Toxoplasmosis Complications and Novel Therapeutic Synergism Combination of Diclazuril Plus Atovaquone

Helieh S. Oz
University of Kentucky, hoz2@email.uky.edu

Click here to let us know how access to this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/internalmedicine_facpub
Part of the Medicine and Health Sciences Commons

Repository Citation
Oz, Helieh S., "Toxoplasmosis Complications and Novel Therapeutic Synergism Combination of Diclazuril Plus Atovaquone" (2014). Internal Medicine Faculty Publications. 73.
https://uknowledge.uky.edu/internalmedicine_facpub/73

This Article is brought to you for free and open access by the Internal Medicine at UKnowledge. It has been accepted for inclusion in Internal Medicine Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Toxoplasmosis Complications and Novel Therapeutic Synergism Combination of Diclazuril Plus Atovaquone

Notes/Citation Information
Published in *Frontiers in Microbiology*, v. 5, article 484, p. 1-9.

© 2014 Oz.

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Digital Object Identifier (DOI)
http://dx.doi.org/10.3389/fmicb.2014.00484

This article is available at UKnowledge: https://uknowledge.uky.edu/internalmedicine_facpub/73
Toxoplasmosis complications and novel therapeutic synergism combination of diclazuril plus atovaquone

Helieh S. Oz*

Department of Internal Medicine, University of Kentucky Medical Center, Lexington, KY, USA

INTRODUCTION

Toxoplasmosis is a major cause of foodborne disease, congenital complication, and morbidity. There is an urgent need for safe and effective therapies to encounter congenital and persisting toxoplasmosis. The hypothesis was: combination diclazuril plus atovaquone to exert a novel therapeutic synergy to prevent toxoplasmosis syndromes.

Methods: Pregnant dams were treated with diclazuril and atovaquone monotherapy or combination therapy and infected i.p with Toxoplasma tachyzoites.

Results: Infected dams developed severe toxoplasmosis associated syndrome with increases in the abdominal adiposity surrounding uteri, gastertesintestinal and other internal organs and excessive weight gain. Numerous organisms along with infiltration of inflammatory cells were detected scattered into adipose tissues. Combination therapy (p < 0.01) and to a lesser extent diclazuril (p < 0.05) protected dams from inflammatory fat and excess weight gains. This was consistent with pancreatitis development in infected dams (versus normal p < 0.05) with infiltration of inflammatory cells, degeneration and necrosis of pancreatic cells followed by the degeneration and loss of islets. Combination and monotherapy protected dams from these inflammatory and pathological aspects of pancreatitis. Infected dams exhibited severe colitis, and colonic tissues significantly shortened in length. Brush border epithelial cells were replaced with infiltration of lymphocytes, granulocytes, and microabscess formations into cryptic microstructures. Combination therapy synergistically preserved colonic structure and normalized pathological damages (p < 0.001) and to a lesser degree diclazuril monotherapy protected dams from colitis (p < 0.05) and gastrointestinal toxoplasmosis. Other complications included severe splenitis (p < 0.001) and hepatitis (p < 0.001) which were normalized with combination therapy.

Conclusion: Combination diclazuril plus atovaquone was safe and with a novel therapeutic synergism protected dams and fetuses from toxoplasmosis.

Keywords: toxoplasmosis, combination, diclazuril, atovaquone, synergism, obesity, Toxoplasma, gastroenteritis

*Correspondence:
Helieh S. Oz, Department of Internal Medicine, University of Kentucky Medical Center, Lexington, KY 40536, USA
E-mail: hoz2@email.uky.edu

www.frontiersin.org

Published: 15 September 2014

doi: 10.3389/fmicb.2014.00484
in a feto-maternal toxoplasmosis model (Oz and Tobin, 2012; Oz, 2014). Toxoplasma infected animals had increased weight gain and atrophy of myenteric neurons of the jejunum (Hermes-Uliana et al., 2011). Obesity has become a cosmopolitan syndrome and poorly understood pathogenesis with a potential link to toxoplasmosis. Other toxoplasmosis complications are gastroenteritis, pancreatitis, diabetes, retinochoroiditis, and encephalitis.

