Cis-2,6-Disubstituted Piperidines for the Treatment of Psychostimulant Abuse and Withdrawal, Eating Disorders, and Central Nervous System Diseases and Pathologies

Linda P. Dwoskin
University of Kentucky, ldwoskin@email.uky.edu

Peter A. Crooks
University of Kentucky, pcrooks@uky.edu

Marlon D. Jones
University of Kentucky, mdjones310@comcast.net

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/ps_patents

Part of the [Pharmacy and Pharmaceutical Sciences Commons](https://uknowledge.uky.edu/ps_patents)

Recommended Citation

Dwoskin, Linda P.; Crooks, Peter A.; and Jones, Marlon D., "Cis-2,6-Disubstituted Piperidines for the Treatment of Psychostimulant Abuse and Withdrawal, Eating Disorders, and Central Nervous System Diseases and Pathologies" (2005). *Pharmaceutical Sciences Faculty Patents*. 75.

https://uknowledge.uky.edu/ps_patents/75
CIS-2,6-DISUBSTITUTED PIPERIDINES FOR THE TREATMENT OF PSYCHOSTIMULANT ABUSE AND WITHDRAWAL, EATING DISORDERS, AND CENTRAL NERVOUS SYSTEM DISEASES AND PATHOLOGIES

Inventors: Linda P. Dwoskin, Lexington, KY (US); Peter A. Crooks, Lexington, KY (US); Marion D. Jones, Lexington, KY (US)

Assignee: University of Kentucky Research Foundation, Lexington, KY (US)

Related U.S. Application Data
Division of application No. 09/628,557, filed on Jul. 28, 2000, new Pat. No. 6,455,543.

Provisional application No. 60/146,144, filed on Jul. 30, 1999.

References Cited
U.S. PATENT DOCUMENTS
5,414,005 A 5/1995 Schneider et al.

FOREIGN PATENT DOCUMENTS
FR 2,528,834 6/1982
WO WO 01/08678 A1 2/2001

ABSTRACT
Cis-2,6-disubstituted piperidine analogs, or lobeline analogs, having the general formula:

are used to treat diseases of the central nervous system, drug abuse and withdrawal therefrom as well as to treating eating disorders.

42 Claims, No Drawings
OTHER PUBLICATIONS

M. Marks et al. “Nicotinic Binding Sites in Rat and Mouse Brain: Comparison of Acetylcholine, Nicotine, and α-Bungarotoxin” Molecular Pharmacology. 30:427–436.

CIS-2,6-DISUBSTITUTED PIPERIDINES FOR THE TREATMENT OF PSYCHOSTIMULANT ABUSE AND WITHDRAWAL, EATING DISORDERS, AND CENTRAL NERVOUS SYSTEM DISEASES AND PATHTOLOGIES

CROSS-REFERENCED TO RELATED APPLICATIONS

This application is a Divisional of application Ser. No. 09/628,557 filed Jul. 28, 2000, now U.S. Pat. No. 6,455,543 issued Sep. 24, 2002, which claims the benefit of Provisional Application No. 60/146,144 filed Jul. 30, 1999.

FIELD OF THE INVENTION

The present invention relates to lobeline analogs, specifically cis-2,6-disubstituted piperidines, and their method of use in the treatment of diseases and pathologies of the central nervous system (CNS), the treatment of drug abuse and withdrawal therefrom as well as to the treatment of eating disorders such as obesity.

BACKGROUND OF THE INVENTION

Alpha-Lobeline (lobeline), a lipophilic nonpyridino, alkaloid constituent of Indian tobacco, is a major alkaloid in a family of structurally-related compounds found in Lobelia inflata. Lobeline has been reported to have many nicotine like effects, including tachycardia and hypertension (Olin et al., 1995), hyperalgesia (Hamann et al., 1994) and improvement of learning and memory (Decker et al., 1993). Lobeline has high affinity for nicotinic receptors (Lippiloi et al., 1986; Broussolle et al., 1989). However, no obvious structural resemblance of lobeline to nicotine is apparent and structure function relationships between S(−)-nicotine and lobeline do not suggest a common pharmacophore (Barlow et al., 1989). Also, differential effects of lobeline and nicotine suggest that these drugs may not be active through a common CNS mechanism, even though lobeline has been considered a mixed nicotinic agonist/antagonist.

Lobeline evokes dopamine (DA) release from rat striatal slices. However, lobeline evoked DA release is neither dependent upon extracellular calcium nor is it sensitive to mecamylamine, a noncompetitive nicotinic receptor antagonist. Thus, lobeline evoked DA release occurs via a different mechanism than does nicotine to evoke DA release (Teng et al., 1997, 1998; Clarke et al., 1996). In this respect, lobeline also inhibits DA uptake into rat striatal synaptic vesicles via an interaction with the dihydrotetabenazine (DTBZ) site on vesicular monoamine transporter-2 (VMAT2), thus increasing the cytosolic DA available for reverse transport by the plasma membrane transporter (DAT) (Tong et al., 1997, 1998). Thus, lobeline interacts with nicotinic receptors and blocks nicotine-evoked DA release, but also interacts with DA transporter proteins to modify the concentration of DA in the cytosolic and vesicular storage pools, thereby altering subsequent dopaminergic neurotransmission.

SUMMARY OF THE INVENTION

The present invention is directed to a method of treating an individual who suffers from a disease or pathology of the central nervous system (CNS), or for treating an individual for drug dependence or withdrawal for drug dependence. The method comprises of administering to the individual an effective amount of a cis-2,6-substituted piperidino compound, i.e., a lobeline analog, including pharmaceutically acceptable salts of such compounds thereof. As used herein, an “effective amount” refers to an amount of a drug effective to reduce an individual’s desire for a drug of abuse or for food, or for alleviating at least one of the symptoms of the disease or pathological symptom of a CNS pathology.

The compound can be administered alone, combined with an excitant, co-administered with a second drug having a similar or synergistic effect. The compound is administered subcutaneously, intramuscularly, intravenously, transdermally, orally, intranasally, intrapulmonary or rectally. The use of cis-2,6-disubstituted piperidines and derivatives thereof in treating diseases or pathologies of the CNS is implicated. In particular, the treatment of dependencies of such drugs as cocaine, amphetamine, caffeine, nicotine, phencyclidine, opiates, barbiturates, benzodiazepines, canabinoids, hallucinogens, and alcohol is implicated. Also, the treatment of eating disorders such as obesity is implicated.

In a preferred aspect of the invention, the method of treatment reduces an individual’s desire for the drug of abuse or for food by at least one day, but it is also preferred that the treatment method further comprise administering behavior modification counseling to the individual. Although the compound of the present invention is contemplated primarily for the treatment of drug abuse and withdrawal and for eating disorders, other uses are also suggested by the studies discussed herein. Thus, cognitive disorders, brain trauma, memory loss, psychosis, sleep disorders, obsessive compulsive disorders, panic disorders, myasthenia gravis, Parkinson’s disease, Alzheimer’s disease, schizophrenia, Tourette’s syndrome, Huntington’s disease, attention deficit disorder, hyperkinetic syndrome, chronic nervous exhaustion, narcolepsy, motion sickness and depression, and related conditions are considered to be susceptible to treatment with a compound of the present invention.

