The Nicotine Metabolite, Cotinine, Alters the Assembly and Trafficking of a Subset of Nicotinic Acetylcholine Receptors

Ashley M. Fox
University of Kentucky, ashley.loe@uky.edu

Faruk H. Moonschi
University of Kentucky, faruk.moonschi@uky.edu

Christopher I. Richards
University of Kentucky, chris.richards@uky.edu

Follow this and additional works at: https://uknowledge.uky.edu/chemistry_facpub

Part of the Chemistry Commons

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Repository Citation
Fox, Ashley M.; Moonschi, Faruk H.; and Richards, Christopher I., "The Nicotine Metabolite, Cotinine, Alters the Assembly and Trafficking of a Subset of Nicotinic Acetylcholine Receptors" (2015). *Chemistry Faculty Publications*. 73.
https://uknowledge.uky.edu/chemistry_facpub/73

This Article is brought to you for free and open access by the Chemistry at UKnowledge. It has been accepted for inclusion in Chemistry Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
The Nicotine Metabolite, Cotinine, Alters the Assembly and Trafficking of a Subset of Nicotinic Acetylcholine Receptors

Digital Object Identifier (DOI)
https://doi.org/10.1074/jbc.M115.661827

Notes/Citation Information

This research was originally published in The Journal of Biological Chemistry. Ashley M. Fox, Faruk H. Moonschi, and Christopher I. Richards. The Nicotine Metabolite, Cotinine, Alters the Assembly and Trafficking of a Subset of Nicotinic Acetylcholine Receptors. The Journal of Biological Chemistry. 2015; 290:24403-24412. © the American Society for Biochemistry and Molecular Biology.

The copyright holder has granted the permission for posting the article here.

This article is available at UKnowledge: https://uknowledge.uky.edu/chemistry_facpub/73
The Nicotine Metabolite, Cotinine, Alters the Assembly and Trafficking of a Subset of Nicotinic Acetylcholine Receptors

Ashley M. Fox, Faruk H. Moonschi, and Christopher I. Richards

From the Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506

Background: Nicotine-induced changes in nAChRs are linked to nicotine addiction. Cotinine, the primary metabolite of nicotine, alters the assembly and expression of some subtypes of nAChRs. Cotinine affects trafficking and assembly of a subset of nAChRs. Cotinine exposure for 48 h led to a slight down-regulation of nAChRs (6–9) and has been established as one of the consequences of chronic nicotine exposure (7, 8, 10–12). Nicotine-induced changes in nAChRs have been proposed as a potential component in the mechanism for nicotine addiction (8, 13–17). The current pharmacological chaperoning hypothesis suggests that these changes only require concentrations of nicotine to be high enough to interact with the specific subtype in the endoplasmic reticulum, meaning surface activation is not required (8, 18) Other nAChR ligands, including drugs that have been evaluated as smoking cessation agents, have also been shown to up-regulate nAChRs. These drugs include the partial agonists cytisine (19) and varenicline (20) as well as the antagonist mecamylamine (21). Although nicotine exposure increases the assembly of the high sensitivity receptor, (α4β2)3 (16, 22), cytisine has been shown to alter the stoichiometry of α4β2 with a preference for the low sensitivity receptor, (α4)2(β2)2, potentially due to the existence of an additional binding site for cytisine at the α-α interface (23, 24). The high and low sensitivity stoichiometries of α4β2 exhibit different ligand binding affinities and Ca2+ flux and desensitize at different rates (5, 9). These differences, along with the increased expression of the high sensitivity stoichiometry, are believed to contribute to nicotine addiction (8, 25, 26).

In humans, ~80% of nicotine is metabolized to cotinine, which has a much longer pharmacological half-life (24 h) than nicotine (2 h) (27, 28). Nicotine and cotinine are very similar in structure, varying by only an acetyl group (29). Cotinine is also known to cross the blood-brain barrier (30), where it acts as a partial agonist to nAChRs (31). Studies have shown that cotinine improves learning, memory, and attention as well as enhances cognition and executive function (29, 32). Additionally, cotinine exposure on its own has not been shown to lead to addictive behavior or to the negative cardiovascular effects associated with nicotine (33). As a result, cotinine has generated interest as a pharmacologically active compound, with a few recent studies that examine the effect of cotinine on nAChRs (32, 34, 35). Terry et al. (34) recently found that 1 μM cotinine in combination with low levels of acetylcholine sensitized α7 nAChRs, resulting in increased channel activity as compared with acetylcholine alone. They also found that 10 μM cotinine exposure for 48 h led to a slight down-regulation of α4β2 in a Xenopus laevis oocyte expression system (34). Here...
Cotinine-induced Changes in nAChRs