Current available therapy for congenital toxoplasmosis is spiramycin associated with pyrimethamine plus sulfadoxine combined therapy, to protect fetus from Toxoplasma organism transmission in actively infected moms. However, this approach is not always effective and the treatment has fetotoxic side effects (Habib, 2008; Berrebi et al., 2010; Cortina-Borja et al., 2010; Julliac et al., 2010). Pyrimethamine while used is a pregnancy classified C drug, which may cause bone marrow suppression in the mom and the newborn. In a clinical trial in France, 24% of sera positive women treated with spiramycin and pyrimethamine plus sulfadoxine combination delivered Toxoplasma infected infants (Bessieres et al., 2009). Spiramycin monotherapy can be effective only when administered during early stage of pregnancy and is principally a preventive measure (Julliac et al., 2010). More than half of patients treated with spiramycin retained Toxoplasma DNA in their blood and remained infected (Habib, 2008). Fifty-five percent of patients treated with combination of sulfadiazine + pyrimethamine plus folic acid therapy have adverse effects (Capobiano et al., 2014). Meanwhile, the efficacy of azithromycin, clarithromycin, atovaquone, dapsone, and cotrimoxazole (trimethoprim-sulfamethoxazole), has not been clinically proven (Petersen and Schmidt, 2003). Considering the importance of complications and the worldwide epidemic, there is an urgent need for effective and nontoxic therapeutic modalities for congenital or persisting chronic toxoplasmosis.

Diclazuril and its related benzeneacetonitriles have been used in treatment and prevention of livestock and poultry coccidiosis (Assis et al., 2010) and S. neurona in EPM. Diclazuril is a safe and effective compound at therapeutic dose levels (Assis et al., 2010; Oz and Tobin, 2014). Diclazuril targets chloroplast derived chlorophyll a-D1 complex present in Toxoplasma and other Apicomplexans and not exists in mammalian cells (Hackstein et al., 1995).

Atovaquone is a FDA approved toxoplasmosis treatment but not in feto-maternal toxoplasmosis (Cortina-Borja et al., 2010; Oz and Tobin, 2012; Oz, 2014). Atovaquone is a safe and effective drug against plasmodial infections (Hudson et al., 1991), Babesia microti, causative of human babesiosis (Hughes and Oz, 1995; Oz and Westlund, 2012) and other opportunistic disease, Pneumocystis pneumonia (Oz et al., 1999).

Recently, the efficacy of diclazuril and atovaquone monotherapy were reported against inflammatory and infectious aspects of mild to moderate feto-maternal toxoplasmosis (Oz and Tobin, 2012, 2014; Oz, 2014). Therapeutic diclazuril plus atovaquone combination have not been previously reported against colitis, pancreatitis and some other inflammatory complications in toxoplasmosis. This investigation explores the efficacy of combination therapy with diclazuril plus atovaquone to exert a novel therapeutic synergism to protect against toxoplasmosis.

MATERIALS AND METHODS

ETHICS

This research was conducted according to the guidelines and approved by the IBC and the Care and Use of Laboratory Animal Care (IACUC) at University of Kentucky Medical Center.

Toxoplasma gondii PROPAGATION

Toxoplasma Type II isolates including ME-49 strain are reported predominant in human congenital Toxoplasmosis (Ajzenberg et al., 2002). For this investigation, Toxoplasma organisms from PTG strain (ME-49, ATCC50841) were originally cloned and propagated by Dr. Daniel How of the Maxwell H. Gluck Equine Research Center at the University of Kentucky (Howe et al., 1997; Oz and Tobin, 2012). Briefly, Tachyzoites were cultured by serial passage in bovine turbinate cells and maintained in MEMRS (HyClone Labs, Inc.) supplemented with 4% fetal clone III (HyClone, Labs, Inc.), Penicillin/streptomycin/fungizone (BioWhittaker, Inc.), and nonessential amino acids solution (HyClone, Labs, Inc.). Upon disruption of the host cell monolayer, extracellular tachyzoites were harvested and purified from host cell debris by filtration through 3.0 μm membranes. Tachyzoites were enumerated in a hemocytometer and suspended in PBS to the appropriate concentrations for inoculation. All inoculations were administered i.p. in 100 μL volume into dams within 1 h of harvesting to ensure viability.

