide;

11, 13-Dihydro, 13-(piperidin-1-yl)parthenolide (PIPT);

11, 13-Dihydro, 13-(morpholin-1-yl)parthenolide;

11, 13-Dihydro, 13-(4-methylpiperidin-1-yl)parthenolide (4MEPT).

11, 13-Dihydro, 13-(4-methylpiperazin-1-yl)parthenolide;

11, 13-Dihydro, 13-(homopiperidin-1-yl)parthenolide;

11, 13-Dihydro, 13-(heptamethylenimin-1-yl)parthenolide;

11, 13-Dihydro, 13-(azetidin-1-yl)parthenolide;

11, 13-Dihydro, 13-methylbutylaminoparthenolide;

11, 13-Dihydro, 13-methylpentylaminoparthenolide;

11, 13-Dihydro, 13-ethylaminoparthenolide;

11, 13-Dihydro, 13-methylaminoparthenolide;

11, 13-Dihydro, 13-cyclopropylaminoparthenolide;

11, 13-Dihydro, 13-propargylaminoparthenolide;

11, 13-Dihydro, 13-(N-benzyl-N-ethylamine)parthenolide;

11, 13-Dihydro, 13-(N-propyl)parthenolide;

11, 13-Dihydro, 13-(S-thiophenolyl)parthenolide;

11, 13-Dihydro, 13-(N,N-diethanolamine)parthenolide;

11, 13-Dihydro, 13-(4-hydroxy)parthenolide;

11, 13-Dihydro, 13-(1-methylhomopiperazin-4-yl)parthenolide;

11, 13-Dihydro, 13-(S-mercaptoacetetyl)parthenolide;

11, 13-Dihydro, 13-(4-(2'-hydroxyethyl)piperidin-1-yl)parthenolide;

11, 13-Dihydro, 13-(piperazin-1-yl-4-carboxaldehyde)parthenolide;

11, 13-Dihydro, 13-(4-benzyl)piperidin-1-ylparthenolide;

11, 13-Dihydro, 13-(1,3-dimethyl-1-propargyl)parthenolide;

11, 13-Dihydro, 13-(1,3-dimethyl-1-propargyl)parthenolide;
ducing stereochemically pure or optically pure materials are well known in the art, as are procedures for resolving racemic mixtures into their optical enantiomers.

The present invention further provides for compounds having formula (I), or a pharmaceutically acceptable salt thereof, wherein Z is a group that is converted to =CH₂ under physiological conditions during or after administration to a mammalian patient, thereby yielding a methylene group. In particular embodiments X₁, X₂ and X₃ are O; R₄, R₆, R₇, R₉, and R₁₀ are H; R₅ and R₇ are =CH₃; and Z is optionally substituted C₁₋₈ straight-chain or branched aliphatic, optionally containing 1 or more double or triple bonds, wherein one or more carbons are optionally replaced by R* wherein R* is optionally substituted cycloalkyl, heterocycloalkyl, aryl or heteroaryl; an amino acid residue, H, ---CN, ---(O) ---, ---(O)(O) ---, ---(O)NR ---, ---(O) ---, ---O, ---NR ---, ---O ---, ---NR ---, ---O ---, ---SO ---, ---SO₂ ---, ---NR ---, ---SO₂ ---, or ---NR ---SO₂ ---, wherein R₁ and R₂ are independently selected from H and optionally substituted aliphatic, cycloalkyl, heterocycloalkyl, aryl or heteroaryl. In preferred embodiments Z is =CH₂N(CH₃)₂, =CH₂N(H)(C(CH₃)₃), =CH₂-azetidine, =CH₂-pyrrolidine, =CH₂-piperidine, =CH₂-homopiperidine, =CH₂-heptamethyleneimine, =CH₂-4-methylpiperidine, =CH₂-morpholine, =CH₂-pyrrolidine, =CH₂-proline, =CH₂-thiophenol, =CH₂-thiophenol, =CH₂-thiacetamide, =CH₂-benzylpiperidine, =CH₂-piperidine-4-carboxylic acid, =CH₂-azetidine-3-carboxylic acid, =CH₂-piperidinylpiperidine, or =CH₂-cysteine.

The present invention further provides for compounds having formula (I), or a pharmaceutically acceptable salt thereof, wherein Z is =CH₂N(CH₃)₂ which under physiological conditions during or after administration to a mammalian patient, undergoes mono- or di-demethylation, conversion to =CH₂, or cysteine or protein conjugation. In particular embodiments, X₁, X₂ and X₃ are O; R₄, R₆, R₇, R₉, and R₁₀ are H; R₅ and R₇ are =CH₃; and Z is =CH₂N(R)CH₂-, wherein Z is =CH₂N(R)CH₂-, wherein R is as defined above. Preferred linkers include optionally substituted alkyl and amine groups. In one particular embodiment, L is =CH₂N(R)CH₂-, wherein R is as defined above. Included are pharmaceutically acceptable salts formed with inorganic and/or organic acids, as defined above for compounds of formula (I).

In accordance with another embodiment of the invention, the methods for the preparation of the amino analogs described in this invention are disclosed in Schemes I and II.
In the above scheme, the solvent is selected from a low alkyl alcohol, such as methanol, ethanol, propanol, isopropanol, n-butanol, tert-butanol, and chloroform, methylene chloride, benzene, toluene, tetrahydrofuran, dioxane, 1,2-dimethoxyethane, pyridine, carbon tetrachloride, diethyl ether, tertbutyl methyl ether and/or the mixture of two or more of the solvents listed above. The base is selected from a low trialkylamine, such as trimethylamine, triethylamine, tripalmylamine, and tributylamine, and pyridine, 2-, 3-, and 4-picolin, 2-, 3-, and 4-dimethylaminopyridines. The temperature is selected from -20°C to 130°C. The reaction time required to effect the desired coupling reaction can vary widely, typically falling in the range of 30 min to 24 hours. Purification can be achieved by a variety of techniques, such as, liquid chromatography through neutral or basic silica gel, bonded silica gel phases such as octadecylsilica, octylsilica and the like, cellulose or alumina with the solvent such as, for example, the mixture of chloroform and methanol or ethanol, the mixture of methylene chloride and methanol or ethanol, the mixture of hexane and acetone or acetonitrile or methanol or ethanol or isopropanol, the mixture of diethyl ether and acetone or acetonitrile or methanol or ethanol or isopropanol; and recrystallization using normal organic solvent or solvent mixture, such as methanol, ethanol, propanol, isopropanol, tert-butanol, acetonitrile, diethyl ether, chloroform, methylene chloride and the mixture of two or more solvents listed above. The purity of the invention compounds prepared is assessed by mass spectrometry, nuclear magnetic resonance spectrometry (NMR) and elemental combustion analysis.

Furthermore, in accordance with still another embodiment of the present invention, the methods for the preparation of the invention salts are disclosed in Schemes III and IV.
In these schemes, HX is selected from hydrochloride, hydrobromide, hydroiodide, perchlorate, sulfate, hemisulfate, mesylate, toluenesulfonate, benzenesulfonate, succinate, hemisuccinate, fumarate, tartarate, ascorbate, acetate, hemifumarate, maleate, citrate, oxalate, malonate, maleic, propionate and benzoate; \(Y\) is selected from halide (fluoride, chloride, bromide, iodide), methylsulfonate, toluenesulfonate, benzenesulfonate and sulfate; and the solvent is selected from a low alkyl alcohol, such as diethyl ether, methanol, ethanol, propanol, isopropanol, n-butanol, tert-butanol, and chloroform, methylene chloride, benzene, toluene, tetrahydrofuran, dioxane, 1,2-dimethoxyethane, pyridine, carbon tetrachloride, tert-butyl methyl ether, acetone and/or the mixture of two or more of the solvents listed above. The temperature is selected from \(-20^\circ C\) to \(50^\circ C\). Purification can be achieved by recrystallization using normal organic solvent or solvent mixture, such as methanol, ethanol, acetone, propanol, isopropanol, t-butanol, acetonitrile, diethyl ether, chloroform, methylene chloride and the mixture of two or more solvents listed above.