We utilize a combination of super ecliptic pHluorin-based fluorescence imaging and single molecule measurements to show that although high concentrations of cotinine (>5 μM) do not increase receptor expression on the plasma membrane, lower concentrations of cotinine alter both the assembly and the trafficking of nAChRs.

Experimental Procedures

Reagents—(-)-Cotinine and (-)-nicotine hydrogen tartrate salt were obtained from Sigma-Aldrich.

Nicotinic Receptor Plasmid Constructs—All constructs were preassembled as described previously (36). All subunit plasmids are of mouse origin. Super ecliptic pHluorin (SEP) fluorophores were preassembled as described previously (36). All subunit plasmids labeled on the C terminus with SEP have previously been shown to be functional based on whole cell patch clamp studies (7, 22, 36). The QuikChange II XL site-directed mutagenesis kit was used to create the α5-D398N mutation commonly associated with an increase in risk of smoking and lung cancer. The D398N corresponds to an aspartic acid to asparagine change in position 397 in the mouse plasmid (37).

Cell Culture and Transfection—Undifferentiated mouse neuroblastoma 2a (N2a) cells were cultured using standard tissue culture techniques and maintained in growth media consisting of DMEM and Opti-MEM medium replacement for a total of 48 h of exposure before the time of the transfection and replenished in the growth medium or peripheral endoplasmic reticulum (38). SEP was excited with a 488-nm diode-pumped solid-state laser (10 s). Insertion events were defined as a burst of fluorescence at pH 7.4 and 5.4. When the pH of the extracellular solution is <6, nAChRs located on the PM transition into the off state, so the observed fluorescence is solely from nAChRs in the peripheral ER (7, 38, 41). The integrated density of TIRF images, showing the relative number of fluorescent receptors, are collected at both pH 7.4 and 5.4. The integrated density at pH 5.4 is subtracted from the total integrated density of fluorophores in the ER and on the PM shown at pH 7.4 to determine the integrated density of receptors on the plasma membrane (PMID). The ratio of receptors on the plasma membrane (% PM) is the PMID divided by the total integrated density at pH 7.4 to provide a ratio of receptors within the TIRF view that reside on the membrane. Increased PMID reflects an up-regulation in the number of receptors found on the PM. An increase in the percentage of receptors found on the plasma membrane (% PM) corresponds to a change in the distribution of receptors between the ER and PM.

Real time images were acquired at a frame rate of 200 ms for 1500 frames to capture fusion of nAChR-containing transport vesicles with the plasma membrane. These studies enable us to identify changes in the number of vesicles that contain nAChRs but not in the total number of vesicles. Insertion events were manually counted per cell during a randomly chosen 50 frames (10 s). Insertion events were defined as a burst of fluorescence at the PM lasting at least 2 frames (400 ms) and including lateral spreading of fluorophores to ensure transient full fusion of the vesicle and delivery of nAChRs to the membrane. Persistent, continuously repeating bursts of fluorescence were not counted because a discrete exocytic event could not be guaranteed.

Receptor Expression Data Analysis—Quantification of fluorescence intensity was determined using ImageJ (National Institutes of Health) by manually selecting an intensity-based threshold and region of interest. All figures show results from a single imaging session that are representative of data collected on at least three separate occasions. All graphs show the mean with error bars representing S.E. p values were determined using a two-tailed t test with equal variance not assumed.