CONGENITAL TOXOPLASMOsis MODEL

Day 1 programmed pregnant (9 weeks old) CD1 mice were purchased from Charles River Lab Inc., Wilmington, MA, USA). Dams were housed individually in microisolator cages in a pathogen free environment and maintained at 22°C with a 12: 12 h light: dark cycle at the Maxwell H. Gluck Equine Research Center Laboratory Animal Facility. Animals were fed irradiated rodent chow and sterilized drinking water ad libitum. After 5 days acclimation, dams were weighed and ear punched for appropriate identification. They were assigned into 6–8 animals per group and injected i.p. with 100 μL PBS containing 0 or 600 tachyzoites with 0.5 mL insulin syringes. Control dams received 100 μL injection with PBS alone (Oz and Tobin, 2012). Animals were monitored daily three times for distress, pain, physical appearance, and vaginal discharge to detect abortion or early delivery (Oz and Tobin, 2012, 2014). The experiment was terminated on gestation day 16 before possible early or premature birth to study the fetal and maternal aspects of the disease.

SPECIMENS COLLECTION

Animals were euthanized using CO2 inhalation. Immediately their chests were opened and blood from heart collected in microtainers (BD Biosource, Rockville, MD, USA) for hemotocrit evaluation. Sera were separated and stored at frozen −80°C. The splenic weight and length were recorded. Heart, liver, and uterus were excised and weighed. Colonic contents were removed and colonic length and weigh data measured and flash frozen in liquid nitrogen and stored at −80°C for future studies. Live fetuses were removed from uteri, counted, and weighed and their lengths measured using a digital caliper. All aspects of the investigation were performed according to the guidelines by Institutional Biosafety...
Committee (IBC) and IACUC at University of Kentucky Medical Center.

DICLAZURIL AND ATOVAQUONE THERAPIES

To study safety and efficacy of diclazuril plus atovaquone against toxoplasmosis, dams were divided into groups of 18–24. Dams received regimens, diclazuril monotherapy, atovaquone monotherapy, diclazuril plus atovaquone combination therapy, or sham incorporated into daily diet (Oz et al., 2007; Oz and Tobin, 2012, 2014). The control group received sham treatment (inert talcum powder). Treatments were initiated on Day 5 of pregnancy and continued until day 16. On day 8 of pregnancy dams on treatments or sham control arms were further divided into three subgroups of 6–8 animals and were injected each with PBS alone, or PBS containing 600 tachyzoites and treatments were continued until dams were euthanatized. Pregnant animals voluntarily consumed their diets with no significant changes in their appearance, food consumption, or weight loss/gain.

PATHOLOGICAL ASSESSMENTS

Hematoxylin eosin staining

A portion of examined tissues from each dam was placed into cassettes and fixed with 10% neutral PBS formalin. The specimens were dehydrated and embedded in paraffin, and tissue sections of 5 μm were stained by H&E for histopathological evaluation.

Giemsa staining

Giemsa is a delicate polychromatic stain that reveals the fine nuclear detail of *Toxoplasma* organisms (Oz and Tobin, 2012). Giemsa stain contains methylene blue azure basic (MBAB) dyes combined with eosin acidic dyes. The deparaffinized slide sections were stained with the polychromatic Giemsa (40 drops/50 mL distilled water) to stain nuclei of the *Toxoplasma* organisms and to permit differentiation among the cells. Then, the slides were deprecicated in 1% glacial acetic acid, dehydrated in alcohol and xylene series, and mounted in synthetic resin on slides.