As shown by the results of the studies described herein, lobeline analogs are found to be effective in inhibiting uptake of extracellular DA by cells of the CNS. Some of these analogs are also nicotinic receptor antagonists. Either or both mechanisms can thereby work to alter the distribution of the intracellular DA pools and as a result alter extracellular DA concentration.

As used herein the term “lobeline” refers to a compound having the general chemical formula 2-[β-(6-{[35]H2}-hydroxyphenethyl)-1-methyl-2-piperidyl]-acetophenone. The term “lobeline analogs” and equivalents thereof as used herein, refers to chemical derivatives of lobeline obtained by oxidation or reduction of lobeline, others obtained by esterification of lobeline and redox derivatives, as well as various substitutions at the N-position of the piperidinyl moiety.

DETAILED DESCRIPTION OF THE INVENTION

The 2,6-disubstituted piperidine lobeline analogs of the present invention include those contemplated by the following formula (I), without regard to chirality:

\[R^1 - Y^1 \]
\[X^1 - Y^2 \]
\[X^2 - Y^3 \]
\[R^2 - X^3 \]

wherein:

n is zero or an integer in the range from 1 to 3;

X^1—Y^1 and X^2—Y^2 are the same or are independently different from one another and represent a saturated carbon-carbon bond, a cis-carbon-carbon double bond, a trans-carbon-carbon double bond, a carbon-carbon triple bond, a...
saturated sulfur-carbon bond, a saturated selenium-carbon bond, an oxygen-carbon bond, a saturated nitrogen-carbon bond, a N-alkyl substituted saturated nitrogen-carbon bond where said alkyl is a lower straight chain or branched alkyl, a nitrogen-carbon double bond, or a nitrogen-nitrogen double bond;

R₁ and R₂ are the same or are independently different from one another and represent hydrogen or a lower straight chain or branched alkyl or R₁ and R₂ together form a ring including a -CH₂-, -CH₂CH₂-, -CH₂CH₂-CH₂-, -cis-CH=CH₂, -cis-CH₂CH=CH₂- or -cis-CH=CH₂CH₂- moiety;

R₁ and R₂ are the same or are independently different from one another and represent a saturated or unsaturated hydrocarbon ring; a nitrogen containing heterocyclic moiety; an oxygen containing heterocyclic moiety; a sulfur containing heterocyclic moiety; a selenium containing heterocyclic moiety; a mixed heterocyclic moiety containing at least two atoms selected from the group consisting of nitrogen, oxygen and sulfur; and an ortho, meta or para-substituted benzene;

with the proviso that when n=0, R₂ and R₃ are unsubstituted phenyl groups, and X₁⁻Y₁ and X₂⁻Y₂ are saturated carbon-carbon bonds, Y₁ cannot be CH₂, CHOH or C=O, and Y₂ cannot be CH₂, CHOH or C=O.

It is preferred that when R₁ and/or R₂ is a saturated hydrocarbon ring, the ring includes, but is not limited to, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, including all possible substitution patterns, geometric and stereoisomers, racemic, diastereomeric and enantiomeric forms thereof.

It is further preferred that when R₁ and/or R₂ is a nitrogen containing heterocyclic moiety, the moiety includes, but is not limited to, benzene, cyclopentene, cyclohexene, cycloheptene, cyclooctene or cyclopentadiene, including all possible substitution patterns, geometric and stereoisomers, racemic, diastereomeric and enantiomeric forms thereof.

It is further preferred that when R₁ and/or R₂ is a nitrogen containing heterocyclic moiety, the moiety includes, but is not limited to, azetine, pyrrolidine, piperazine, pyrazine, pyrazole, pyrazolidine, imidazole imidazoline, pyrimidine, pyridazine or pyridazine, including all possible substitution patterns, geometric and stereoisomers, racemic, diastereomeric and enantiomeric forms thereof.

It is preferred that when R₁ and/or R₂ is an oxygen containing heterocyclic moiety, the moiety includes, but is not limited to, furan, tetrahydrofuran, 2,5-dihydrofuran, pyran, tetrahydropyran, 1,4-dioxane, 1,3-dioxane or 1,4-oxathin, including all possible substitution patterns, geometric and stereoisomers, racemic, diastereomeric and enantiomeric forms thereof.

It is further preferred that when R₁ and/or R₂ is a sulfur containing heterocyclic moiety, the moiety includes, but is not limited to, thiophene, thiophene, thiophene, 2,5-dihydrothiophene, 1,3-dithiolylium, 1,3-dithiolane, 1,2-dithiolylium, 1,2-dithiolane, thiane, 1,2-dithianol, 1,3-dithiane, 1,4-dithiane, or thiopyrylum, including all possible substitution patterns, geometric and stereoisomers, racemic, diastereomeric and enantiomeric forms thereof.

It is further preferred that when R₁ and/or R₂ is a selenium containing heterocyclic moiety, the moiety includes, but is not limited to, selenophene, including all possible substitution patterns, geometric and stereoisomers, racemic, diastereomeric and enantiomeric forms thereof.

It is further preferred that when R₁ and/or R₂ is a mixed heterocyclic moiety, the moiety includes, but is not limited to, thiazoloidine, thiazole and oxazin, including all possible substitution patterns, geometric and stereoisomers, racemic, diastereomeric and enantiomeric forms thereof.

The substituted benzene includes at least one substituent, where the substituent is selected from, but is not limited to, the group consisting of methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, isobutyl, amino, N-methylamino, N,N-dimethylamino, carboxylate, methylcarboxylate, ethylcarboxylate, propylcarboxylate, isopropylcarboxylate, carboxaldehyde, acetoxyl, propanoyloxy, isopropanoyloxy, cyano, amidinomethyl, N-methylaminomethyl, N,N-dimethylaminomethyl, carboxamide, N-methylcarboxamide, N,N-methylaminocarboxamide, acetyl, propionyl, formyl, benzoyl, sulfate, methylsulfate, hydroxyl, methoxy, ethoxy, propoxy, isoproxy, thiol, methylthio, ethylthio, propionthio, fluoro, chloro, bromo, iodo, trifluoromethyl, vinyl, aleryl, propargyl, nitro, carbamoyl, uracido, azido, isocyanate, thiosuccynate, hydroxylamino and nitroso.