Stoichiometric Determination—Vesicles were prepared from HEK-293T cells expressing α4-gfp/β2-wt as described previ-
Cotinine-induced Changes in nAChRs

Cotinine Increases Number of α4β2 Insertion Events—We utilized SEP-tagged nAChRs to quantify nAChR-containing vesicle trafficking by measuring the number of vesicle insertion events at the plasma membrane. The SEP tag is oriented on the luminal side of secretory vesicles so that they are maintained at a low pH prior to delivery to the PM. As a result, receptors are not fluorescent as they are trafficked to the PM but turn on as the vesicle fuses with the PM, when the SEP tag is exposed to the extracellular solution (pH 7.4) (39, 45). We defined an insertion event as a burst of fluorescence appearing at the plasma membrane, which corresponds to membrane insertion of an SEP-tagged nAChR. After the initial insertion event, a lateral spread of fluorescence was observed corresponding to full fusion of the vesicle and subsequent diffusion of the labeled receptors. We counted insertion events in cells expressing α4β2, α4β2α5, or α4β2α5, and 1 μg/ml biotinylated anti-GFP antibody. Single vesicles were imaged using TIRF microscopy while covered in 1 ml of PBS. TIRF microscopy limits excitation to within ~100 nm of the substrate surface, decreasing background fluorescence. Generating small enough vesicles limits the probability of capturing more than one receptor in a single vesicle. This single molecule isolation, as well as immobilization of these vesicles within the TIRF illumination, allows us to perform single receptor measurements. Control experiments using monomeric receptors showed that there was a low probability of having more than one receptor per isolated vesicle. Of the vesicles generated via nitrogen cavitation, ~15% contain a receptor (42). Each field of view was imaged for 500 frames at a frame rate of 200 ms while undergoing continuous 488 nm excitation with an intensity of 60 watt/cm². Autofocus (Olympus ZDC2) was used to minimize focal drift. Time traces of 4 × 4-pixel regions of interest were generated using ImageJ with the Time Trace Analyzer V3.0 plugin. Photobleaching steps were determined manually as described previously (42–44). Previously, a discrete bleaching step was confirmed to correspond to one subunit (42, 43). Table 1 includes the number of accepted and rejected spots as well as the complete raw observed distribution of stoichiometry for each condition. Time traces showing continuous decrease in fluorescence intensity or indistinct number of bleaching steps were rejected. GFP fails to mature a small percentage of the time, leading to some subunits not exhibiting typical fluorescence, which would result in the undercounting of bleaching events (42, 44). To account for this, the probability of observing one, two, or three photobleaching steps in the time traces for each stoichiometry was calculated using a custom MATLAB script by fitting data to a binomial distribution, using the probability of GFP fluorescing equal to 0.90 (44). The agreement of theoretical and experimental data was determined using a χ-squared goodness of fit analysis. The probability of observing a specific number of photobleaching steps, for a receptor with fixed number of subunits is calculated using

$$F(k, n, p) = \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k} \quad \text{(Eq. 1)}$$

does not result in an increase in the number of receptors on the PM (Fig. 2A; p < 0.05). The highest levels of up-regulation were reached in the presence of 1 μM cotinine, resulting in more than a 2-fold increase in PMID (Fig. 2A; p < 0.001) and over a 50% shift in distribution toward the PM (Fig. 2B; p < 0.001). Exposure to 5 μM cotinine showed an increase over no drug, but the effect was much less than observed with 1 μM. Exposure to 10 μM cotinine did not result in an increase in the number of receptors on the PM (Fig. 2A), although the distribution of receptors at 10 μM slightly favors the PM (Fig. 2B; p < 0.05). Results