Immunohistochemical staining (IHC)

Anti-*Toxoplasma* antibody and IHC procedure were kindly provided by Dr. David S. Lindsay at University of West Virginal. Briefly, paraffin-embedded sections were cut, deparaffinized with xylene, rehydrated in alcohol baths, washed in PBS with 0.1% BSA, quenched endogenous peroxidase activity by incubating in 3% hydrogen peroxide in methanol for 30 min, and then blocked with rabbit serum (Dako number 1699), 30 min. The sections were incubated with polyclonal Rh anti-*Toxoplasma* antibody, diluted 1: 500 for 90 min, and developed with DAB-chromogen (Dako, Carpenteria, CA, USA) for about 5 min until signal developed. Then, the sections were processed and stained with H&E and slides evaluated by Zeiss light microscopy. The severity of colitis as assessed with a histological semiquantitative grading score and performed in a blinded fashion. The scores were based on histopathological features with a numeric value (0: normal to 4: severe) assigned according to the tissue involvement that corresponded to either of the following criteria (Oz et al., 2007, 2010, 2013).

(Grade 0)—no detectable lesions, no inflammatory cells, and normal mucosal appearance.

(Grade 1)—mild multifocal inflammation with moderate expansion of the mucosa.

(Grade 2)—moderate multifocal inflammation with moderate expansion of the mucosa.

(Grade 3)—severe diffuse inflammation with crypt epithelium disruption and ulceration.

ADIPOSITY TISSUE PREPARATION AND STAINING

Portions of the abdominal adipose tissue from each dam were removed, placed in a cassette and fixed in the 10% buffered formalin and processed for histopathological slides staining with Giemsa, IHC, and H&E to study the structure and possible organisms.

HEPATIC TISSUE PREPARATION AND STAINING

A portion of the right lobe from liver tissues of each dam was placed in cassette and fixed with 10% neutral PBS formalin. The specimens were dehydrated and embedded in paraffin, and tissue sections of 5 μm were stained by H&E. Each slide was evaluated under Zeiss light microscopy. Hepatic lesions were graded on a scale of 0–4 + based on degeneration, inflammation, and necrosis (Oz et al., 2006, 2011) as follows.

(Grade 0)—no detectable lesions, no degeneration, infiltration of inflammatory cells, and normal tissue appearance.

(Grade 1)—focal infiltration of inflammatory cells in the tissue and hepatocytes degeneration.

(Grade 2)—mild multifocal infiltration of inflammatory cells, and hepatocytes degeneration.

(Grade 3)—moderate multifocal infiltration of inflammatory cells and hepatocytes degeneration.

(Grade 4)—severe diffuse infiltration of inflammatory cells and necrosis.

PAIN RELATED BEHAVIORAL TEST

Assessment of Pain Related Mechanical Allodynia by Testing Abdominal Withdrawal Threshold. Abdominal withdrawal responses to mechanical stimuli were quantified with von Frey monofilaments (Semmes-Weinstein Anesthesiometer Kit) according to our previous publications with some modification (Oz and Tobin, 2012, 2014). Dams were placed into plastic enclosures on the custom-made screen meshed platform. The monofilament range used for this study included five different intensities corresponding to (hair diameter) gram force [(4.08) 1.0 g; (3.61) 0.4 g; (3.22) 0.166 g; (2.83) 0.07; (2.36) 0.02 g forces]. Testing for mechanical stimulation was performed on the first and the last days of treatment. A single trial consisted of five applications of the each filament used once every 6 s to allow dam to cease any response and return to an inactive position. Mean values of the
percentage of responses of the abdominal withdrawal to each fil-
ament (mean withdrawal/5 × 100) were used as % scores for this
study. This behavioral test reflected basal level for reflex score and
any possible sensory changes observed in the treated mice. A total
of four dams were tested per each group.

STATISTICAL ANALYSIS
Results are expressed as mean ± SEM unless otherwise stated. Data
were evaluated with ANOVA followed by appropriate post hoc test
(Tukey compared all pairs) using GraphPad Instat version 3 for
Windows (Graph-Pad Software, San Diego, CA, USA). Statistical
significance was set at p < 0.05.

