Learning from Networks: Care Transitions, Market Competition, & Community Interventions

Glen P. Mays
University of Kentucky, glen.mays@cuanschutz.edu

Follow this and additional works at: https://uknowledge.uky.edu/hsm_present
Part of the Health and Medical Administration Commons, Health Economics Commons, and the Health Services Research Commons

Repository Citation
https://uknowledge.uky.edu/hsm_present/72

This Presentation is brought to you for free and open access by the Health Management and Policy at UKnowledge. It has been accepted for inclusion in Health Management and Policy Presentations by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Learning from Networks: Care Transitions, Market Competition, & Community Interventions

Glen Mays, PhD, MPH
University of Kentucky

glen.mays@uky.edu

AcademyHealth Annual Research Meeting • San Diego, CA • 10 June 2014
Dependent data structures in US policy & delivery innovations

- Health insurance exchanges → new markets
- Managing care transitions → coordinated care
- ACOs & PCMHs → incentives for efficiency, quality
- Population health improvement → community-level collective actions
Networks and HSR

- Networks as the institutional and/or community *context* for policy implementation
- Networks as interventions (*mechanisms*)
- Networks as *outcomes*

Pawson and Tilley 1997; Berwick 2008
Network-based interventions

- Targeting and tailoring challenges
Dealing with complexity

- Multiple services
- Multiple providers
- Patient heterogeneity
- Heterogeneity in community/market context
Applying network analytic methods in HSR

- Design
- Sampling
- Measurement
- Analysis
- Translation/dissemination
Using networks for population health improvement strategies

- Designed to achieve large-scale health improvement: neighborhood, city/county, region
- Target fundamental and often multiple determinants of health
- Mobilize the collective actions of multiple stakeholders in government & private sector
 - Usual and unusual suspects
 - Infrastructure requirements

Using networks to overcome collective action problems

- Incentive compatibility → public goods
- Concentrated costs & diffuse benefits
- Time lags: costs vs. improvements
- Uncertainties about what works
- Asymmetry in information
- Difficulties measuring progress
- Weak and variable institutions & infrastructure
- Imbalance: resources vs. needs
- Stability & sustainability of funding

Ostrom E. 1994
Inter-organizational relationships in public health delivery systems
Bridging capital in public health delivery systems
Trends in betweenness centrality

* Change from prior years is statistically significant at p<0.05
Do other organizations complement or substitute for local public health agency effort?

Results from Multivariate GLLAMM Models

Note: GLLAMM estimates, holding all other variables constant in the model
How do other organizations affect the total supply of public health activities?

Results from Multivariate GLLAMM Models

Note: GLLAMM estimates, holding all other variables constant in the model
Estimated crowd-out in hospital contributions to public health activities

Note: GLLAMM estimates, holding all other variables constant in the model
A typology of public health delivery systems

<table>
<thead>
<tr>
<th>Scope</th>
<th>1998</th>
<th>2006</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>10%</td>
<td>20%</td>
<td>30%</td>
</tr>
<tr>
<td>Mod</td>
<td>15%</td>
<td>25%</td>
<td>35%</td>
</tr>
<tr>
<td>Low</td>
<td>5%</td>
<td>10%</td>
<td>15%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Centralization</th>
<th>1998</th>
<th>2006</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mod</td>
<td>5%</td>
<td>10%</td>
<td>15%</td>
</tr>
<tr>
<td>Low</td>
<td>10%</td>
<td>20%</td>
<td>30%</td>
</tr>
<tr>
<td>High</td>
<td>20%</td>
<td>30%</td>
<td>40%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Integration</th>
<th>1998</th>
<th>2006</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>5%</td>
<td>10%</td>
<td>15%</td>
</tr>
<tr>
<td>Mod</td>
<td>10%</td>
<td>20%</td>
<td>30%</td>
</tr>
<tr>
<td>Low</td>
<td>15%</td>
<td>25%</td>
<td>35%</td>
</tr>
</tbody>
</table>

Source: Mays et al. 2010; 2012
Population health and delivery system change

Percent Changes in Preventable Mortality Rates Attributable to Delivery System Type

Fixed-effects models control for population size, density, age composition, poverty status, racial composition, and physician supply.
Networks and Research Translation

Local Health Departments Engaged in Research Implementation & Translation Activities During Past 12 months

<table>
<thead>
<tr>
<th>Activity</th>
<th>PBRN Agencies Percent/Mean</th>
<th>National Sample Percent/Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifying research topics</td>
<td>94.1%</td>
<td>27.5% (***)</td>
</tr>
<tr>
<td>Planning/designing studies</td>
<td>81.6%</td>
<td>15.8% (***)</td>
</tr>
<tr>
<td>Recruitment, data collection & analysis</td>
<td>79.6%</td>
<td>50.3% (***)</td>
</tr>
<tr>
<td>Disseminating study results</td>
<td>84.5%</td>
<td>36.6% (***)</td>
</tr>
<tr>
<td>Applying findings in own organization</td>
<td>87.4%</td>
<td>32.1% (***)</td>
</tr>
<tr>
<td>Helping others apply findings</td>
<td>76.5%</td>
<td>18.0% (***)</td>
</tr>
<tr>
<td>Research implementation composite</td>
<td>84.04 (27.38)</td>
<td>30.20 (31.38) (***)</td>
</tr>
<tr>
<td>N</td>
<td>209</td>
<td>505</td>
</tr>
</tbody>
</table>

For more information

Supported by The Robert Wood Johnson Foundation

Glen P. Mays, Ph.D., M.P.H.
glen.mays@uky.edu

Email: publichealthPBRN@uky.edu
Web: www.publichealthsystems.org
Journal: www.FrontiersinPHSSR.org
Archive: works.bepress.com/glen_mays
Blog: publichealththeconomics.org