Up-regulation of α4β2 Receptors—We used SEP, a pH-sensitive variant of GFP (36, 39, 45), to quantify the up-regulation of α4β2 nAChRs in the presence of nicotine and cotinine. SEP undergoes 488 nm excitation and exhibits green fluorescence at neutral pH but is not fluorescent under acidic conditions of pH < 6 (39). We exposed N2a cells expressing α4-Sep and β2-wt subunits to cotinine concentrations ranging from 50 nm to 10 μM. Fig. 1 shows representative TIRF images of N2a cells expressing α4-Sep β2-wt treated with no drug (Fig. 1A), 500 nm nicotine (Fig. 1B), or 1 μM cotinine (Fig. 1C). For all rows, the first column shows a cell imaged in TIRF with an extracellular pH of 7.4 (ER and PM fluorescing), the second column shows an image of the same cell at pH 5.4 (fluorescence from ER only), and the third column shows a subtracted image representing just the PM component. Although the subtracted TIRF footprint shown in the third column qualitatively shows PM expression for the given cells, the extent of up-regulation was quantified by calculating the PMID of α4β2 receptors with and without cotinine. Distribution of α4β2 receptors within the cell are compared using percentage of plasma membrane (% PM), calculated by dividing the PM integrated density, determined from the difference between pH 7.4 and pH 5.4 images, by the tot integrated density of receptors fluorescing on the PM and ER at pH 7.4. Increased expression on the plasma membrane was observed when cells were treated with as little as 100 nM cotinine, showing a 50% increase in number of receptors on the membrane (Fig. 2A; p < 0.05), as well as a 25% shift in the distribution (% PM) of receptors toward the membrane (Fig. 2B; p < 0.01). The third column qualitatively shows PM expression for the given cells, the extent of up-regulation was quantified by calculating the PMID of α4β2 receptors with and without cotinine. Distribution of α4β2 receptors within the cell are compared using percentage of plasma membrane (% PM), calculated by dividing the PM integrated density, determined from the difference between pH 7.4 and pH 5.4 images, by the tot integrated density of receptors fluorescing on the PM and ER at pH 7.4. Increased expression on the plasma membrane was observed when cells were treated with as little as 100 nM cotinine, showing a 50% increase in number of receptors on the membrane (Fig. 2A; p < 0.05), as well as a 25% shift in the distribution (% PM) of receptors toward the membrane (Fig. 2B; p < 0.01). The levels of up-regulation were reached in the presence of 1 μM cotinine, resulting in more than a 2-fold increase in PMID (Fig. 2A; p < 0.001) and over a 50% shift in distribution toward the PM (Fig. 2B; p < 0.001). Exposure to 5 μM cotinine showed an increase over no drug, but the effect was much less than observed with 1 μM. Exposure to 10 μM cotinine did not result in an increase in the number of receptors on the PM (Fig. 2A), although the distribution of receptors at 10 μM slightly favors the PM (Fig. 2B; p < 0.05).
α4β2α5-D398N as compared with those exposed to no drug or 1 μM cotinine. Fig. 3B shows a representative series of images of an insertion event, illustrating frames prior to insertion (Fig. 3B, panel 1), during arrival of the vesicle shown as a burst of fluorescence (Fig. 3B, panel 2), followed by a lateral spread (Fig. 3B, panels 3–6) and diffusion across the membrane (Fig. 3B, panels 7–9). Cells treated with 1 μM cotinine exhibited approximately a 30% increase in the number of vesicles that contained α4β2 as compared with untreated cells (Fig. 3C). When the α5D or α5N auxiliary subunit was coexpressed with α4 and β2 subunits, there were no differences in the trafficking rate of nAChRs in the presence of cotinine.

Cotinine Exposure Results in Preferential Assembly of (α4)2(β2)3—Because nAChRs are pentameric, α4β2 can assemble with either an (α4)2(β2)2 or an (α4)2(β2)3 stoichiometry. We used a technique that our laboratory recently developed to perform single molecule analysis of subunit stoichiometry by spatially isolating nAChRs embedded in cell membrane-derived vesicles (42). We generated vesicles from cells expressing α4-gfp and β2-wt subunits. These vesicles were isolated on glass substrates, and TIRF microscopy was used to visualize the GFP fluorescence signal (Fig. 4A). We used single step photo bleaching of GFP to identify the number of α4-gfp subunits in each receptor. The number of bleaching steps corresponds to the number of GFP-tagged subunits present and, therefore, indicates the stoichiometry of the receptor (22, 44). Examples of two bleaching steps (Fig. 4B), corresponding to two α4-gfp subunits and (α4)2(β2)2 stoichiometry, or three bleaching steps (Fig. 4C) indicating (α4)2(β2)3 stoichiometry, are shown.