RESULTS
In the preliminary trial, groups of naïve dams were treated with
diclazuril monotherapy, atovaquone monotherapy, diclazuril plus
atovaquone combination therapy, or inert talcum sham treat-
ment. Dams consumed medicated diets with no detectable side
effects such as changes in physical appearance, appetite, food
consumption, and the rate of weight gain or fetotoxicity and
abortion.

TOXOPLASMOSIS AND INFLAMMATORY ADIPOSITY
For the next investigation, groups of dams were treated with
(a) diclazuril monotherapy, (b) atovaquone monotherapy (c)
diclazuril plus atovaquone combination therapy, or (d) received
sham treatment. Then each group was further subdivided and
injected with sham, or a dose of 600 tachyzoites. Infected
dams developed Toxoplasma infection (600 tachyzoites) versus
uninfected normal controls received sham (PBS) injection. The
infected-sham treated dams showed a progressive severe tox-
oplasmosis complications including anemia, hydrothorax, and
ascites (p < 0.05). Combination therapy with diclazuril plus
atovaquone and diclazuril monotherapy protected dams from ane-
mia, hydrothorax, and ascites (Figure 1A). Normal-sham injected
and sham-treated controls (control) gained body weight dur-
ing pregnancy compared with excessive pathological weight gain
due to accumulation of inflammatory adiposity in Toxoplasma-
infected (Tox) sham treated dams (p < 0.001). Combination
therapy with diclazuril plus atovaquone synergistically protected
dams (p < 0.01) and to a lesser extent diclazuril monotherapy
(p < 0.05) prevented pathological accumulation of adipose tissues
and excess weight gain. In contrast, atovaquone monotherapy
had no significant effect on the weight gain and accumulated
adiposity (Figure 1B). Massive inflammatory adipose depot was
detected in the abdominal cavity surrounding uteri and gas-
троintestinal and kidneys. The adipose tissues were shown to
harbor numerous inflammatory cells in H&E stainings as well as
Toxoplasma organisms as confirmed with Giemsa and IHC stain-
ings (Figure 2A). Organisms were not detectable in dams with
combination therapy.

Toxoplasma INDUCED SPLENITIS
Splenic tissues enlarged significantly and increased in weight and
length in infected-sham treated dams. Enlarged splenic tissues
from Toxoplasma infected dams showed significant infiltration of
epithelioid cells and multinucleated giant cells with loss of ger-
minal structure and caused a severe splenomegaly. Toxoplasma
organisms were detected in IHC staining. Combination therapy
diclazuril plus atovaquone synergistically prevented dams from
severe splenitis and tissue damages (p < 0.001), Figure 2B, Table 1.

Toxoplasma INDUCED COLITIS
Colonic tissues from infected-sham treated dams were signifi-
cantly shortened in length (10.4 ±0.2 mm vs. infected 8.7 ±0.6 mm,
p < 0.001) but decreased in weight (p < 0.01), presumably
through the mechanism of sloughing off of the brush boarder
due to infection (Figure 3A). Colonic pathology manifested
with shortening of crypts with numerous microabscess forma-
tions in the cryptic structures and infiltration of inflammatory

FIGURE 1 | (A) Toxoplasma infection caused significant anemia in sham
infected (Tox) treated dams (p < 0.001). Combination diclazuril plus
atovaquone therapy (Dic + Atov) and diclazuril monotherapy (Dic)
protected dams but atovaquone (Atov) monotherapy had no effect. (B)
Body weight gain during pregnancy in normal sham controls (Control) compared with
excess pathological weight due to accumulation of inflammatory fat in
Toxoplasma infected (Tox) sham treated dams (p < 0.001). Combination
therapy with diclazuril plus atovaquone synergistically protected
dams (p < 0.01) and to a lesser extent diclazuril monotherapy
(p < 0.05) prevented pathological fat accumulation and
excess weight gain. Atovaquone monotherapy had no significant effect
(n = 6–8/group).
cells, including lymphocytes, with scattered neutrophils detected in the mucosal architecture. Combination therapy synergistically prevented pathologic changes \((p < 0.001)\) and to a lesser extent diclazuril monotherapy \((p < 0.05)\) preserved the colonic length and weight and the integrity of the microstructure against inflammatory response (Figure 3B). In contrast, atovaquone monotherapy had no significant protective effect on colonic inflammation and necrotic/atrophic responses to the infection.