Scheme IV

DUPLEX ANALOG

\[\text{Scheme IV} \]

\[\text{3} \]

\[\text{4} \]

\[\text{5} \]

\[\text{6} \]

\[\text{7} \]

\[\text{8} \]
The present invention further provides analogues of compounds of formula (I). Examples are described below and include costunolide, dehydrocostus lactone, alantolactone, isotalantolactone, amino-3-oxo-isotalantolactone, helenalin, 11,13-dihydrohelenalin, aminoacyanaropicrin, aminodesacetyl cyanaropicrin, (+)-aminoreyonosin, aminosantamarin, aminosoulangianolide and aminoisotelekin. In addition, the present invention provides compounds of the analogues below, amino-3-oxo-isotalantolactone, aminoacyanaropicrin, aminodesacetyl cyanaropicrin, (+)-aminoreyonosin, aminosantamarin, aminosoulangianolide and aminoisotelekin wherein (---CH$_2$---NR$_1$R$_2$) is replaced by Z, where Z is as defined herein.

The invention relates to the ability of the α-methylene-γ-butyrolactone moiety in all the above-mentioned sesquiterpene lactones to be structurally modified by, for example, Michael addition with the following chemical entities to form more water-soluble derivatives than the corresponding parent sesquiterpene, and with improved properties conducive for drug development, such as, chemical stability, reduced toxicity and oral bioavailability.
The present invention further provides compounds of the parthenolide-analog dehydrocostuslactone based derivatives of formula (IV):

![Diagram of formula (IV)](image)

Presently preferred compounds include compounds of formula (IV) wherein \(R_1, R_2, R_3, R_4, R_5, R_6, R_7, R_8, R_9, R_{10} \) and \(R_{11} \) are independently selected from \(H, \) halo, \(-\text{OH}, -\text{NO}_2, -\text{CN}, -\text{CH}_3, -\text{CF}_3, -\text{CH}_2\text{CH}_3, -\text{CH}_2\text{CF}_3, -\text{CH}_2\text{Cl}, -\text{CH}_2\text{OH}, -\text{CH}_2\text{CH}_2\text{OH} \) and \(-\text{CH}=\text{NH}_2 \). Further preferred embodiments include compounds where \(R_3, R_5, R_6, R_9 \) and \(R_{10} \) are each \(H \).

Other preferred embodiments of the present invention include compounds where \(R_4 \) and \(R_8 \) are independently selected from optionally substituted \(\text{C}_1-\text{C}_4 \) alkyl. In one preferred embodiment, \(R_4 \) and \(R_8 \) are each \(\text{CH}_3 \).

In one embodiment, \(X_1 \) and \(X_2 \) are heteroatoms independently selected from \(\text{O}, \text{N} \) and \(\text{S} \), and in one particular embodiment, \(X_1 \) and \(X_2 \) are each \(\text{O} \).

According to a further embodiment of the invention, \(Z \) is \((\text{CH}_2)_n-\text{NR}_1\text{R}_2\) where \(m \) is an integer from 0 to 4, \(a \) is an integer from 0 to 4, \(b \) is an integer from 0 to 4, \(R_3, R_5, R_6, R_7, R_9 \) and \(R_{10} \) are \(H \) and \(R_4 \) and \(R_8 \) are each \(\text{CH}_3 \). In one particular embodiment, \(m \) is 1. In other embodiments, \(R_1 \) and \(R_2 \) are independently selected from hydrogen, \(-\text{CN} \) or optionally substituted \(\text{C}_1-\text{C}_4 \) alkyl. In particular embodiments, \(R_1 \) and \(R_2 \) are independently selected from \(-\text{NO}_2, -\text{CN}, -\text{CH}_3, -\text{CF}_3, -\text{CH}_2\text{CH}_3, -\text{CH}_2\text{CF}_3, -\text{CH}_2\text{Cl}, -\text{CH}_2\text{OH}, -\text{CH}_2\text{CH}_2\text{OH} \) and \(-\text{CH}=\text{NH}_2 \).

In yet a further embodiment, \(R_1 \) and \(R_2 \) together with \(N \) form an optionally substituted ring. The ring is a monocyclic, bicyclic or tricyclic aliphatic or aryl ring system, where the ring system is optionally substituted and optionally comprises one or more heteroatoms or a group selected from \(-\text{CO}_2, -\text{SO}_2, -\text{SO}_3, -\text{PO}_2 \) and \(-\text{PO}_3 \). In one particular embodiment, \(R_1 \) and \(R_2 \) are \(-\text{CH}(_2)_3\text{CH}_2\text{Y}\), where \(Y \) is a heteroatom or a group selected from \(-\text{CO}, -\text{SO}_2, -\text{SO}_3, -\text{PO}_2 \) and \(-\text{PO}_3 \); \(n \) is an integer from 0 to 5; and together with \(N \) form an optionally substituted ring, which may be additionally fused to a cycloalkyl or aryl group to form a bicyclic or tricyclic ring system, where the system is optionally substituted and optionally comprises one or more heteroatoms. Alternatively, \(R_1 \) and \(R_2 \) are \((-\text{CH}_2)_n-\text{Y}-(\text{CH}_2)_b\), where \(Y \) is a heteroatom or a group selected from \(-\text{CO}, -\text{SO}_2, -\text{SO}_3 \) and \(-\text{PO}_2 \); \(a \) is an integer from 0 to 5; \(b \) is an integer from 0 to 5; where the sum of \(a \) and \(b \) is 0 to 5; and together with \(N \) form an optionally substituted ring, the ring being optionally fused to a cycloalkyl or aryl group to form a bicyclic or tricyclic ring system, where the system is optionally substituted and optionally comprises one or more heteroatoms.

Examples of ring systems include an optionally substituted uracil ring or a derivative thereof. Other examples include optionally substitute pyrrole, imidazole, purine and pyrazole and derivative thereof. Examples of fused ring systems include optionally substituted aziridine-1-yl, azetidine-1-yl, pyrrolidine-1-yl, piperidine-1-yl, homopiperidin-1-yl and heptamethylenimin-1-yl.

With respect to formulas (I) and (IV), in other embodiments, \(Z \) is hydroxyamine, a hydroxalkylamino compound, a thioalkylamino compound, a diaminourea. Examples include ethylenediamine, piperazine, triminoalkanes, polyamines, polylysine, putrescine, spermine, spermidine, aminoguanidines and agmatine. In other embodiments, \(Z \) is an amino acid. For example glycine, serine, hydroxyproline, \(\beta \)-alanine, cysteine, homocysteine, arginine, lysine, glutamic acid, ornithine, aspartic acid, \(\gamma \)-aminobutyric acid, or taurine. In other embodiments, \(Z \) is an amino sugar; for example glucosamine. In other embodiments, \(Z \) is a polyoxyethylene glycol of various molecular weights, each of which terminate in an amino functionality that will form an adduct with the appropriate sesquiterpene.

Modification of the sesquiterpene molecules by these methodologies, affords adducts that can easily be obtained as different inorganic or organic salts to further increase water solubility.