It is preferred that when either X₁⁻Y₁ or X₂⁻Y₂ is a saturated carbon-carbon bond, Y₁ or Y₂ represents CH₂, CH=CH₂, CHO or CH₂=CH₂, where said alkyl is a lower straight chain or branched alkyl, CH-OH, CHO-alkyl where said alkyl is a lower straight chain or branched alkyl, CH-OSO₂-C₆H₄, CH-OSO₂-p-C₆H₄CH₃, CH-SH, CH₂-SH, CH-S-alkyl where said alkyl is a lower straight chain or branched alkyl, CH-NO₂, CH-SC₆H₄, CH-NHOH, CH-OCHO, CH=, CH=OH, CH-Br, CH-I, CH-N₂H₈, CH-NH-alkyl where said alkyl is a lower straight chain or branched alkyl, CH-N, CH-NEt₃, CH-F, CH-N₃, CH=NEt₃, CH=Ser, CH=N-carboxyloxazolidine or oxazolidine, 1,2,4-triazole, imidazoline, pyrimidine, pyridazine or triazine, including all possible substitution patterns, diastereomeric and enantiomeric forms thereof.

The substituted benzene includes at least one substituent, where the substituent is selected from, but is not limited to, selenophene, including all possible substitution patterns, geometric and stereoisomers, racemic, diastereomeric and enantiomeric forms thereof.

The substituted benzene includes at least one substituent, where the substituent is selected from, but is not limited to, selenophene, including all possible substitution patterns, geometric and stereoisomers, racemic, diastereomeric and enantiomeric forms thereof.

The substituted benzene includes at least one substituent, where the substituent is selected from, but is not limited to, selenophene, including all possible substitution patterns, geometric and stereoisomers, racemic, diastereomeric and enantiomeric forms thereof.

The substituted benzene includes at least one substituent, where the substituent is selected from, but is not limited to, selenophene, including all possible substitution patterns, geometric and stereoisomers, racemic, diastereomeric and enantiomeric forms thereof.

The substituted benzene includes at least one substituent, where the substituent is selected from, but is not limited to, selenophene, including all possible substitution patterns, geometric and stereoisomers, racemic, diastereomeric and enantiomeric forms thereof.

The substituted benzene includes at least one substituent, where the substituent is selected from, but is not limited to, selenophene, including all possible substitution patterns, geometric and stereoisomers, racemic, diastereomeric and enantiomeric forms thereof.

The substituted benzene includes at least one substituent, where the substituent is selected from, but is not limited to, selenophene, including all possible substitution patterns, geometric and stereoisomers, racemic, diastereomeric and enantiomeric forms thereof.

The substituted benzene includes at least one substituent, where the substituent is selected from, but is not limited to, selenophene, including all possible substitution patterns, geometric and stereoisomers, racemic, diastereomeric and enantiomeric forms thereof.

The substituted benzene includes at least one substituent, where the substituent is selected from, but is not limited to, selenophene, including all possible substitution patterns, geometric and stereoisomers, racemic, diastereomeric and enantiomeric forms thereof.

The substituted benzene includes at least one substituent, where the substituent is selected from, but is not limited to, selenophene, including all possible substitution patterns, geometric and stereoisomers, racemic, diastereomeric and enantiomeric forms thereof.

The substituted benzene includes at least one substituent, where the substituent is selected from, but is not limited to, selenophene, including all possible substitution patterns, geometric and stereoisomers, racemic, diastereomeric and enantiomeric forms thereof.

The substituted benzene includes at least one substituent, where the substituent is selected from, but is not limited to, selenophene, including all possible substitution patterns, geometric and stereoisomers, racemic, diastereomeric and enantiomeric forms thereof.

The substituted benzene includes at least one substituent, where the substituent is selected from, but is not limited to, selenophene, including all possible substitution patterns, geometric and stereoisomers, racemic, diastereomeric and enantiomeric forms thereof.

The substituted benzene includes at least one substituent, where the substituent is selected from, but is not limited to, selenophene, including all possible substitution patterns, geometric and stereoisomers, racemic, diastereomeric and enantiomeric forms thereof.

A pharmaceutical composition containing a compound of the invention is also contemplated, which may include a conventional additive, such as a stabilizer, buffer, salt, preservative, filler, flavor enhancer and the like, as known to those skilled in the art. Representative buffers include EDTA, EGTA, BHA, BHT and the like. A composition of the invention may be administered by
inhalation, i.e., intranasally as an aerosol or nasal formulation; topically, i.e., in the form of an ointment, cream or lotion; orally, i.e., in solid or liquid form (tablet, gel cap, time release capsule, powder, solution, or suspension in aqueous or non aqueous liquid; intravenously as an infusion or injection, i.e., as a solution, suspension or emulsion in a pharmaceutically acceptable carrier; transdermally, e.g., via a transdermal patch; rectally as a suppository and the like.

Generally, the pharmacologically effective dose of a present compound is in the amount ranging from about 1×10⁻⁸ to about 1 mg/kg body weight/day. The amount to be administered depends to some extent on the lipophilicity of the specific compound selected, since it is expected that this property of the compound will cause it to partition into fat deposits of the subject. The precise amount to be administered can be determined by the skilled practitioner in view of desired dosages, side effects and medical history of the patient and the like.

The cis-2,6-disubstituted piperidino analogs of the present invention exhibit selectivity for either neuronal nicotinic acetylcholine receptors and/or the dopamine transporter protein (DAT). The derivatives that are active towards the nicotinic receptor generally do not interact with the DAT, and those that interact with the DAT show only modest nicotinic receptor activity.

TABLE 1

<table>
<thead>
<tr>
<th>Compound</th>
<th>Ki (µM)</th>
<th>Ki (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[³H]Nicotine Binding Assay</td>
<td>[³H]Dopamine Uptake Assay</td>
</tr>
<tr>
<td>1. X¹ = X² = CH₃</td>
<td>0.0043</td>
<td>45</td>
</tr>
<tr>
<td>Y¹ = C–O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y² = (S)–CHOH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. X¹ = X² = Y¹ = Y² = CH₃</td>
<td>14.3</td>
<td>3.0</td>
</tr>
<tr>
<td>Y¹ = C–O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y² = (S)–CHOH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. X¹ = X² = CH₃</td>
<td>0.0041</td>
<td>39</td>
</tr>
<tr>
<td>Y¹ = C–O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y² = (S)–CHOH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. X¹ = X² = CH₃</td>
<td>11</td>
<td>25</td>
</tr>
<tr>
<td>Y¹ = Y² = C–O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. X¹ = Y¹ = X² = Y² = trans CH–CH</td>
<td>100</td>
<td>0.8</td>
</tr>
<tr>
<td>Y¹ = C–O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y² = trans CH–CH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. X¹ = CH₃</td>
<td>0.13</td>
<td>3.0</td>
</tr>
<tr>
<td>Y¹ = C–O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y² = trans CH–CH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. X¹ = X² = CH₃</td>
<td>0.93</td>
<td>54</td>
</tr>
<tr>
<td>Y¹ = (S)–CHOH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y² = (R)–CHOH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. X¹ = X² = Y¹ = CH₃</td>
<td>0.16</td>
<td>8.9</td>
</tr>
<tr>
<td>Y¹ = (S)–CHOH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. X¹ = Y¹ = CH₃</td>
<td>4.2</td>
<td>1.3</td>
</tr>
</tbody>
</table>

The nine cis-2,6-disubstituted piperidino derivatives listed in Table 1 have the chemical structure of formula (I).