We plotted the distribution of individual vesicles showing one, two, or three bleaching steps. The total distribution of observed bleaching steps including the total number of vesicles accepted or rejected is included in Table 1. For cells not exposed to any compound, binomial distributions weighted for 60% (α4)2(β2)2 and 40% (α4)2(β2)3 fit the observed distribution (Fig. 4D). Treatment with 500 nM nicotine altered the stoichiometric distribution with a shift toward a higher percentage of receptors with the high sensitivity stoichiometry. The distribution of nicotine-exposed cells was best fit for binomial distributions weighted with 35% (α4)2(β2)2 and 65% (α4)2(β2)3 (Fig. 4E). We repeated these experiments in the presence of 1 μM cotinine. This also resulted in a shift in the stoichiometric distribution toward (α4)2(β2)2. The observed distribution fit to binomials weighted 30% (α4)2(β2)2 and 70% (α4)2(β2)3 (Fig. 4F). Fig. 5 compares the stoichiometries derived from the weighted fits (Fig. 4, d–f) of α4β2 with no drug, nicotine, and cotinine. Exposure to either nicotine or cotinine results in the preferential assembly of the high sensitivity (α4)2(β2)2 receptor.

Previous studies have altered the primary stoichiometry of α4β2 expressed using biased transfection, with one subunit expressed at higher levels than the other (4, 5, 19, 46). These types of studies have primarily used Xenopus oocyte expression systems with changes in stoichiometry determined from changes in the biphasic dose response based on whole cell current measurements. To verify our observations of nicotine- and cotinine-induced changes in (α4)2(β2)2 stoichiometry, we performed stoichiometry measurements with biased transfection.
Cotinine-induced Changes in nAChRs

FIGURE 2. Cotinine-induced up-regulation of α4β2. A, quantification of α4β2 PMID (A) shows an up-regulation of α4β2 receptors with exposure to as little as 100 nM cotinine. a.u., arbitrary units. B, cotinine also alters the distribution of receptors within the field of view, as shown by an increase in % PM for α4β2 in N2a cells treated with cotinine (n = 40, 21, 23, 13). Data are mean values ± S.E. (**, p < 0.01; ***, p < 0.001).

ratios of 10:1, 4:1, 1:1, and 1:4 (α4:β2). Single molecule analysis showed that the fraction of (α4)3(β2)2 reduced and the fraction of (α4)2(β2)3 increased when higher levels of β2 were transfected (1:4 (α4:β2)) (Fig. 6).

Low Concentrations of Cotinine Decrease α6β2β3 Receptor Density on the PM—We also evaluated the effect of cotinine on the expression of α6β2 and α6β2β3 nAChRs. Matching previous studies (7), our data also show that incorporation of the β3 subunit into an α6β2 pentamer results in increased expression levels on the PM (Fig. 7; p < 0.05). Once β3 is included in the pentamer, there appears to be a cotinine concentration-dependent response resulting in lower levels of α6β2β3 nAChR on the plasma membrane. At low levels of cotinine (100 nM), there is a trend toward a decreased number of α6β2β3 nAChRs, reaching significance with 500 nM cotinine (Fig. 7; p < 0.05). The down-regulated level of expression of α6β2β3 with 500 nM cotinine is comparable with that of α6β2 when the β3 subunit is absent. Down-regulation was less pronounced when cotinine treatment was increased to 1 μM cotinine and was lost at 5 μM cotinine as PMID is comparable with α6β2β3 with no drug.

Cotinine Does Not Alter Density or Trafficking of α6β2, α4β2α5, or α3β4 receptors—Although α6β2β3 exhibited down-regulation as a result of cotinine exposure, we found that cotinine had no effect on the membrane expression of α6β2. SEP-based studies show no significant differences in PM integrated density or the percentage expressed on the plasma membrane for α6β2 exposed to cotinine (Fig. 8A). Likewise, PMID and % PM of α4β2α5, α4β2α5-D398N (Fig. 8, B–D), α3β4, α3β4α5, and α3β4α5-D398N (Fig. 9) did not change upon the addition of 500 nM nicotine or 1 μM cotinine, although we did observe a cotinine-independent difference in the distribution of α4β2α5-D398N as compared with 398D with an increase in the fraction of observable receptors on the plasma membrane as compared with the peripheral ER.