The compounds described herein are useful for treating cancer. Cancers treatable by the present therapy include the solid and hematological tumors, such as prostate cancer, ovarian cancer, breast cancer, brain cancer and hepatic cancer, comprising administering to a mammal afflicted with said cancer an amount of parthenolide derivative effective to inhibit the viability of cancer cells of said mammal. The parthenolide derivative may be administered as primary therapy, or as adjunct therapy, either following local intervention (surgery, radiation, local chemotherapy) or in conjunction with at least one other chemotherapeutic agent discussed hereinabove, as well as the solid tumors disclosed in U.S. Pat. No. 5,514,555. Hematological cancers, such as the leukemias are disclosed in the Mayo Clinic Family Health Book, D. E. Larson, ed., William Morrow, N.Y. (1990) and include CLL, ALL, CML and the like. Compounds of the present invention may be used in bone marrow transplant procedure to treat bone marrow prior to reintroduction to the patient. In addition, the compounds of the present invention may be used as chemotherapy sensitizers or radiation therapy sensitizers. Accordingly, a patient, or cells, or tissues, derived from a cancer patient, are pretreated with the compounds prior to standard chemotherapy or radiation therapy. The present invention contemplates that parthenolide may also be used in such methods.

Within another aspect of the present invention, methods are provided for inhibiting angiogenesis in patients with non-tumorigenic, angiogenesis-dependent diseases, comprising administering a therapeutically effective amount of a composition comprising parthenolide derivative to a patient with a non-tumorigenic angiogenesis-dependent disease, such that the formation of new blood vessels is inhibited. Within other aspects, methods are provided for inhibit reactive proliferation of endothelial cells or capillary formation in non-tumorigenic, angiogenesis-dependent diseases, such that the blood vessel is effectively occluded. Within one embodiment, the anti-angiogenic composition comprising parthenolide derivative is delivered to a blood vessel which is actively proliferating and nourishing a tumor.

In addition to tumors, numerous other non-tumorigenic angiogenesis-dependent diseases, which are characterized by the abnormal growth of blood vessels, may also be treated with the anti-angiogenic parthenolide derivative compositions, or anti-angiogenic factors of the present
invention. Anti-angiogenic parthenolide derivative compositions of the present invention can block the stimulatory effects of angiogenesis promoters, reducing endothelial cell division, decreasing endothelial cell migration, and impairing the activity of the proteolytic enzymes secreted by the endothelium. Representative examples of such non-tumorigenic angiogenesis-dependent diseases include corneal neovascularization, hypertrophic scars and keloids, proliferative diabetic retinopathy, arteriovenous malformations, atherosclerotic plaques, delayed wound healing, hemophilic joints, nonunion fractures, Osler-Weber syndrome, psoriasis, pyogenic granuloma, scleroderma, trachoma, menorrhagia, retrolental fibroplasia and vascular adhesions. The pathology and treatment of these conditions is disclosed in detail in published PCT application PCT/CA94/00373 (WO 95/03036), at pages 26-36. Topical or directed local administration of the present compositions is often the preferred mode of administration of therapeutically effective amounts of parthenolide derivative, i.e., in depot or other controlled release forms.

Anti-angiogenic compositions of the present invention may also be utilized in a variety of other manners. For example, they may be incorporated into surgical suture in order to prevent stitch granulomas, implanted in the uterus (in the same manner as an IUD) for the treatment of menorrhagia or as a form of female birth control, administered as a peritoneal lavage fluid or for peritoneal implantation in the treatment of endometriosis, attached to a non-tumorigenic antibody directed against activated endothelial cells as a form of systemic chemotherapy, or utilized in diagnostic imaging when attached to a radioactively labelled monoclonal antibody which recognizes active endothelial cells. The magnitude of a prophylactic or therapeutic dose of parthenolide derivative, an analog thereof or a combination thereof, in the acute or chronic management of cancer, i.e., prostate or breast cancer, will vary with the stage of the cancer, such as the solid tumor to be treated, the chemotherapeutic agent(s) or other anti-cancer therapy used, and the route of administration. The dose, and perhaps the dose frequency, will also vary according to the age, body weight, and response of the individual patient. In general, the total daily dose range for parthenolide derivative and its analogs, for the conditions described herein, is from about 0.5 mg to about 2500 mg, in single or divided doses. Preferably, a daily dose range should be about 1 mg to about 100 mg, in single or divided doses, most preferably about 5-50 mg per day. In managing the patient, the therapy should be initiated at a lower dose and increased depending on the patient’s global response. It is further recommended that infants, children, patients over 65 years, and those with impaired renal or hepatic function initially receive lower doses, and that they be titrated based on global response and blood level. It may be necessary to use dosages outside these ranges in some cases. Further, it is noted that the clinician or treating physician will know how and when to interrupt, adjust or terminate therapy in conjunction with individual patient response. The terms “an effective amount” or “an effective sensitizing amount” are encompassed by the above-described dosage amounts and dose frequency schedule.

Any suitable route of administration may be employed for providing the patient with an effective dosage of parthenolide derivative or its analogs or as the active ingredient of a transdermal patch. Suitable transdermal delivery systems are disclosed, for example, in A. Fisher et al. (U.S. Pat. No. 4,788,603), or R. Bawa et al. (U.S. Pat. Nos. 4,931,279; 4,668,506 and 4,713,224). Ointments and creams may, for example, be formulated with an aqueous or oily base with the addition of suitable thickening
and/or gelling agents. Lotions may be formulated with an aqueous or oily base and will in general also contain one or more emulsifying agents, stabilizing agents, dispersing agents, suspending agents, thickening agents, or coloring agents.

Formulations suitable for topical administration in the mouth include unit dosage forms such as lozenges comprising active ingredient in a flavored base, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert base such as gelatin and glycerin or sucrose and acacia; mucoadherent gels, and mouthwashes comprising the active ingredient in a suitable liquid carrier.

When desired, the above-described formulations can be adapted to give sustained release of the active ingredient employed, e.g., by combination with certain hydrophilic polymer matrices, e.g., comprising natural gels, synthetic polymer gels or mixtures thereof. The polymer matrix can be coated onto, or used to form, a medical prosthesis, such as a stent, valve, shunt, graft, or the like.

Pharmaceutical formulations suitable for rectal administration wherein the carrier is a solid are most preferably presented as unit dose suppositories. Suitable carriers include cocoa butter and other materials commonly used in the art, and the suppositories may be conveniently formed by admixture of the active compound with the softened or melted carrier(s) followed by chilling and shaping in molds. 25

Formulations suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or sprays containing, in addition to the active ingredient, more emulsifying agents, stabilizing agents, dispersing agents, suspending agents, thickening agents, or coloring agents, as needed means of delivering an aerosol spray. Pressurized packs may comprise a suitable propellant such as dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol, the dosage unit may be determined by providing a valve to deliver a metered amount.

Alternatively, for administration by inhalation or insufflation, the compounds according to the invention may take the form of a dry powder composition, for example, a powder mix of the compound and a suitable powder base such as lactose or starch. The powder composition may be presented in unit dosage form in, for example, capsules or tablets, or, e.g., gelatin or blister packs from which the powder may be administered with the aid of an inhalator or insufflator.

For intra-nasal administration, the compounds according to the invention may be administered via a liquid spray, such as via a plastic bottle atomizer. Typical of these are the Mistometer® (Wintrop) and the Medihaler® (Riker). For topical administration to the eye, the compounds can be applied as eye drops, gums (see U.S. Pat. No. 4,255,415), or via a prolonged-released solution or ointment.

The invention will now be described in greater detail by reference to the following non-limiting examples.

EXAMPLES

Example 1

General Synthetic Procedure for the Preparation of 11S,11,13-Dihydro,13-Substituted Aminoparthenolides

A mixture of parthenolide (Sigma P 0667, 100 mg, 0.4 mmol), the appropriate primary amine or secondary amine (2 mmol), and triethylamine (1 to 2 mL) in 30 mL of anhydrous ethanol was stirred at a specific temperature ranging from ambient temperature to the temperature of the refluxing solvent utilized, or was left to stand in the refrigerator (~20°C to 4°C) overnight for 24 hours. Ethanol, triethylamine and/or the appropriate volatile amine were then evaporated under vacuum in a rotary evaporator. The resulting residue was subjected to silica gel column chromatographic purification using chloroform-methanol or methylene chloride-methanol mixed solvent as the mobile phase. NMR (Varian, 300 MHz and 400 MHz) and GC/MS (Agilent, 6890GC and 5973 MSD) analysis methodologies were utilized to assure the identity and purity of the synthetic compounds.