The derivatives that are active towards the nicotinic receptor generally do not interact with the DAT, and those that interact with the DAT show only modest nicotinic receptor activity.

The nine compounds in Table 1 were evaluated in the high affinity [³H]nicotine binding assay and afforded inhibition constants (Ki values) ranging from 0.0043 µM to >100 µM. Five of these compounds were in the range of 4–160 nM. Three of these compounds were in the range of 0.93–14 µM. One compound was >100 µM. The cis-2,6-disubstituted piperidino derivatives listed in Table 1 were also assayed for inhibition of DAT activity, i.e., inhibition of [³H]DA uptake into the dopaminergic presynaptic terminal. Nine compounds were evaluated and afforded inhibition constants (Ki values) ranging from 0.08 µM to 54 µM.

Removal of both functionalities of the lobeline molecule resulted in loss of affinity for the nicotinic receptor and a 100-fold more potent inhibition of the dopamine transporter compared with lobeline. Removal of either the hydroxy group or the keto group of lobeline resulted in a 50-fold loss of affinity for the nicotinic receptor. Interestingly, the ketolalane analog inhibited DAT 10-fold more potently than lobeline, whereas lobelanidine inhibited DAT equipotently compared to lobeline. Conversion of the hydroxy group of lobeline to a bulky tosloxy group reduced the affinity of the nicotinic receptor by only 3-fold, but did not alter the interaction with the DA transporter. The hydroxylalane had a similar potency with the meso-transdiene (the most potent compound) in the DA uptake assay, but had 1000-fold lower affinity for the nicotinic receptor. Also, the completely defunctionalized lobeline molecule and the hydroxyalkane analog were both less potent than the meso-transdiene in inhibiting DA uptake into striatal synaptosomes. This data indicates that appropriate structural modification of the lobeline molecule affords compounds in which the interaction with DAT is enhanced. Furthermore, in one compound, i.e., the meso-transdiene, the nicotinic receptor interaction has been eliminated and the compound is thus selective for inhibition of DAT.

The invention will now be discussed by certain examples that illustrate but do not limit the invention.

EXAMPLE 1

Cis-2,6-di-trans-styrlypiperidine

1.0 g (2.95 mmol) of lobelanidine was dissolved in 15 ml of 85% H₃PO₄ and allowed to stir overnight at 60°C. The reaction mixture was taken up in H₂O and made basic with solid K₂CO₃ (pH–8). The pH was adjusted by the addition of solid NaOH (pH–10). The aqueous solution was extracted three times with 15 ml of EtOAc. The organic layers were combined and dried over anhydrous MgSO₄. The salts were removed via filtration and solvent removed by rotary evaporation affording 0.70 g of crude product. This compound was recrystallized from MeOH affording 0.60 g of pure cis-2,6-di-trans-styrlypiperidine. Percent yield=78.6%.

EXAMPLE 2

Cis-28,68,82-6-[6-para-toluenesulfonyloxyphenethyl]-1-methyl-2-piperidyl)-acetophenone

1.00 g (2.58 mmol) of lobeline hemisulfate was dissolved in 25 ml of pyridine and was added dropwise to a solution (cooled to 0°C) containing 0.60 g (3.14 mmol) of p-toluenesulfonyl chloride dissolved in 15 ml of pyridine. After addition, the reaction was allowed to stir for 2 hours and then poured into 50 ml of ice-cold water and the mixture
was stirred for an additional two hours. The aqueous solution was extracted three times with 25 ml of EtOAc. The organic layers were combined and dried over anhydrous Na₂SO₄. The salts were removed by filtration and the solvent was removed by rotary evaporation affording 450 mg of a pink-colored compound. The product was recrystallized from acetone yielding 0.5 g of a yellow oil.

EXAMPLE 3

Cis-2S,6R-N-methyl-6-phenacyl-2-trans-styrylpiperidine

1.00 g (2.58 mmol) of lobeline hemisulfate was dissolved in 15 ml of 85% H₃PO₄ and the solution was allowed to stir for 24 hrs at 30°C. Phosphoric acid was then neutralized with K₂CO₃, and a little ice cold H₂O was added to dissolve the salts. The aqueous solution was extracted with acetone (20 ml x 3). The organic layers were combined and dried with anhydrous MgSO₄. The salts were removed by filtration and the solvent was removed via rotary evaporation to afford 450 mg of a pink-colored compound. The product was recrystallized from acetone yielding 0.5 g of a pink-colored compound. The product was recrystallized from acetone yielding 0.5 g of a pink-colored compound.

EXAMPLE 4

Cis-10R,2S,6R- and Cis-10S,2S,6R-N-methyl-6-[1-(2-hydroxy-2-phenyl)-ethyl]-2-trans-styrylpiperidine

In a 250 ml round bottom flask was added 0.80 g of cis-2S,6R-N-methyl-6-phenacyl-2-trans-styrylpiperidine, and 50 ml of ethanol. Sodium borohydride was added until all of the starting material was consumed (determined by TLC). The solution was cooled to 0°C and acetone was added in small portions to quench the reaction. The solvents were evaporated to dryness and water was added precipitating 0.75 g of an off-white crystalline solid (1:1 mixture of diastereomers, which was purified on silica eluting with 75:25 (CHCl₃/EtOH). The yield of the product (a mixture of diastereomers) was 93.4%. **1H NMR (300 MHz, CDCl₃):** δ: 1.17–2.06 (m, 12H), 2.12 (s, 3H), 2.35 (s, 3H), 2.50–6.20 (m, 4H), 2.70–3.20 (m, 4H), 4.78–4.80 (dd, 1H), 5.04–5.14 (dd, 1H), 5.96–6.20 (m, 2H), 6.32–6.42 (dd, 2H) and 7.04–7.34 (m, 4H). **13C NMR (CDCl₃):** δ: 23.69, 24.15, 26.74, 29.08, 33.26, 39.94, 41.10, 41.41, 62.93, 63.00, 65.62, 68.32, 71.76, 73.90, 125.46, 126.15, 126.19, 126.83, 127.01, 127.37, 128.16, 128.23, 128.50, 130.58, 132.61, 133.85, 136.83, 136.95, 145.32 and 145.45 ppm.

EXAMPLE 5

Cis-2S,6R-N-methyl-6-[1-(2-hydroxy-2-phenyl)ethyl]-2-phenacyl-piperidine

0.50 g (1.55 mmol) of cis-2S,6R-N-methyl-6-phenacyl-2-trans-styrylpiperidine was dissolved in 50 ml of ethanol and placed into a Parr hydrogenation apparatus with 0.10 g of 10% Pd-on-Carbon. After removal of air, hydrogen gas was introduced until a pressure of 40 psig was reached. The reaction was allowed to proceed for 48 hrs. The Pd catalyst was removed through filtration with Celite, and ethanol was removed by rotary evaporation to afford 0.50 g of a yellow oil. The compound was purified by silica gel chromatography eluting with EtOAc to afford 0.25 g of the product. The yield was 50.0%. **1H NMR (300 MHz, CDCl₃):** δ: 0.70–0.90 (m, 6H), 1.18 (s, 3H), 1.40–1.90 (m, 6H), 2.44–2.56 (m, 2H), 4.56–4.60 (dd, 1H) and 7.04–7.30 (m, 10H). **13C NMR (CDCl₃):** δ: 25.77, 29.24, 29.38, 29.42, 29.46, 29.68, 31.44, 35.93, 39.07, 74.64, 125.50, 125.85, 127.42, 128.17, 128.35, 128.37, 142.85 and 144.91 ppm.