Discussion

It is well established that chronic nicotine exposure up-regulates and alters the assembly of α4β2 nAChRs (10–12, 47), but the effects of nicotine metabolites on nAChR assembly and trafficking are not well studied. We exposed cells to physiologically relevant levels of cotinine matching the average reported values of cotinine in a smoker’s blood, urine, or brain (48–50). Our data show that cotinine up-regulates α4β2 nAChRs at concentrations of 1 μM cotinine, which corresponds to the average concentration of cotinine in the blood of a typical smoker (48). Cotinine induces significant increases in both α4β2 PMID and % PM at as little as 100 nM. This suggests that cotinine could potentially contribute to α4β2 up-regulation in smokers because brain concentrations of cotinine are estimated to be ~300 nM (28). However, at higher concentrations of cotinine, this up-regulation effect is lost, suggesting a secondary effect that depresses PM expression. Cotinine acts as a partial agonist of nAChRs, activating channels at higher concentrations. It has also been shown that nAChR ligands at higher concentrations can result in endocytosis (51). The highest concentrations (10 μM) used in our studies may be sufficient to cause endocytosis of α4β2 nAChRs, resulting in a decrease of observed receptors on the PM.

Due to the observed increase in the number of α4β2 receptors located on the plasma membrane, we speculated that the increase in receptors at lower concentrations of cotinine could be partially due to an increase in the trafficking of receptors to the PM. We found that 1 μM cotinine increases the number of single vesicle insertion events, which suggests that cotinine, similar to nicotine, increases the trafficking of α4β2 from the ER to the PM. Therefore, the higher PMID and % PM levels resulting from cotinine exposure are at least partially the result of increased frequency of insertion of vesicles containing α4β2 receptors.

It has also been shown that nicotine exposure results in a preferential assembly of high sensitivity α4β2 receptors with an (α4)2(β2)3 stoichiometry (22). In the absence of nicotine or cotinine, the fifth position of the pentamer slightly favors occupation by an α subunit. In the presence of cotinine or nicotine, α4β2 preferentially assembles the high sensitivity (α4)2(β2)3 stoichiometry. This alteration does not require surface recep-
tor-activating concentrations of nicotine, but is thought to be linked to the mechanism of nicotine addiction.

Changes in nAChR number, stoichiometry, and trafficking are well established consequences of exposure to nicotine (8, 10, 12, 36, 47). It is possible that cotinine-induced up-regulation results from a similar mechanism as nicotine, likely acting inside the cell by binding immature subunits to enhance the maturation and stabilization of nAChRs (18, 52). This chaperoning process is not unique to nicotine, and can potentially occur with any ligand that readily permeates cell membranes and interacts with intracellular nAChRs. This is consistent with our observations of nAChRs exposed to cotinine, which is a partial agonist of α4β2 (31, 53).

In the case of nicotine, up-regulation is subtype-specific. It appears that subtypes with a higher basal PM density are not subjected to nicotine-induced up-regulation, possibly because receptor transport is already efficient. For instance, basal levels of α3β4 nAChRs are three times higher than β2-containing nAChRs and have not been shown to up-regulate when exposed to concentrations of nicotine seen in smokers (14, 36), but can up-regulate at much higher concentrations (13). If cotinine affects nAChRs in a similar mechanism, α3β4 may not be up-regulated by cotinine because of the already high levels of PM expression.

Although α4β2 shows clear up-regulation when exposed to nicotine, contradicting results have been reported for α6β2*.

FIGURE 3. Increased number of α4β2 single vesicle insertion events when exposed to 1 μM cotinine. A, TIRFM image of an N2a transfected with α4-sep β2-wt exposed to 1 μM cotinine (cot). Images were collected at a 200-ms frame rate and analyzed over 10 s. An example of an insertion event is shown in B, where panel 1 is the frame before the insertion and panel 2 shows vesicle arrival, followed by a lateral spread (panels 3–6) and diffusion across the membrane (panels 7–9). C, insertion events were counted for α4-sep β2-wt, α4-sep β2-wt α5-wt, or α4-sep β2-wt α3-D398N with or without exposure to 1 μM cotinine for 48 h, showing an increase in frequency in insertion for α4β2 exposed to cotinine. (n = 5) Data are mean values ± S.E. (**, p < 0.01).
with claims of up-regulation, down-regulation, or no change when chronically exposed to nicotine (54–56). These discrepancies may be due to the presence or absence of the auxiliary \(\beta_3 \) subunit and a dose-dependent response of \(\alpha_6 \beta_2 \beta_3 \) to nicotine (7). Our data also show that the incorporation of a \(\beta_3 \) auxiliary subunit resulted in higher levels of expression on the PM as compared with \(\alpha_6 \beta_2 \) alone, as well as a dose-dependent down-regulation of \(\alpha_6 \beta_2 \beta_3 \) in the presence of cotinine. Recent evi-