Example 2

11S,11,13-Dihydro,13-dimethylaminoparthenolide (DMAPT)

Parthenolide (100 mg, 0.4 mmol), dimethylamine (2M in methanol, 1 mL), triethylamine (2 mL), ethanol (30 mL) were refluxed overnight. After column purification, 109 mg of pale yellow 11S,11,13-dihydro,13-dimethylaminoparthenolide was obtained (Yield: 93%). Melting point: 143-144°C. 1H-NMR (300 MHz, CDCl3): δ 8.52 (1H, d), 3.85 (1H, t), 2.75 (2H, m), 2.65 (1H, dd), 2.5-2.3 (3H, m), 2.25 (6H, s), 2.5-2.0 (5H, m). 13C-NMR (300 MHz, CDCl3): δ 171.6, 134.4, 124.8, 81.9, 66.4, 61.3, 57.6, 46.4, 41.0, 36.6, 29.9, 24.0, 17.2, 16.9. Mass Spec (GC-MS): 293 (M+) Retention time: 12.56 minutes. Ultra-violet (Methanol): λmax at 214 nm. Infra-Red (Nujol): 1757.9, 1094, 928 cm-1. X-ray crystallographic analysis using a Nonius KappaCCD diffractometer DMAPT (11S,11,13-dihydro,13-dimethylaminoparthenolide) has the S-configuration at C-11.

Example 3

11S,11,13-Dihydro,13-diethylaminoparthenolide

Parthenolide (100 mg, 0.4 mmol), diethylamine (200 mg, 2.7 mmol), triethylamine (2 mL), ethanol (30 mL) were refluxed overnight. After column purification, 114 mg of pale yellow 11S,11,13-dihydro,13-diethylaminoparthenolide was obtained (Yield: 88%).

Example 4

Preparation of Salts of 11S,11,13-Dihydro,13-aminoparthenolide Derivatives

The aminoparthenolide derivative was dissolved in anhydrous ether and to this solution was added the corresponding acid in ether or ethanol. The mixture was kept in the refrigerator (4°C) overnight. The crystals formed were filtered and dried under vacuum, or submitted to further recrystallization, if needed.

Example 5

Preparation of 11S,11,13-dihydro,13-(piperidin-1-yl)parthenolide hydrochloride

11S,11,13-dihydro,13-(piperidin-1-yl)parthenolide (5 mg) was dissolved in 2 mL of dry ether. Hydrochloride in
ether (1M, 0.015 mL) was added to the ether solution until the solution became cloudy; then more ether was added and the mixture was heated to obtain a clear solution. The mixture was left in refrigerator (4°C) for more than 24 hours. The white crystals that formed were filtered through filter paper, and dried under vacuum overnight (Yield: 18%).

Example 6
Preparation of 11S,11,13-dihydro,13-dimethylaminoparthenolide maleate
To 11S,11,13-dihydro,13-dimethylaminoparthenolide (30 mg, 0.1 mmol) in anhydrous ethanol (5 mL) was added maleic acid (12 mg, 0.1 mmol) in 3 mL of anhydrous ethanol. The solution was shaken well and filtered through a regular filter paper. The clear solution was left in the refrigerator for a week. The white crystals formed were obtained by filtration, dried in a desiccator under vacuum (Yield: 55%).

Example 7
Preparation of 11S,11,13-dihydro,13-Dimethylaminoparthenolide methiodide
To 11S,11,13-dihydro,13-dimethylaminoparthenolide (30 mg, 0.1 mmol) in anhydrous methanol (5 mL) was added iodomethane (90 mg, 0.6 mmol) in methanol (1 mL). The clear solution was shaken and stored at room temperature. After three days, the methanol was evaporated, the pale yellow residue was dried in a desiccator under vacuum, over anhydrous CaCl2. Recrystallization from acetone-ether afforded pale yellow crystals (Yield: 86%).

Example 8
11S,11,13-dihydro,13-(4-Methylpiperidin-1-yl)parthenolide methiodide
To 11S,11,13-dihydro,13-(4-methylpiperidin-1-yl)parthenolide (35 mg, 0.1 mmol) in anhydrous methanol (5 mL) was added iodomethane (90 mg, 0.6 mmol) in methanol (1 mL). The clear solution was shaken and stored at room temperature. After three days, the methanol was evaporated, the pale yellow residue was dried in a desiccator under vacuum, over anhydrous CaCl2. Recrystallization from acetone-ether afforded pale yellow crystals (Yield: 79%).

Example 9
Assay for Antileukemic Activity
For apoptosis analysis, one million primary acute myelogenous leukemia (AML) cells were washed with cold PBS and resuspended in 200 microliters of Annexin binding buffer (10 mM HEPES/NaOH pH 7.4; 140 mM NaCl; 2.5 mM CaCl2). Annexin V-FITC (Pharmingen) and 0.25 mg/mL 7-AAD (7-aminoactinomycin D, Molecular Probes, CA) were added and the tubes were incubated at room temperature for 15 minutes. Cells were then diluted with 200 microliters of Annexin binding buffer and analyzed immediately by flow cytometry. Viable cells were identified as failing to label with Annexin V or 7-AAD. Cells beginning to die label with Annexin V, and as membrane integrity is lost, will also label with 7-AAD. For each parthenolide derivative, the percentage of viable cells was determined after 24 hours of culture at a 10 micromolar concentration. Data are normalized to untreated control specimens. The data are in Table 1 for aminoparthenolide derivatives and Table 2 for the salts of some aminoparthenolides.

Healthy human bone marrow cells were used in the above assay to test the cytotoxicity of parthenolide. Eighty-five percent of the normal cells survived 10 μM of parthenolide. All the aminoparthenolides evaluated afforded results similar to parthenolide, i.e. the survival rate of healthy human bone marrow cells was over 85% at a concentration of 10 μM.