EXAMPLE 6

High Affinity [3H]Nicotine Binding Assay

The ability to displace S-(—)[3H]NIC binding from rat striatal membranes to assess interaction with the c4β2 subtype was determined. The [3H]NIC binding assay was performed according to previously published methods (Romano et al., 1980; Marks et al., 1986; Crooks et al., 1995). Striata from two rats were dissected, pooled and homogenized with a Tekmar polytron in 10 vol of ice-cold modified Krebs-HEPES buffer (in mM: 20 HEPES, 118 NaCl, 4.8 KCl, 2.5 CaCl₂, 1.2 MgSO₄, adjusted to pH to 7.5). The homogenate was incubated at 37°C for 5 minutes to promote hydrolysis of endogenous acetylcholine, and centrifuged at 15,000 g for 20 minutes and the pellet was resuspended in 10 vol of ice-cold distilled water and incubated at 37°C for 5 minutes, followed by centrifugation at 15,000 g for 20 min. The pellet containing the striatal membranes was resuspended in 10 vol of fresh ice-cold 10% Krebs-HEPES buffer and incubated at 37°C for 10 min after which it was centrifuged at 15,000 g for 20 minutes. The latter sequence of resuspension, incubation and centrifugation was repeated. The pellet was frozen under fresh Krebs-HEPES buffer and stored at −40°C until assay. Upon assay, the pellet was resuspended in Krebs-HEPES buffer, incubated at 37°C for 5 minutes and centrifuged at 15,000 g for 20 min. The final pellet was resuspended in 3.6 ml ice-cold water which provides for approximately 200 μg protein/100 μl aliquot. Competition assays were performed in duplicate in a final volume of 200 μl Krebs-HEPES buffer containing 250 mM Tris buffer (pH 7.5 at 4°C). Reactions were initiated by addition of 100 μl of membrane suspension to 3 nM [3H]NIC (50 μl) and 1 of at least 9 concentrations of analog (50 μl). After 90 minutes incubation at 4°C, reactions were terminated by dilution of the samples with 3 ml of ice-cold buffer followed immediately by filtration through a Whatman GF/B glass fiber filters (presoaked in 0.5% polyethyleneimine (PEI) using a Brandel Cell Harvester. Filters were rinsed 3x with 3 ml of ice-cold buffer, transferred to scintillation vials and 5 ml scintillation cocktail added. Nonspecific binding was defined as binding in the presence of 10 μM NIC. For competition curves, the IC₅₀ values were corrected for ligand concentration (Cheng et al., 1973).

EXAMPLE 7

[3H]Dopamine ([3H]DA) Uptake Assay, Striatal Synaptosomal Preparation

[3H]DA uptake was performed according to a modification of the previously reported methods (Dwoskin et al., 1999). Striata were homogenized in 20 ml of ice-cold...
sucrose solution (0.32 M sucrose and 5 mM sodium bicarbonate, pH 7.4) with 12 passes of a teflon-pestle homogenizer (clearance approximately 0.003 in). The homogenate was centrifuged at 2,000 g, 4°C for 10 min. The supernatant was centrifuged at 12,000 g, 4°C for 20 minutes. The resulting pellet was resuspended in 1.5 ml ice-cold assay buffer (in mM: 125 NaCl, 5 KCl, 1.5 KH2PO4, 1.5 MgSO4, 1.25 CaCl2, 10 glucose, 0.1 L-ascorbate, 25 HEPES, 0.1 EDTA and 0.1 pargyline; pH 7.4). The final protein concentration was 400 μg/ml. Assays were performed in duplicate in a total vol of 500 μl. Aliquots (50 μl synaptosomal suspension containing 20 μg of protein) were added to assay tubes containing 350 μl buffer and 50 μl of 1 of 9 concentrations (final concentration, 1 mM-1 mM) of analog or vehicle. Synaptosomes were incubated at 34°C for 10 min before the addition of 50 μl of [3H]DA (30.1 Ci/mole, final concentration 10 nM) and accumulation proceeded for 10 min at 34°C. High affinity uptake was defined as the difference between accumulation in the absence and presence of 10 μM GBR 12935. Preliminary studies demonstrated that at 10 minutes [3H]DA uptake is within the linear range of the time-response curve when experiments are performed at 34°C. Accumulation was terminated by addition of 3 ml ice-cold assay buffer containing 1 mM pyrocatechol and rapid filtration through a Whatman GF/B glass fiber filter paper (presoaked with buffer containing 1 mM pyrocatechol) using a Brandel Cell Harvester. The filters were washed 3 times with 3 ml of 10 ml ice-cold buffer containing 2 mM pyrocatechol and then transferred to scintillation vials and radioactivity determined (Packard Model B1600TR scintillation counter, Meriden, Conn.). Protein concentration was determined using bovine serum albumin as the standard (Bradford, 1976). Competition curves for analog inhibition of [3H]DA uptake were generated. Nonlinear regression analysis was used to fit curves either in the absence or presence of 9 concentrations of analog. IC50 values were corrected for concentration of [3H]DA (Cheng-Prusoff, 1973) to yield true inhibition constants (Ki=IC50[1+c/Km]), where c is the concentration of free [3H]DA and Km is the concentration of analog at which half maximal [3H]DA uptake is achieved. These values (Ki) were converted to pKi before statistical analysis.

In the examples listed in the Table, a series of cis-2,6-disubstituted piperidines, structurally related to lobeline, were synthesized and tested for activity in the high affinity nicotinic receptor binding assay and the dopamine uptake assay to assess the interaction of these piperidines with these specific proteins on the presynaptic terminal of dopaminergic neurons in the CNS. Some of these compounds have greater selectivity for interaction with DAT than for interaction with nicotinic receptors, whereas other compounds interact with both nicotinic receptors and DAT, more similar to lobeline. Other compounds were more selective for the nicotinic receptor than for DAT. These combinations of pharmacological activity are considered to be beneficial for the treatment of psychostimulant abuse and withdrawal, eating disorders, and central nervous system diseases and pathologies.

The foregoing is considered as illustrative only of the principles of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described, and accordingly, all suitable modifications and equivalence thereof may be resorted to, falling within the scope of the invention claimed.

REFERENCES

The pertinent disclosures of the references listed below and as discussed above herein are incorporated herein by reference.