![Image](https://example.com/image.png)

FIGURE 4. Cotinine exposure results in preferential assembly of \((\alpha_4)_2(\beta_2)_3 \). A, cell-derived vesicles containing a single nAChR were isolated and immobilized on a glass coverslip and then imaged using TIRFM. Because one fluorophore corresponds to the presence of one GFP-tagged subunit in an assembled receptor, the number of bleaching steps corresponds to the number of \(\alpha \)-GFP subunits. B, time traces for two bleaching steps correspond to the presence of 2 \(\alpha_4 \)-gfp subunits, and thus to \((\alpha_4)_2(\beta_2)_3 \) stoichiometry. C, three bleaching steps correspond to \((\alpha_4)_3(\beta_2)_2 \) stoichiometry. Observed and fitted distributions of number of bleaching steps for \(\alpha_4 \)-gfp/\(\beta_2 \)-wt are shown. D, no drug exposure results in nearly equal amounts of \((\alpha_4)_2(\beta_2)_3 \) and \((\alpha_4)_3(\beta_2)_2 \) stoichiometry. E and F, exposure to nicotine alters this distribution to 65% \((\alpha_4)_2(\beta_2)_3 \) and 35% \((\alpha_4)_3(\beta_2)_2 \) stoichiometry (E), whereas cotinine exposure results in a 70% \((\alpha_4)_2(\beta_2)_3 \) and 30% \((\alpha_4)_3(\beta_2)_2 \) distribution (F). The error bars for subunit distribution are based on counting events and are calculated as the square root of the counts.

TABLE 1

<table>
<thead>
<tr>
<th>No. of vesicles</th>
<th>One step</th>
<th>Two steps</th>
<th>Three steps</th>
<th>Four steps</th>
<th>Rejected</th>
</tr>
</thead>
<tbody>
<tr>
<td>No drug</td>
<td>903</td>
<td>28</td>
<td>171</td>
<td>160</td>
<td>12</td>
</tr>
<tr>
<td>+ Cotinine (1 (\mu)M)</td>
<td>782</td>
<td>47</td>
<td>194</td>
<td>64</td>
<td>10</td>
</tr>
<tr>
<td>+ Nicotine (500 nM)</td>
<td>800</td>
<td>40</td>
<td>202</td>
<td>83</td>
<td>11</td>
</tr>
</tbody>
</table>

FIGURE 5. Drug-induced changes in assembly of \(\alpha_4 \beta_2 \). Nicotine and cotinine exposure causes a higher percentage of \(\alpha_4 \beta_2 \) nAChRs to be assembled with \((\alpha_4)_2(\beta_2)_3 \) stoichiometry. When no drug is present, 40% of \(\alpha_4 \beta_2 \) has \((\alpha_4)_3(\beta_2)_2 \) stoichiometry, whereas 60% has \((\alpha_4)_2(\beta_2)_3 \). This distribution is changed to 65% \((\alpha_4)_2(\beta_2)_3 \) and 35% \((\alpha_4)_3(\beta_2)_2 \) in the presence of nicotine and 70% \((\alpha_4)_2(\beta_2)_3 \) and 30% \((\alpha_4)_3(\beta_2)_2 \) in the presence of cotinine.

FIGURE 6. Biased transfection as a control for changes in stoichiometry. The ratios listed on the x axis represent the transfected ratio of \((\alpha_4)_3(\beta_2)_2 \). Biased transfection at a 1:4 ratio \((\alpha_4)_3(\beta_2)_2 \) resulted in a clear shift toward the \((\alpha_4)_2(\beta_2)_3 \) stoichiometry (65%) as compared with unbiased transfection, which results in 40% \((\alpha_4)_3(\beta_2)_2 \) based on the distribution of single receptor bleaching steps. Biased transfection of 4:1 toward \(\alpha_4 \) did not result in changes in the distribution of stoichiometries as compared with unbiased transfection. However, biased transfection of 10:1 toward \(\alpha_4 \) did shift the stoichiometry toward the \((\alpha_4)_3(\beta_2)_2 \) stoichiometry from 60% when unbiased to 70% when biased.
Cotinine-induced Changes in nAChRs