Toxoplasma INDUCED HEPATITIS

Hepatic structures of infected-sham treated dams enlarged twofold and increased in weight due to a substantial inflammatory response to the organisms \((p < 0.001)\) (Figure 4A). Pathological investigation demonstrated severe hepatitis with infiltration of inflammatory cells, multinucleated dysplastic hepatocytes, giant cell transformation, stellate cells activation and infiltration of inflammatory cells, multinucleated dysplastic hepatic cells necrosis (pathological mean score of 3.5 from 4 most severe) (Figure 4B). Combination therapy with diclazuril plus atovaquone exerted unique synergism and preserved hepatic appearance, weight and microstructure \((p < 0.001)\) and to a lesser degree, diclazuril monotherapy \((P < 0.01)\) and atovaquone monotherapy \((p < 0.05)\) prevented *Toxoplasma* induced hepatitis (Figures 4A,B). Overall, these effects of combination therapy present an striking synergy between two structurally distinct compounds in protecting architecture from exaggerated inflammatory reaction.

Toxoplasma INDUCED PANCREATITIS

This was consistent with moderate to severe *Toxoplasma* induced pancreatitis in infected dams \((p < 0.05)\) with infiltration of inflammatory cells, vacuolization, degeneration, and necrosis of pancreatic cells followed by the degeneration and loss of beta cells and islets (Figure 5A). Combination therapy with diclazuril plus atovaquone therapy and monotherapy protected dams from these inflammatory and pathological aspects of pancreatitis (Figure 5B) and gastrointestinal toxoplasmosis.

CONGENITAL TOXOPLASMOsis

Infected dams had nested smaller fetuses \((p < 0.001)\) and sporadic preterm labor or stillbirth. Combination therapy diclazuril plus atovaquone as well as monotherapy with atovaquone similarly and to a lesser extent diclazuril monotherapy \((p < 0.01)\) protected nested fetuses from retardation and demise (Table 1). In addition, uteris considerably augmented owing to accumulation of inflammatory fat, influx of inflammatory cells in infected-sham treated dams and *Toxoplasma* organisms were detected in Giemsa stained and IHC slides (not shown). Combination therapy with

Table 1 | Efficacy of diclazuril and atovaquone monotherapy or combination treatment on toxoplasmosis.

<table>
<thead>
<tr>
<th>Tissues</th>
<th>Control</th>
<th>Tox</th>
<th>Tox + Dic</th>
<th>Tox + Atov</th>
<th>Tox + Dic + Atov</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fetal weight (mg)</td>
<td>700 ± 40</td>
<td>530 ± 14<sup>c</sup></td>
<td>650 ± 25<sup>b</sup></td>
<td>710 ± 25</td>
<td>720 ± 20</td>
</tr>
<tr>
<td>Splenic length (mg)</td>
<td>2.28 ± 013</td>
<td>3.22 ± 0.2<sup>c</sup></td>
<td>2.8 ± 0.18</td>
<td>3 ± 0.1<sup>a</sup></td>
<td>2.3 ± 0.13<sup>b</sup></td>
</tr>
<tr>
<td>Pain score*(%)</td>
<td>20 ± 6</td>
<td>43 ± 3<sup>b</sup></td>
<td>40 ± 4<sup>b</sup></td>
<td>25 ± 2.9</td>
<td>25 ± 2.8</td>
</tr>
</tbody>
</table>

Tissues from normal sham treated and PBS containing no tachyzoites injected controls (Control), infected-dams with *Toxoplasma* tachyzoites and treated with sham (Tox), compared with infected dams from diclazuril monotherapy (Tox + Dic), Atovaquone monotherapy (Tox + Atov), or combination diclazuril plus Atovaquone (Tox + Dic + Atov) therapy. Dams were monitored daily three times until day 16 of pregnancy before termination. Number 6–8/group.