Table 1

<table>
<thead>
<tr>
<th>Compound</th>
<th>Reactants and Solvent</th>
<th>Reaction Conditions</th>
<th>Yield Antileukemic activity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parthenolide</td>
<td>Sigma P0667</td>
<td>Not applicable (N.A.)</td>
<td>N.A. 10 μM, 84%</td>
</tr>
<tr>
<td>11S,11,13-Dihydro,13-dimethylaminoparthenolide (DMAFT)</td>
<td>Parthenolide (100 mg), dimethylamine (2M in methanol, 1 mL), triethylamine(2 mL), ethanol (30 mL)</td>
<td>Refluxing overnight</td>
<td>93 5 μM, 31% 10 μM, 90% 20 μM, 95%</td>
</tr>
<tr>
<td>11S,11,13-Dihydro,13-dimethylaminoparthenolide (DEAPT)</td>
<td>Parthenolide (100 mg), diethylamine (200 mg, 2.7 mmol), triethylamine (2 mL), ethanol (30 mL)</td>
<td>Refluxing overnight</td>
<td>88 10 μM, 60%</td>
</tr>
<tr>
<td>11S,11,13-Dihydro,13-(tert-butylamino)parthenolide (tBAPT)</td>
<td>Parthenolide (20 mg), tert-butylamine (0.2 mL), triethylamine (0.4 mL), ethanol (5 mL)</td>
<td>Refluxing 10 hours</td>
<td>39 10 μM, 20%</td>
</tr>
<tr>
<td>Compound</td>
<td>Reactants and Solvent</td>
<td>Reaction Conditions</td>
<td>Yield Antileukemic activity</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>11S,11,13-Dihydro,13-(pyrrolidin-1-yl)parthenolide (PyrPT)</td>
<td>Parthenolide (30 mg), pyrrolidine (0.2 mL), triethylamine (0.2 mL), ethanol (5 mL)</td>
<td>Refluxing 12 hours</td>
<td>80 5 μM, 23% 10 μM, 85% 20 μM, 95%</td>
</tr>
<tr>
<td>11S,11,13-Dihydro,13-(piperidin-1-yl)parthenolide (PipPT)</td>
<td>Parthenolide (250 mg), piperidine (1 mL), triethylamine (5 mL), ethanol (100 mL)</td>
<td>Refluxing overnight</td>
<td>86 2.5 μM, 71% 5 μM, 91%</td>
</tr>
<tr>
<td>11S,11,13-Dihydro,13-(morpholin-1-yl)parthenolide (MorPT)</td>
<td>Parthenolide (100 mg), morpholine (0.5 mL), triethylamine (2 mL), ethanol (30 mL)</td>
<td>Refluxing overnight</td>
<td>91 5 μM, 5% 20 μM, 20%</td>
</tr>
<tr>
<td>11S,11,13-Dihydro,13-(4-methylpiperidin-1-yl)parthenolide (4MePipPT)</td>
<td>Parthenolide (30 mg), 4-methylpiperidine (0.5 mL), triethylamine (2 mL), ethanol (30 mL)</td>
<td>Refluxing overnight</td>
<td>74 10 μM, 7%</td>
</tr>
<tr>
<td>11S,11,13-Dihydro,13-(heptamethyleneimin-1-yl)parthenolide (HeptaMePipt)</td>
<td>Parthenolide (100 mg), heptamethyleneimine (500 mg), triethylamine (1 mL), ethanol (20 mL)</td>
<td>Refluxing overnight</td>
<td>82 10 μM, 40%</td>
</tr>
<tr>
<td>11S,11,13-Dihydro,13-(azetidin-1-yl)parthenolide (AzePT)</td>
<td>Parthenolide (100 mg), azetidine (100 mg), triethylamine (2 mL), diallylamine (200 mg), triethylamine (2 mL), ethanol (30 mL)</td>
<td>Stirred at room temperature 2 days</td>
<td>93 10 μM, 10%</td>
</tr>
<tr>
<td>11S,11,13-Dihydro,13-diallylaminoparthenolide</td>
<td>Parthenolide 25 mg, Methylbutylamine 20 mg Methanol, 8 hrs with stirring</td>
<td>Room temperature with stirring</td>
<td>88% 10 μM, 45%</td>
</tr>
<tr>
<td>11S,11,13-Dihydro,13-ethylaminoparthenolide</td>
<td>Parthenolide 25 mg, Ethylamine 90 mg Methanol, 5 hrs with stirring</td>
<td>Room temperature with stirring</td>
<td>90% 10 μM, 2%</td>
</tr>
<tr>
<td>11S,11,13-Dihydro,13-methylaminoparthenolide</td>
<td>Parthenolide 25 mg, 2M Methylamine in Methanol (1 mL), Methanol, 5 hrs with stirring</td>
<td>Room temperature with stirring</td>
<td>93% 10 μM, 4%</td>
</tr>
<tr>
<td>11S,11,13-Dihydro,13-cyclopropylaminoparthenolide</td>
<td>Parthenolide 25 mg, Cyclopropylamine 20 mg Methanol, 6 hrs with stirring</td>
<td>Room temperature with stirring</td>
<td>90% 10 μM, 2%</td>
</tr>
<tr>
<td>11S,11,13-Dihydro,13-propanylaminoparthenolide</td>
<td>Parthenolide 25 mg, Propargylamine 20 mg Methanol, 6 hrs with stirring</td>
<td>Room temperature with stirring</td>
<td>82% 10 μM, 7%</td>
</tr>
</tbody>
</table>
TABLE 2

<table>
<thead>
<tr>
<th>Compound</th>
<th>Reactants and Solvent</th>
<th>Reaction Conditions</th>
<th>Yield Antileukemic Activity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11S,11,13-Dihydro,13-dimethylaminoparthenolide hydrochloride</td>
<td>11S,11,13-Dihydro,13-dimethylaminoparthenolide (10 mg), HCl in ether (1M, 0.03 mL)</td>
<td>Refrigerator, 24 hours</td>
<td>72</td>
</tr>
<tr>
<td>11S,11,13-Dihydro,13-(pyrrolidin-1-yl)parthenolide hydrochloride</td>
<td>11S,11,13-Dihydro,13-(pyrrolidin-1-yl)parthenolide (5 mg), HCl in ether (1M, 0.015 mL)</td>
<td>Refrigerator, 24 hours</td>
<td>10 10 μM, 85%</td>
</tr>
<tr>
<td>11S,11,13-Dihydro,13-(piperidin-1-yl)parthenolide hydrochloride</td>
<td>11S,11,13-Dihydro,13-(piperidin-1-yl)parthenolide (5 mg), HCl in ether (1M, 0.015 mL)</td>
<td>Refrigerator, 24 hours</td>
<td>18 10 μM, 88%</td>
</tr>
<tr>
<td>11S,11,13-Dihydro,13-(4-methylpiperidin-1-yl)parthenolide hydrochloride</td>
<td>11S,11,13-Dihydro,13-(4-methylpiperidin-1-yl)parthenolide (5 mg), HCl in ether (1M, 0.15 mL)</td>
<td>Room temperature for 4 days</td>
<td>38.3 10 μM, 62%</td>
</tr>
<tr>
<td>11S,11,13-Dihydro,13-dimethylaminoparthenolide maleate</td>
<td>11S,11,13-Dihydro,13-dimethylaminoparthenolide (30 μg), maleic acid (12 μg), ethanol (8 mL)</td>
<td>Room temperature for 1 week</td>
<td>55</td>
</tr>
<tr>
<td>11S,11,13-Dihydro,13-dimethylaminoparthenolide methiodide</td>
<td>11S,11,13-Dihydro,13-dimethylaminoparthenolide (30 mg), added iodomethane (90 mg), methanol (6 mL)</td>
<td>Room temperature for 3 days</td>
<td>86</td>
</tr>
<tr>
<td>11S,11,13-Dihydro,13-(4-methylpiperidin-1-yl)parthenolide methiodide</td>
<td>11S,11,13-Dihydro,13-(4-methylpiperidin-1-yl)parthenolide (70 mg), iodomethane (200 mg), methanol (12 mL)</td>
<td>Room temperature for 3 days</td>
<td>79</td>
</tr>
</tbody>
</table>

Example 10

Analysis of Parthenolide and Dimethylaminoparthenolide (DMAPT) Using Human-Mouse Xenografts