What is claimed is:

1. A method of treating an individual for dependence on a drug of abuse or withdrawal from a drug of abuse comprising administering to the individual an effective amount of a cis-2,6-substituted piperidino compound or pharmaceutically effective salt thereof comprising formula I:

![Chemical Structure](attachment:image.png)

wherein:

X¹—Y¹ and X²—Y² are the same or are independently different from one another and represent a saturated carbon-carbon bond, a cis-carbon-carbon double bond, a trans-carbon-carbon double bond, a carbon-carbon triple bond; a saturated sulfur-carbon bond, a saturated selenium-carbon bond, an oxygen-carbon bond, a saturated nitrogen-carbon bond, a N-alkyl substituted saturated nitrogen-carbon bond where said alkyl is a lower straight chain or branched alkyl, a nitrogen-carbon double bond, or a nitrogen-nitrogen double bond;

R¹ and R⁴ are the same or are independently different from one another and represent a saturated carbon-carbon bond, a cis-carbon-carbon double bond, a trans-carbon-carbon double bond, a carbon-carbon triple bond; a saturated sulfur-carbon bond, a saturated selenium-carbon bond, an oxygen-carbon bond, a saturated nitrogen-carbon bond, a N-alkyl substituted saturated nitrogen-carbon bond where said alkyl is a lower straight chain or branched alkyl, a nitrogen-carbon double bond, or a nitrogen-nitrogen double bond;

R¹ and R² are the same or are independently different from one another and represent hydrogen or a lower straight chain or branched alkyl or R¹ and R² together form a ring including a —CH₂—, —CH₂CH₂—, —cis-CH═CH₂, -cis-CH₂CH═CH₂— or -cis-CH₂═CH—CH₂— moiety; and

R² and R³ are the same or are independently different from one another and represent a saturated or unsaturated hydrocarbon ring; a nitrogen containing heterocyclic moiety; an oxygen containing heterocyclic moiety; a sulfur containing heterocyclic moiety; a selenium containing heterocyclic moiety; a mixed heterocyclic moiety containing at least two atoms selected from the group consisting of nitrogen, oxygen and sulfur; and an ortho, meta- or para-substituted benzene;

with the proviso that when R² and R³ are unsubstituted phenyl groups and X¹—Y¹ and X²—Y² are saturated carbon-carbon bonds, Y¹ and Y² cannot be CHOR or C═O, wherein R is hydrogen, lower alkyl, lower alkenyl, lower alkylcarbonyl, aralkylcarbonyl, lower alkoxy carbonyl, lower alkylnitrocarbonyl, higher alkylcarbonyl or poly(alkyleneoxide)-carbonyl;

with the proviso that when R² and R³ are unsubstituted phenyl groups or substituted phenyl groups having an alkyl, halogen or CF₃ as substituents and X¹—Y¹ and X²—Y² are saturated nitrogen-carbon bonds, X¹ and X² cannot be C═O; and

with the further proviso that when X¹—Y¹ and X²—Y² are saturated carbon-carbon bonds, X¹ and X² cannot be CH₂, or CH═CH, and Y¹ and Y² cannot be CH₂ or CH═CH, C═O or CHOH;

with the further proviso that when X¹—Y¹ and X²—Y² are carbon-carbon double bonds, R² and R³ cannot be a saturated or unsaturated hydrocarbon ring with an ortho-, meta- or para substituted moiety selected from the group consisting of hydrogen, methyl, ethyl, C₃—C₅ straight chain or branched alkyl, C₃—C₅ cycloalkyl, vinyl, allyl, C₄—C₆ alkenyl, benzyl, phenylethyl, N-methylamino, N,N-dimethylamino, carboxylate, methylcarboxylate, ethylcarboxylate, propylcarboxylate, isopropylcarboxylate, carboxaldehyde, acetox, propionylox, isopropionyloxy, cyano, aminomethyl, N-methylaminomethyl, N,N-dimethylaminomethyl, carboxamide, N-methylcarboxamide, N,N-dimethylcarboxamide, acetyl, propionyl, formyl, benzoyl, sulftte, methylsulfate, hydroxy, methoxy, ethoxy, propoxy, isoproxy, thiol, methylthio, ethylthio, propthiol, fluor, chloro, bromo, iodo, trifluoromethyl, propargyl, nitro, carbamoyl, ureido, azido, isocyanate, thioisocyanate, hydroxylaminio and nitroso.

2. The method of claim 1, wherein said drug of abuse is selected from the group consisting of cocaine, amphetamine, caffeine, nicotine, phenycyclidine, opiates, barbiturates, benzodiazepines, canabinoids, hallucinogens, and alcohol.

3. The method of claim 1, wherein said administering of the compounds is performed subcutaneously, intramuscularly, intravenously, transdermally, orally, intranasally, intrapulmonary or rectally.

4. The method of claim 1, wherein said administering of the compound inhibits uptake of dopamine by cells of the central nervous system of the individual.

5. The method of claim 1, wherein said administering of the compound inhibits binding of neurotransmitters or drugs to nicotinic receptors on cells of the central nervous system of the individual.

6. The method of claim 1, wherein the saturated hydrocarbon ring includes cyclobutane, cyclopentane, cyclohexane, cycloheptane or cyclooctane.

7. The method of claim 1, wherein the unsaturated hydrocarbon ring includes benzene, cyclohexene, cycloheptene, cyclooctene or cyclooctadiene.

8. The method of claim 1, wherein the nitrogen containing heterocyclic moiety includes azetine, piperidine, piperazine, pyrazine, pyrazole, pyrazolidine, imidazolidine, pyrimidine, hexa-hydroprymidene, pyrrole, pyrrolidine, triazine, 1,2,3-triazole, 1,2,4-triazole, pyridine or pyridazine.

9. The method of claim 1, wherein the oxygen containing heterocyclic moiety includes furan, tetrahydropuran, 2,5-dihydrofurhan, pyran, tetrahydropyran, 1,4-dioxane, 1,3-dioxane or 1,4-oxathiin.

10. The method of claim 1, wherein the unsaturated sulfur containing heterocyclic moiety includes thiocyclic, thiophene, 2,5-dihydrothiophene, 1,3-dithiolium, 1,3-dithiolane, 1,2-dithioylam, 1,2-dithiolane, thiane, 1,2-dithiane, 1,3-dithane, 1,4-dithiane, or thiopyranylium.