FIGURE 7. Cotinine-induced down-regulation of α6β2β3. Quantification of PMID for α6β2β3 as compared with a control with no β3 subunit. α6β2, shows a significant increase in the number of receptors on the membrane when β3 is incorporated into the α6β2 pentamer. When β3 is present, 500 nM cotinine significantly decreases the PMID, with a trend toward down-regulation at 100 nM cotinine. Down-regulation is less pronounced when cotinine treatment was increased to 1 μM cotinine and is lost at 5 μM cotinine as PMID is comparable with α6β2β3 with no drug (n = 19, 27, 16, 11, 11). Data are mean values ± S.E. (*, p < 0.05 as compared with control of α6β2β3 with no drug). a. u., arbitrary units.

FIGURE 8. Cotinine does not affect α6β2- or α5-containing nAChRs. A, cotinine does not alter the expression of α6β2 (n = 18, 11, 9, 18, 8), a. u., arbitrary units. B and C, incorporation of α5 results in loss of up-regulation after treatment with cotinine in terms of number of receptors (C) and distribution toward the membrane (B) (n = 19, 21, 20, 10, 37). D, the distribution of receptors containing an α5-D398N subunit is altered to a higher PM, regardless of the concentration of cotinine, whereas the number of receptors remains unchanged (n = 14, 23, 26, 33, 24, 30). Data are mean values ± S.E. (**, p < 0.01).

FIGURE 9. Nicotine and cotinine do not affect trafficking of α3β4. A and B, no changes in number (A) or distribution (B) of α3β4, α3β4α5, or α3β4α5D398N were seen when exposed to 500 nM nicotine (Nic, n = 13, 14, 11, 14, 11, 4, 8), a. u., arbitrary units. C and D, exposure to 1 μM cotinine (Cot) also resulted in no changes in α3β4, α3β4α5, or α3β4α5D398N PMID (C) or % PM (D) (n = 13, 14, 11, 7, 4, 18). Data are mean values ± S.E.

Evidence suggests that a KKK motif within the β3 subunit plays a regulatory role in α6β2 expression (7). This motif is essential for nicotine-induced up-regulation of α6β2β3, possibly acting as a recognition site for COPI binding (7). Cotinine potentially differs in its interaction with the KKK motif as compared with nicotine. Interestingly, another study has shown that cotinine only interacts with a subset of α6β2*, whereas the entire population is sensitive to nicotine (53). The lack of cotinine-induced up-regulation of α6β2β3 is potentially related to its action on only a portion of this receptor population. This effect could also partially explain discrepancies between groups that detect up-regulation (7, 55, 56) or down-regulation (57) in varying brain regions based on concentrations of nicotine or cotinine present.

These studies show that nicotine’s primary metabolite, cotinine, has a similar effect on the trafficking and assembly of nAChRs as seen with nicotine. Cotinine has a longer half-life and higher sustained concentration than nicotine in the human body. It is possible that variations in the concentration of cotinine resulting from gene variation and clearance rates in different ethnicities could account for some differences in rates of nicotine addiction.

Author Contributions—A. M. F. and C. I. R. designed the studies and wrote the paper. A. M. F. and F. H. M. performed the experiments. F. H. M. wrote the analysis software for the single molecule studies. All authors reviewed the results and approved the final version of the manuscript.

References
4. Zwart, R., and Vijverberg, H. P. (1998) Four pharmacologically distinct subtypes of α4β2 nicotinic acetylcholine receptor expressed in Xenopus...
Cotinine-induced Changes in nAChRs

Cotinine-induced Changes in nAChRs

The Nicotine Metabolite, Cotinine, Alters the Assembly and Trafficking of a Subset of Nicotinic Acetylcholine Receptors
Ashley M. Fox, Faruk H. Moonschi and Christopher I. Richards

J. Biol. Chem. 2015, 290:24403-24412. doi: 10.1074/jbc.M115.661827 originally published online August 12, 2015

Access the most updated version of this article at doi: 10.1074/jbc.M115.661827

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

This article cites 57 references, 30 of which can be accessed free at http://www.jbc.org/content/290/40/24403.full.html#ref-list-1