To assess the effect of parthenolide on primary human stem cell populations, experiments were conducted using transplantation into immune deficient NOD/SCID mice. Successful engraftment of NOD/SCID bone marrow at 6-8 weeks post-transplant has been shown to be a measure of stem cell content for human hematopoietic cell populations (Lapidot et al., J Mol Med. 1997; 75: 664-673; Dick, Curr Opin Hematol. 1996; 3:405-409). For each experiment, cryopreserved mononuclear cell specimens from normal or AML donors were thawed, and treated in vitro with 7.5 micromolar parthenolide for 12-18 hours. Following culture, 5-10 million cells/animal were injected intravenously into sublethally irradiated (300 Rad) NOD/SCID mice. After 6-8 weeks, animals were sacrificed and bone marrow was analyzed for the presence of human cells using flow cytometry as previously described (Guzman et al., Proc Natl Acad Sci
varying concentrations. At 24 and 96 hours after addition of
parthenolide and derivatives PIPT ((11S,11,13-reduced cellular proliferation by
metric readings were obtained using the MTS/PMS system
was treated with increasing concentrations of parthenolide
hormone refractory prostate cancer cell line CWR22Rv1
and DMAPT. for three hours Both parthenolide and DMAPT
was estimated by normalizing the signal intensities with the
levels of each transcript and the results were quantified with
with LPS. Pretreatment with DMAPT however prevents
transcription of tumor necrosis factor (TNF), released in
Chemiluminescence was used to visualize the expression
GEArray Analyzer. The change in a given gene transcript
inflammation. RNA from respective samples was used as a
template to generate biotin labeled cDNA probes using
Array Bioscience Corporation (Frederick, Md.). The kit
gene transcription induced by LPS. For example, the
DRUG TARGETS FOR INFLAMMATION AND IMMUNOMODULATION Q

detection for parthenolide-treated normal specimens,
thus showing the parthenolide does not target normal
hematopoietic stem cells. Similarly, treatment of AML cells
with 7.5 micromolar DMAPT also yielded a strong reduc­

MTS-PMS assay

A 96-well U-bottomed plate (Becton Dickinson Labware,
Franklin Lakes, N.J.) at a concentration of 5,000 cells per 50
microliters (mL) of media was incubated in 5% CO2 at 37°
C. for 24 hours. Varying compound concentrations in 50
mL of media were added to the media 24 hours later. Colori­
metric readings were obtained using the MTS/PMS system
and an ELISA plate reader, after 48 hours of exposure to
DMAPT. The readings obtained for each concentration
tested were from an average of eight wells. Each experiment
was expressed as a percentage of the solvent control and
completed at least three times with consistent results. The
results presented are an average of three experiments. The
hormone refractory prostate cancer cell line CWR22Rv1
was treated with increasing concentrations of parthenolide
and DMAPT, for three hours Both parthenolide and DMAPT
reduced cellular proliferation by 50% at 5 μm in the CWR22
MTS-PMS assay. Cellular proliferation was also measured
in the MTS-PMS assay using four lung cancer cell lines
treated with parthenolide and derivatives PIPT ((11S,11,13-
dihydro,13-(piperidin-1-yl)parthenolide), 4MEPT (11S,11,
13-dihydro,13-(4-methylpiperidin-1-yl)parthenolide) and
MAPT (11S,13-dihydro,13-dimethylaminoparthenolide)
Parthenolide and its derivatives inhibited cellular prolifer­
ation in a dose dependent manner between 2 and 10 μM with
70% inhibition at 10 μM in A549, 50% in H460, 40% in
H-23 and 40% in HS22 (FIGS. 2-5).

Clonogenic Assay

Initially, 100 cells growing in log phase were plated per
3ml of media in each well of a six well plate. After 24 hrs
of plating of the cells the test compound was added at
varying concentrations. At 24 and 96 hours after addition of
drug, the media was changed. Hence, the cells were only
exposed to the drug for 24 hrs. When cell colonies appeared
at Day 15 they were stained by Sure Stain Dye and counted.
The hormone refractory prostate cancer cell line CWR22Rv1 was treated with increasing concentrations of
parthenolide derivatives DMAPT, PIPT and 4MEPT for
three hours. Cellular proliferation was reduced by up to 80%
at 2 μm in the clonogenic assay (FIG. 1). The breast cancer
cell line clonogenic assay with hbl-100, mdr-231 and 436
cells showed almost complete inhibition of proliferation
with DMAPT at 2 μm concentration in the clonogenic assay
(FIGS. 6-8). Parthenolide also reduced proliferation with similar dosage ranges.

Example 13

cDNA Array Analysis

Total cellular RNA was extracted from the human mono­

cyte cell line THP-1 under three conditions 2 hours after
Time 0:
1) Control was added at Time 0
2) Lipopolysaccharide (10 nM) was added at Time plus one
(1) hour
3) At Time 0, 10 micromoles of DMAPT was added and
then at Time+1 LPS (10 nM) was added.

RNA was extracted using RNeasy Min Kit (Qiagen, USA)
according to the manufacturer’s instructions. The Human
Drug Targets for Inflammation and Immunomodulation Q
series GE array kit (HS-048-12) was obtained from Super­
Array Bioscience Corporation (Frederick, Md.). The kit
determines expression of 96 genes that are associated with
inflammation. RNA from respective samples was used as a
template to generate biotin labeled cDNA probes using
GEArray Amplolabling RT kit (SuperArray, Bioscience
Corp., USA). The cDNA probes corresponding to the
mRNA population were then denatured and hybridization
was carried out in GEHyb solution to nylon membranes
spotted with gene specific fragments. Membranes were then
washed in 2xSSC, 1% SDS twice for 15 minutes each,
followed by 0.1 SSC, 0.5% SDS twice for 15 minutes each.
Chermiluminescence was used to visualize the expression
levels of each transcript and the results were quantified with the
GEArray Analyzer. The change in a given gene transcript
was estimated by normalizing the signal intensities with the
signal derived from PPIA and with minimum background
subtraction.

As can be seen in Table 3, transcription of 25 genes was
increased after pre-treatment with LPS. More importantly
pretreatment with DMAPT prevented or blunted the increase
in gene transcription induced by LPS. For example, the
transcription of tumor necrosis factor (TNF), released in
septic shock, is increased by 3 fold (298%) when treated
with LPS. Pretreatment with DMAPT however prevents
transcription of LPS and in fact decreases its production to
2% of control. Similarly, transcription of cyclo-oxygenase-
2, the target of classical non-steroidal anti-inflammatory
agents, was increased 1.5 fold (150%). In the presence of
DMAPT, the gene expression not only prevented the
increase by LPS but decreased it to 30% (0.7) of solvent
control. DMAPT therefore may act to decrease inflamma­
tion by decreasing cytokines as evidenced by decreased
genes in human monocytes

<table>
<thead>
<tr>
<th>Change of Genes</th>
<th>CWR22Rv1</th>
<th>H460</th>
<th>A549</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD28 antigen (7p46)</td>
<td>23</td>
<td>0.814</td>
<td></td>
</tr>
<tr>
<td>CD3G antigen, gamma polypeptide (1113 complex)</td>
<td>14</td>
<td>0.6</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 3-continued