11. The method of claim 1, wherein the selenium containing heterocyclic moiety is selenophene.

12. The method of claim 1, wherein the mixed heterocyclic moiety is thiazolidine, thiazole or oxazin.

13. The method of claim 1, wherein the substituted benzene includes at least one substituent selected from the group consisting of methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, isobutyl, amino, N-methylamino, N,N-dimethylamino, carboxylate, methylcarboxylate, ethylcarboxylate, propylcarboxylate, isopropylcarboxylate, carboxaldehyde, acetox, propionylox, isopropionyloxy, cyano, aminomethyl, N-methylaminomethyl, N,N-dimethylaminomethyl, N,N-dimethylcarboxamide, N,N-dimethylcarboxamide, acetyl, propionyl, formyl, benzoyl, sulftte, methylsulfate, hydroxyl, methoxy, ethoxy, propoxy, isoproxy, thiol, methylthio, ethylthio, propthiol, fluor, chloro, bromo, iodo, trifluoromethyl, propargyl, nitro, carbamoyl, ureido, azido, isocyanate, thioisocyanate, hydroxylaminio and nitroso.
13. The method of claim 1, wherein所述 hydrocarbon ring comprises cyclobutane, cyclopentane, cyclohexane, cycloheptane or cyclooctane; the unsaturated hydrocarbon ring comprises benzene, cyclopentene, cyclohexene, cycloheptene, cyclooctene or cyclooctadiene; the nitrogen containing heterocyclic moiety comprises azetine, piperidine, piperezine, pyrazole, pyrazolidine, imidazoline, pyrimidine, hexahydropyrindine, pyrrole, pyrrolidine, triazine, 1,2,3-triazole, 1,2,4-triazole, pyridine or pyridazine; the oxygen containing heterocyclic moiety includes furan, tetrahydrofuran, 2,5-dihydrofuran, pyran, tetrahydropyran, 1,4-dioxane, 1,3-dioxane or 1,4-oxathin; the sulfur containing heterocyclic moiety comprises thiinate, thiophene, thiophane, 2,5-dihydrothiophene, 1,3-dithiolium, 1,3-dithiolone, 1,2-dithiolium, 1,2-dithiolane, thiene, 1,2-dihthiane, 1,3-dithiane, or thiopyranylidene; the selenium containing heterocyclic moiety includes selenophene; the mixed heterocyclic moiety includes thiadiazole, thiazole or oxazin; and the substituent for the substituted benzenes comprises at least one member selected from the group consisting of methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, isobutyl, amino, N-methylamino, N,N-dimethylamino, carboxylate, methylenecarboxylate, ethylcarboxylate, propylcarboxylate, isopropylcarboxylate, carboxaldehyde, acectox, propionylx, isopropionylox, cyano, aminomethyl, N-methylaminomethyl, N,N-dimethylaminomethyl, carboxainide, N-methylcarboxamide, N,N-dimethylcarboxamide, acetyl, propionyl, formyl, benzoyl, sulfate, methylsulfate, hydroxyl, methoxy, ethoxy, propoxy, isoproxy, thiol, methylthio, ethylthio, propthiothiol, fluoro, chloro, bromo, iodo, trifluoromethyl, vinyl, allyl, propargyl, nitro, carbamoyl, ureido, azido, isocyanate, thiocyanate, hydroxylamino, and nitroso; or a hydrocarbon or heterocyclic ring comprising pyridyl, furanyl, naphthyl, thiazole, selenothienyl, oxazolyl, 1,2,3-triazole, 1,2,4-triazole, imidazoline, pyrimidine, pyridazine or triazine.

14. The method of claim 14, wherein所述 pharmaceutical salts are hydrochloride, hydrobromide, sulfate, hydrosulfate, citrate, fumarate and tartrate salts of said compound.

15. The method of claim 15, wherein所述 pharmaceutical salts are hydrochloride, hydrobromide, sulfate, hydrosulfate, citrate, fumarate and tartrate salts of said compound.

16. The method of claim 1, wherein the lower straight chain or branched alkyl comprises one to seven carbon atoms.

17. The method of claim 1, wherein the lower straight chain or branched alkyl comprises one to seven carbon atoms.

18. The method of claim 1, wherein said alkyl is methyl or ethyl.

19. The method of claim 18, wherein said alkyl is methyl or ethyl.

20. The method of claim 15, wherein said lower straight chain or branched alkyl comprises one to seven carbon atoms.

21. The method of claim 20, wherein said alkyl is methyl or ethyl.

22. The method of claim 1, wherein said compound is cis-2,S-OR,8S-2-[6-[6-{para-toluenesulfonyloxyphenethyl}-1-methyl-2-piperidyl]-acetophenone.

23. The method of claim 1, wherein said compound is cis-2,S-OR,6N-methyl-6-[2-{hydroxy-2-phenylethyl}]-2-phenylethylpiperidine.

24. A cis-2,6-substituted piperidino compound or pharmaceutically effective salt thereof comprising formula (I):

\[
\text{R}^{1}\text{R}^{2}\text{R}^{3}\text{R}^{4}\text{R}^{5}\text{R}^{6}
\]

wherein:

\(X^{1} - Y^{1}\) and \(X^{2} - Y^{2}\) are the same or are independently different from one another and represent a saturated carbon-carbon bond, a trans-carbon-carbon double bond, a carbon-carbon triple bond; a saturated sulfur-carbon bond, a saturated selenium-carbon bond, an oxygen-carbon bond, a saturated nitrogen-carbon bond, a N-alkyl substituted saturated nitrogen-carbon bond where said alkyl is a lower straight chain or branched alkyl, a nitrogen-carbon double bond, or a nitrogen-nitrogen double bond; \(R^{1}\) and \(R^{2}\) are the same or are independently different from one another and represent hydrogen or a lower straight chain or branched alkyl or \(R^{3}\) and \(R^{4}\) together form a ring including a \(-\text{CH} = \text{CH}-\), \(-\text{CH}_{2}\text{CH} = \text{CH}_{2}-\), \(-\text{cis-CH} = \text{CH}\), \(-\text{cis-CH} = \text{CH}\), \(-\text{cis-CH} = \text{CH}\) or \(-\text{cis-CH} = \text{CH}\) moiety; and \(R^{5}\) and \(R^{6}\) are the same or are independently different from one another and represent a saturated or unsaturated hydrocarbon ring; a nitrogen containing heterocyclic moiety; a sulfur containing heterocyclic moiety; a selenium containing heterocyclic moiety; a mixed heterocyclic moiety containing at least two atoms selected from the group consisting of nitrogen, oxygen and sulfur; and an ortho, para or substituted benzene; with the proviso that when \(R^{2}\) and \(R^{3}\) are unsubstituted phenyl groups and \(X^{1} - Y^{1}\) and \(X^{2} - Y^{2}\) are saturated.
carbon-carbon bonds, \(Y^1 \) and \(Y^2 \) cannot be \(\text{CHOR} \) or \(\text{C} = \text{O} \), wherein \(R \) is lower alkyl, lower alkenyl, lower alkylcarboxyl, arylcarboxyl, aralkylcarboxyl, lower alkoxycarbonyl, lower alkylamino-carbonyl, higher alkylcarboxyl or poly (alkylamineoxide)-carbonyl; with the further proviso that when \(R^2 \) and \(R^3 \) are unsubstituted phenyl groups or substituted phenyl groups having an alkyl, alkoxy, chlorine or \(\text{CF}_3 \) as substituents and \(X^1 - Y^1 \) and \(X^2 - Y^2 \) are saturated nitrogen-carbon bonds, \(X^1 \) and \(X^2 \) cannot be \(\text{C} = \text{O} \); and with the further proviso that when \(X^1 - \text{CH} \), \(X^2 - Y^2 \) are saturated carbon-carbon bonds, \(X^1 \) and \(X^2 \) cannot be \(\text{CH}_2 \) or \(\text{CH} = \text{CH} \), \(\text{C} = \text{O} \) or \(\text{CH} = \text{O} \) or \(\text{CHOH} \); with the further proviso that when \(X^1 - Y^1 \) and \(X^2 - Y^2 \) are carbon-carbon double bonds, \(R^1 \) and \(R^3 \) cannot be a saturated or unsaturated hydrocarbon ring with an ortho-, meta- or para substituted moiety selected from the group consisting of hydrogen, methyl, ethyl, \(\text{C}_3 \text{H}_7 \) straight chain or branched alkyl, \(\text{C}_2 \text{H}_4 \text{C} = \text{C} \text{H} \text{C} \), cycloalkyl, vinyl, alkyl, \(\text{C}_3 \text{H}_7 \), alkylbenzyl, phenylethyl, N-alkylaminomethyl, N,N-dimethylaminomethyl, carboxylate, methylcarboxylate, ethylcarboxylate, propylcarboxylate, isopropylcarboxylate, ethanoic acid, propionic acid, isopropionic acid, cyano, aminomethyl, N-methylaminomethyl, N,N-dimethylaminomethyl, carboxamide, N-methylcarboxamide, N,N-dimethylcarboxamide, acetyl, propionyl, formyl, benzoyl, sulfate, methylsulfate, hydroxyl, methoxy, ethoxy, propoxy, isopropoxy, thiol, methylthio, ethylthio, propionylthio, fluoro, chloro, bromo, iodo, trfluoromethyl, propargyl, nitro, carbamoyl, ureido, azido, isocyanate, thiocyanate, hydroxylamino and nitroso.

