Nitrogen Value from Plowing a Sod

M. Scott Smith
University of Kentucky, mssmith@uky.edu

[Click here to let us know how access to this document benefits you.]

Follow this and additional works at: https://uknowledge.uky.edu/pss_views

Part of the [Soil Science Commons](https://uknowledge.uky.edu/pss_views)

Repository Citation

https://uknowledge.uky.edu/pss_views/110

This Report is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in Soil Science News and Views by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Nitrogen Value From Plowing a Sod

M. S. Smith

With economic conditions as they are, crop producers need to effectively use all the resources available to them. To help offset high N fertilizer prices, one resource that may be used to significantly reduce production costs is the organic N accumulated in and on soils. When crops are planted into a tilled sod the requirement for added N fertilizer will usually be less than on land previously in row crops. The following discussion considers the processes and factors determining the quantity and availability of N in a sod, and offers some guidelines for estimating the N value of a sod.

Mineralization of N in a sod

The conversion of N in organic matter to the plant-available inorganic forms, nitrate (NO$_3^-$) and ammonium (NH$_4^+$), is termed mineralization. The amount of mineralized N available to a crop is determined by the amount of organic N available for microbial decomposition, the ratio of carbon to nitrogen in the decomposed material, the rate of decomposition, and the persistence of the inorganic N following its production.

Large quantities of organic N are present in soils; even a soil with a fairly low organic matter content of about 1% contains almost 1,000 pounds of N per acre. However, most of this N mineralizes slowly, particularly in soils that have been in row crops. Usually no more than 1 to 3% of the organic matter is broken down each year. The N contained in plants and fresh plant residues is in a form that is much more available for mineralization by soil microbes. Analysis of mixed grass sods on 6 soil types at Princeton and Lexington, Kentucky showed 50 to 90 pounds of N per acre in the above-ground grasses and legumes. These should be taken as minimum values since measurements were made early in the spring before much growth occurred and since the analysis did not include N in roots. A good stand of legumes may contain 250 pounds or more of N per acre.

The quality of the organic material also influences the amount of N mineralized. Straw, for example, contains little decomposable N and, since the ratio of carbon to nitrogen is high, most or all of the N present will be tied up (immobilized) by the microbes in their own cells as they decompose the straw. Succulent legume tissues are
more rapidly decomposed and since they contain more N than is required by the microbes, there will be an immediate release of plant available N. Mineralization of grass sods will fall between these extremes. The decomposability and N content of grass sods will also be dependent on the fertility of the soils they grow on; a high fertility soil will produce a sod with a higher N mineralization potential. Thus, production of up to 140 pounds per acre of inorganic N during the growing season has been measured after an old sod on a fertile Maury soil at Lexington, Kentucky was plowed, but only 15 to 25 pounds from grass sods on infertile Purdy-Johnsburg soils at Princeton, Kentucky.

The rates of N mineralization and persistence of the mineralized N is as unpredictable as the weather, upon which these processes depend. In general less mineralized N will be available to crops on poorly drained than on well drained soils. This is due to slower organic matter decomposition and more rapid denitrification loss of the inorganic N as it is produced. Also less mineralization can be expected in no-till systems than when the sod is plowed under.

Estimating the N value of a sod

To obtain a generalized estimate of the N in a sod which will be made available to a crop, follow the steps below.

1. Age and quality of sod: If the sod is thin, has few or no legumes, and has been established for 4 years or less it would have an estimated value of 25 pounds/acre. If it is well-established, at least 5 years old, or contains some legumes give it a value of 50 pounds N.
2. Fertility and drainage: Reduce the estimate by 25 pounds N if the soil is less than moderately well drained or if the sod has not been fertilized and the soil is low in organic matter (1% or less).
3. Legume density: Estimate the percentage of legumes in the stand and add 1 pound N value for every percentage point over 25.
4. Tillage: For no-till, use only one half the estimated N value.

Considering all the variables discussed above, it should be clear that we can do no better than approximate the N made available to a crop from a sod. However, the estimation procedure above is conservative, particularly for fertile, well-drained soils, and reducing the N fertilizer applied by the amount calculated above will save money without sacrificing yield.