cDNA Array Analysis

<table>
<thead>
<tr>
<th>Gene</th>
<th>LPS Treatment for 1 hour: % Change of Gene</th>
<th>DMAPT Pre-treatment for 2 hours then 1 hour Treatment of LPS: % Change of Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colony stimulating factor 2 (granulocyte-macrophage)</td>
<td>26</td>
<td>0.026</td>
</tr>
<tr>
<td>Intercellular Adhesion Molecule 1</td>
<td>257</td>
<td>8</td>
</tr>
<tr>
<td>Interferon 13</td>
<td>93</td>
<td>0.64</td>
</tr>
<tr>
<td>Interferon 1 receptor, type I</td>
<td>10</td>
<td>0.33</td>
</tr>
<tr>
<td>Interferon 1 receptor, type II</td>
<td>326</td>
<td>0.74</td>
</tr>
<tr>
<td>Nitric oxide synthase 2A (inducible)</td>
<td>226</td>
<td>48</td>
</tr>
<tr>
<td>Phosphodiesterase 4A, cAMP-specific</td>
<td>14</td>
<td>0.46</td>
</tr>
<tr>
<td>Phosphodiesterase 4B, cAMP-specific</td>
<td>220</td>
<td>0.59</td>
</tr>
<tr>
<td>Phospholipase A2, group IB (pancreas)</td>
<td>114</td>
<td>0.57</td>
</tr>
<tr>
<td>Phospholipase A2, group IVC</td>
<td>350</td>
<td>0.89</td>
</tr>
<tr>
<td>Phospholipase A2, group VII</td>
<td>129</td>
<td>0.05</td>
</tr>
<tr>
<td>Phospholipase C, gamma 1</td>
<td>342</td>
<td>0.24</td>
</tr>
<tr>
<td>Peroxidase proliferative activated receptor, gamma</td>
<td>49</td>
<td>0.48</td>
</tr>
<tr>
<td>Platelet-activating factor receptor</td>
<td>32</td>
<td>0.002</td>
</tr>
<tr>
<td>Prostaglandin D2 receptor (DP)</td>
<td>35</td>
<td>0.17</td>
</tr>
<tr>
<td>Prostaglandin E receptor (EP)</td>
<td>879</td>
<td>1.46</td>
</tr>
<tr>
<td>Cyclooxygenase 1</td>
<td>176</td>
<td>0.731</td>
</tr>
<tr>
<td>Cyclooxygenase 2</td>
<td>152</td>
<td>0.7</td>
</tr>
<tr>
<td>Thromboxane A synthase 1</td>
<td>283</td>
<td>0.07</td>
</tr>
<tr>
<td>Tumor necrosis factor (TNF superfamily, member 2)</td>
<td>298</td>
<td>0.02</td>
</tr>
<tr>
<td>Tumor necrosis factor (ligand) superfamily, member 13b</td>
<td>217</td>
<td>0.89</td>
</tr>
<tr>
<td>Tumor necrosis factor (ligand) superfamily, member 5</td>
<td>692</td>
<td>23</td>
</tr>
<tr>
<td>Vascular cell adhesion molecule 1</td>
<td>154</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Example 14

Oral Bioavailability in Mice

Preliminary in vivo work was conducted to determine the bioavailability and toxicity of this agent in mice. As shown in FIG. 4 it was demonstrated that whereas 40 mg/kg of oral parthenolide provided a plasma level one hour after oral gavage of only ~200 nM, the same dose of DMAPT provided a plasma level of ~2500 ng/mL (ie 8 µM—average of 5 mice in each group; measured by LC-MS). Given the concern from providing such a high plasma concentration we completed a preliminary toxicity study that showed the mice gained weight and survived three weeks of daily treatment with oral DMAPT at 40 mg/kg with no overt toxicities.

Example 15

Electrophoretic Mobility Gel Shift Assay

Each cancer cell line in exponential growth phase was treated with solvent control or various concentrations of parthenolide derivatives dissolved in 100% ethanol for 3 hours prior to harvesting. Cells were harvested and whole cell extracts were prepared as described previously (Nakashatri et al., Mol Cell Biol, 17: 3629-3639, 1997; Sweeney et al., Clin Cancer Res, 10: 5501-5507, 2004). Extracts were incubated with a radiolabeled NFκB probe for 30 minutes at room temperature. The oligonucleotide probe binds to the NFκB DNA binding site in the promoter region of the immunoglobulin gene. Electrophoresis and autoradiography were performed as described previously (Nakashatri et al., 1997) using NFκB and SP-1 probes (Promega, Madison, Wis.). The specificity of parthenolide and derivative inhibition of NFκB DNA binding was verified by the use of the SP-1 probe as a control. Identification of the NFκB subunits binding to DNA and inhibited by DMAPT were identified by gel supershift. Constitutive NFκB DNA binding activity was determined in the lung cancer cell lines A-549, H-23, H-522, and H-460. All four non-small lung cancer cells were treated with increasing concentrations of DMAPT for three hours, and NFκB DNA binding was measured by electrophoretic mobility shift assay (EMSA) as described. NFκB DNA binding activity was highest in A-549 cells, followed by H-23, H-522 and H-460 cells. DMAPT between 2 and 10 micromolar substantially decreased NFκB DNA binding activity in all lung cancer cell lines tested. Cancer cell lines HT-1376 and UMUC-3 were treated with increasing concentrations of DMAPT for three hours. Whole cell extracts were prepared as described and DNA binding by NFκB was analyzed by EMSA with NFκB and OCT-1 (internal control) probes. DMAPT decreased NFκB DNA binding in a dose-dependent manner with HT-1376 and UMUC-3 cell lines (FIG. 10).

The hormone refractory prostate cancer cell line, CWR22Rv1 was treated with increasing concentrations of DMAPT for three hours. Whole cell extracts were prepared as described and DNA binding by NFκB was analyzed by EMSA with NFκB and OCT-1 (internal control) probes. DMAPT decreased NFκB DNA binding in a dose-dependent manner with substantial decreases of NFκB DNA binding at 10 µM DMAPT. EMSA results thus showed DMAPT decreased the constitutive NFκB DNA binding in several cancer cell lines.
Example 16

Pretreatment of Radiation Sensitive Cell Line A549

The radiation sensitive cell line A549 was pretreated with parthenolide concentrations ranging from 0 to 2.5 micromolar. The cells were then subjected to ionizing radiation doses ranging from 0-6 Gy and survival fraction of the cells determined. Results demonstrated that parthenolide induced radiation sensitivity to the cells in a dose-dependent manner with survival fraction at 2.5 micromolar ranging from 10% at 2 Gy to less than 1% at 6 Gy. Cells not receiving pre-treatment with parthenolide had greater than 50% survival fraction at the highest radiation dose of 6 Gy and over 90% survival at 2 Gy.

Example 17

TRAIL Induced Apoptosis Assay

MDA-MB-231 breast cancer cells (2×10⁵ cells in 60 mm plates) were treated first with 2 or 5 µM of DMAPT (LC-1). After two hours, TRAIL (TNF related-apoptosis-inducing ligand, 5 ng/ml) were added. After 48 hours of TRAIL or TRAIL-RII antibody treatment, cells were harvested and apoptosis was measured using carboxyfluorescein-FLICA assay. Briefly, VAD-FMK and propidium iodide (upper right). Necrotic treatment with parthenolide had greater than one or more of −NH₂, −NH(C₄₋₆ aliphatic), −N(C₄₋₆ aliphatic), −NO₂, −CN, −CO₂H, −CO₃(C₄₋₆ aliphatic), −(halo C₁₋₄ aliphatic), or halo(C₁₋₄ aliphatic); wherein each C₁₋₄ aliphatic is optionally substituted; or R¹ and R² are independently selected from cycloalkyl, heterocycloalkyl, aryl or heteroaryl; and provided that R¹ and R² are not simultaneously H; or where R* is NR¹R², R¹ and R² optionally together with the nitrogen atom form an optionally substituted 5-12 membered ring, said ring optionally comprising 1 or more heteroatoms or a group selected from −CO−, −SO−, and −SO₂−; R¹ is selected from H or C₁₋₄ aliphatic; and Y− is selected from the group consisting of fluoride, chloride, bromide, iodide, sulfate, nitrate, bicarbonate, carbonate, acetate, citrate, malonate, tartarate, succinate, benzotate, ascorbate, alpha-ketoglutarate, alphaglycerophosphate, methylsulfonate, toluenesulfonate, and benzensulfonylate; or a pharmaceutically acceptable salt thereof.