The compound of claim 24, wherein the saturated hydrocarbon ring includes cyclobutane, cyclopentane, cyclohexane, cycloheptane or cyclooctane.

The compound of claim 24, wherein the substituted benzene includes at least one substituent selected from the group consisting of methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, isobutyl, amino, N-methylamino, N,N-dimethylamino, carboxylate, methylcarboxylate, ethylcarboxylate, propylcarboxylate, isopropylcarboxylate, carboxaldehyde, acetox, propionylox, isopropionylox, cyano, aminomethyl, N-methylaminomethyl, N,N-dimethylaminomethyl, carboxamide, N-methylcarboxamide, N,N-dimethylcarboxamide, acetyl, propionyl, formyl, benzoyl, sulfate, methylsulfate, hydroxyl, methoxy, ethoxy, propoxy, isopropoxy, thiold, methylthio, ethylthio, propionylthio, fluoro, chloro, bromo, iodo, trfluoromethyl, vinyl, allyl, propargyl, nitro, carbamoyl, ureido, azido, isocyanate, thiocyanate, hydroxylamino and nitroso.

The compound of claim 24, wherein the substituted benzene includes at least one substituent selected from the group consisting of methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, isobutyl, amino, N-methylamino, N,N-dimethylamino, carboxylate, methylcarboxylate, ethylcarboxylate, propylcarboxylate, isopropylcarboxylate, carboxaldehyde, acetox, propionylox, isopropionylox, cyano, aminomethyl, N-methylaminomethyl, N,N-dimethylaminomethyl, carboxamide, N-methylcarboxamide, N,N-dimethylcarboxamide, acetyl, propionyl, formyl, benzoyl, sulfate, methylsulfate, hydroxyl, methoxy, ethoxy, propoxy, isopropoxy, thiold, methylthio, ethylthio, propionylthio, fluoro, chloro, bromo, iodo, trfluoromethyl, propargyl, nitro, carbamoyl, ureido, azido, isocyanate, thiocyanate, hydroxylamino and nitroso.

The compound of claim 24, wherein the unsubstituted benzene includes at least one substituent selected from the group consisting of methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, isobutyl, amino, N-methylamino, N,N-dimethylamino, carboxylate, methylcarboxylate, ethylcarboxylate, propylcarboxylate, isopropylcarboxylate, carboxaldehyde, acetox, propionylox, isopropionylox, cyano, aminomethyl, N-methylaminomethyl, N,N-dimethylaminomethyl, carboxamide, N-methylcarboxamide, N,N-dimethylcarboxamide, acetyl, propionyl, formyl, benzoyl, sulfate, methylsulfate, hydroxyl, methoxy, ethoxy, propoxy, isopropoxy, thiold, methylthio, ethylthio, propionylthio, fluoro, chloro, bromo, iodo, trfluoromethyl, propargyl, nitro, carbamoyl, ureido, azido, isocyanate, thiocyanate, hydroxylamino and nitroso.
member selected from the group consisting of methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, isobutyl, amino, N-methylamino, N,N-dimethylamino, carboxylate, methylcarboxylate, ethylcarboxylate, propylcarboxylate, iso propylcarboxylate, carboxaldehyde, acetox y, propionyloxy, isopropionyloxy, cyano, aminomethyl, N-methylaminomethyl, N,N-dimethylaminomethyl, carbothamide, N-methylcarboxamide, N,N-dimethylcarboxamide, acetyl, propionyl, formyl, benzoyl, sulfate, methylsulfate, hydroxyl, methoxy, ethoxy, propoxy, isopro p oxy, thiol, methylthio, ethylthio, propi thi o, fluoro, chloro, bromo, iodo, trifluoromethyl, vinyl, allyl, propargyl, nitro, carbamoyl, ureido, azido, isocyanate, thiocyanate, hydroxylamino, and nitroso; or a hydrocarbon or heterocyclic ring comprising pyridyl, furanyl, naphthyl, thiazole, selenothenyl, oxazolyl, 1,2,3-triazole, 1,2,4-triazole, imidazoline, pyrimidine, pyridazine or triazine.

35. The compound of claim 24, wherein the pharmaceutical salts are hydrochloride, hydrobromide, sulfate, hydrosulfate, citrate, fumarate and tartrate salts of said compound.

36. The method of claim 34, wherein the pharmaceutical salts are hydrochloride, hydrobromide, sulfate, hydrosulfate, citrate, fumarate and tartrate salts of said compound.

37. The compound of claim 24, wherein said lower straight chain or branched alkyl contains one to seven carbon atoms.

38. The method of claim 37, wherein said alkyl is methyl or ethyl.

39. The method of claim 34, wherein said lower straight chain or branched alkyl contains one to seven carbon atoms.

40. The method of claim 39, wherein said alkyl is methyl or ethyl.

41. The compound of claim 24, wherein said compound is cis-2S,6R,8S-2-para-toluenesulfonyloxyphenethyl)-1-methyl-2-piperidyl-acetophenone.

42. The compound of claim 24, wherein said compound is cis-2S,6R-N-methyl-6-[1-(2-hydroxy-2-phenylethyl)]-2-phenylethlpiperidine.