1. A method of inhibiting cancer cell growth comprising administering to a mammal afflicted with a cancer selected from the group consisting of breast cancer, lung cancer and prostate cancer, an effective amount of a compound of formula (I):

\[
Z = \text{CH}_2 R^* \text{ wherein } R^* \text{ is an amino acid residue bonded to the Z methylene via a nitrogen or a sulfur atom; or } R^* = \text{NR}^1\text{CO}− R^2, \ldots
\]

wherein: Z is −CH₂R* wherein R* is an amino acid residue bonded to the Z methylene via a nitrogen or a sulfur atom; or R* is −NR¹CO− R², −NR¹(ON)− R², −S−R¹, −NR¹−R², or −NR¹R²−R¹R²−Y− wherein R¹ and R² are independently selected from H, CN, and optionally substituted straight-chained or branched aliphatic optionally containing 1 or more double or triple bonds; wherein optional substituents are selected from one or more of −NH₂, −NH(C₁₋₄ aliphatic), −N(C₁₋₄ aliphatic), −NO₂, −CN, −CO₂H, −CO₃(C₁₋₄ aliphatic), −(halo C₁₋₄ aliphatic), or halo(C₁₋₄ aliphatic); wherein each C₁₋₄ aliphatic is optionally substituted; or R¹ and R² are independently selected from cycloalkyl, heterocycloalkyl, aryl or heteroaryl; and provided that R¹ and R² are not simultaneously H; or where R* is NR¹R², R¹ and R² optionally together with the nitrogen atom form an optionally substituted 5-12 membered ring, said ring optionally comprising 1 or more heteroatoms or a group selected from −CO−, −SO−, and −SO₂−; R¹ is selected from H or C₁₋₄ aliphatic; and Y− is selected from the group consisting of fluoride, chloride, bromide, iodide, sulfate, nitrate, bicarbonate, carbonate, acetate, citrate, malonate, tartarate, succinate, benzotate, ascorbate, alpha-ketoglutarate, alphaglycerophosphate, methylsulfonate, toluenesulfonate, and benzensulfonylate; or a pharmaceutically acceptable salt thereof.

2. The method of claim 1 wherein Z is −CH₂−NR¹R².

3. The method of claim 2 wherein R¹ and R² are independently selected from hydrogen, −CN or optionally substituted C₁₋₄ alkyl.

4. The method of claim 3 wherein R¹ and R² are independently selected from −NO₂, −CN, −CH₃, −CF₃, −CH₂CH₂, −CH₂CF₂, −CH₂Cl, −CH₂OH, −CH₂CH₂OH and −CH₂NH₂.

5. The method of claim 2 wherein R¹ and R² together with N form an optionally substituted ring.

6. The method of claim 5 wherein said ring is a monocyclic, bicyclic or tricyclic alkyl or aryl ring system, said ring system optionally substituted and optionally comprising one or more heteroatoms or a group selected from −CO−, −SO−, and −SO₂−.

7. The method of claim 6 wherein R¹ and R² are −CH₂(CH₂)ₐX−CH₂Y− wherein Y is a heteroatom or a group selected from −CO−, −SO−, and −SO₂−; n is an integer 0 to 5; and together with N form an optionally substituted ring optionally fused to a cycloalkyl or aryl group to form a bicyclic or tricyclic ring system, said system optionally substituted and optionally comprising one or more heteroatoms.

8. The method of claim 6 wherein R¹ and R² are −CH₂(CH₂)ₐY−(CH₂)b− wherein Y is a heteroatom or a group selected from −CO−, −SO−, and −SO₂−; a is an integer 0 to 5; b is an integer 0 to 5; the sum of n and b being 0 to 5; and together with N form an optionally substituted ring, said ring optionally fused to a cycloalkyl or aryl group to form a bicyclic or tricyclic ring system, said system optionally substituted and optionally comprising one or more heteroatoms.

9. The method of claim 6 wherein NR¹R² is selected from optionally substituted aziridin-1-yl, azetidin-1-yl, pyrrolidin-1-yl, piperidin-1-yl, homopiperidin-1-yl and heptamethyleneim-1-yl.
The method of claim 1 wherein the compound of formula (I) is selected from:

- 11S,11,13-Dihydro,13-dimethylaminoparthenolide;
- 11S,11,13-Dihydro,13-diethylaminoparthenolide;
- 11S,11,13-Dihydro,13-(pyrrolidin-1-yl)parthenolide;
- 11S,11,13-Dihydro,13-(piperidin-1-yl)parthenolide;
- 11S,11,13-Dihydro,13-(morpholin-1-yl)parthenolide;
- 11S,11,13-Dihydro,13-(4-methylpiperidin-1-yl)parthenolide;
- 11S,11,13-Dihydro,13-(N-benzyl-N-ethylamine)parthenolide;
- 11S,11,13-Dihydro,13-(N-prolyl)parthenolide;
- 11S,11,13-Dihydro,13-(N,N-diethanolamine)parthenolide;
- 11S,11,13-Dihydro,13-(thiomorpholin-4-yl)parthenolide;
- 11S,11,13-Dihydro,13-(4-hydroxypiperidin-1-yl)parthenolide;
- 11S,11,13-Dihydro,13-(1-methylhomopiperizin-4-yl)parthenolide;
- 11S,11,13-Dihydro,13-(S-mercaptoacetyl)parthenolide;
- 11S,11,13-Dihydro,13-(3-mercapto-4-carboxaldehyde)parthenolide;
- 11S,11,13-Dihydro,13-(4-benzylpiperidin-1-yl)parthenolide;
- 11S,11,13-Dihydro,13-(piperazin-1-yl-4-carboxylic acid)parthenolide;
- 11S,11,13-Dihydro,13-(azetidin-1-yl-3-carboxylic acid)parthenolide;
- 11S,11,13-Dihydro,13-(S-cysteinyllparthenolide;

11S,11,13-Dihydro,13-(4-piperidin-1'-yl)piperidin-1-yl)parthenolide;
- 11S,11,13-Dihydro,13-dialkylaminoparthenolide; or a pharmaceutically acceptable salt thereof.

The method of claim 10 wherein the compound of formula (I) is selected from:

- 11S,11,13-Dihydro,13-dimethylaminoparthenolide;
- a pharmaceutically acceptable salt thereof.

The method of claim 11 wherein the compound of formula (I) is selected from:

- 11S,11,13-Dihydro,13-dimethylaminoparthenolide hydrochloride; or

The method of claim 1 wherein the compound of formula (I) is selected from:

- 11S,11,13-Dihydro,13-(4-methylpiperazin-1-yl)parthenolide hydrochloride;
- 11S,11,13-Dihydro,13-(4-methylpiperazin-1-yl)parthenolide methiodide.

The method of claim 1 wherein Z is \(-\text{CH}_{2}S-\text{R}^{1}\); wherein

\(\text{R}^{1}\) is selected from optionally substituted straight-chained or branched aliphatic wherein optional substituents are selected from one or more of \(-\text{NH}_{2}, -\text{N(C}_{1-4}\text{aliphatic})_{2}, \text{halogen}, -\text{OH}, \text{-O-(C}_{1-4}\text{aliphatic}), -\text{NO}_{2}, -\text{CN}, -\text{CO}_2\text{H}, -\text{CO}_2\text{(C}_{1-4}\text{aliphatic}), -\text{O-(halo C}_{1-4}\text{aliphatic}), or -(halo C}_{1-4}\text{aliphatic)}\); wherein each C}_{1-4} aliphatic is optionally substituted; cycloalkyl, heterocycloalkyl, aryl or heteroaryl.

The method of claim 1 wherein Z is \(-\text{CH}_{2}S-\text{R}^{2}\); wherein

\(\text{R}^{2}\) is selected from optionally substituted straight-chained or branched aliphatic wherein optional substituents are selected from one or more of \(-\text{NH}_{2}, -\text{N(C}_{1-4}\text{aliphatic})_{2}, \text{halogen}, -\text{OH}, -\text{O-(C}_{1-4}\text{aliphatic}), -\text{NO}_{2}, -\text{CN}, -\text{CO}_2\text{H}, -\text{CO}_2\text{(C}_{1-4}\text{aliphatic}), -\text{O-(halo C}_{1-4}\text{aliphatic}), or -(halo C}_{1-4}\text{aliphatic)}\); wherein each C}_{1-4} aliphatic is optionally substituted; cycloalkyl, heterocycloalkyl, aryl or heteroaryl.

* * * * *