*Percent abdominal pain related behavioral response to von Frey stimuli with 0.166 GM force. Abdominal hypersensitivity significantly increased in infected dams (Tox). Combination therapy (Atov + Dic + Atov) and atovaquone monotherapy (Tox + Atov) similarly normalized pain induced behavioral modification in dams, but diclazuril monotherapy (Tox + Dic) had no effect. ^a \(p < 0.05\); ^b \(p < 0.01\); ^c \(p < 0.001\).
Oz

Toxoplasmosis and novel combination therapy

FIGURE 3
(A) Colonic section stained with H&E from *Toxoplasma* infected sham treated dam (Tox) developed severe colitis with destruction of brush border, and loss of colonic epithelial cells, microabscess formation (open arrow) and infiltration of inflammatory cells into mucosa (*n* = 6 /group). (B) Colonic length shortened due to infiltration of inflammatory cells, and microabscess formation in infected sham treated dams (*p* < 0.001). Combination therapy with diclazuril plus atovaquone (Dic + Atov) preserved colonic structure and to a lesser extent Diclazuril (Dic) monotherapy improved the colitis (*p* < 0.01). (*n* = 6–8/group).

FIGURE 4
(A) Hepatic weight distribution in *Toxoplasma* (Tox) infected (*p* < 0.001) compared to diclazuril (Dic) monotherapy (*p* < 0.01), atovaquone (Atov) monotherapy and combined diclazuril plus atovaquone (Dic + Atov) therapy (*p* < 0.001) and normal sham controls (Co). (B) Hepatic pathological score distribution in *Toxoplasma* Tox infected dams (*p* < 0.001) compared to diclazuril (Dic) monotherapy (*p* < 0.01), atovaquone (Atov) monotherapy (*p* < 0.05), combination diclazuril plus atovaquone (Dic + Atov) therapy (*p* < 0.001) and normal sham controls (Co). Pathological slides were stained with H&E. (*n* = 6–8/group).

diclazuril plus atovaquone improved the infectious inflammatory response and edema but with no significant changes in the uteri weight, presumably due to the increased number of healthy fetuses (not shown).

TOXOPLASMOSIS AND ABDOMINAL HYPERSENSITIVITY

Finally, pain related abdominal hypersensitivity significantly elevated in *Toxoplasma* infected-sham treated dams manifested with severe abdominal withdrawal and excess grooming in comparison to normal sham control dams (*p* < 0.05). Combination diclazuril plus atovaquone therapy and atovaquone monotherapy preserved the normal abdominal response to von Frey stimuli (Table 1). However, diclazuril monotherapy had no significant effect on the dams’ response to the mechanical stimuli.

DISCUSSION

Toxoplasma is a leading cause of foodborne diseases, congenital complications, morbidity and mortality. Yet, toxoplasmosis is an underestimated syndrome and usually detected in autopsy or remains undetected due to the non-specific symptoms and lack of clinical awareness of healthcare individuals (Munir et al., 2000). *Toxoplasma* organisms are transmitted through consumption of undercooked meat, milk and dairy product contaminated with cysts forms. However, the predominant source of *Toxoplasma* infection is considered as vegetables, and fruits contaminated with oocysts from the cat feces in the field (Oz, 2014). In addition, contaminated water is reported as a major source for infection during pregnancy in rural area (Andiappan et al., 2014). Considering high number of cats (>93 million) residing in households in the USA, immunocompromised individuals, and expecting moms,
as well as the increasing obese and/or diabetic population are at a high risk of developing toxoplasmosis (Esch and Petersen, 2013). Therefore, awareness of healthcare communities as well as individuals is necessary to contain stray cats, and prevent pets from infection in order to protect the owners from imminent complications.

Toxoplasmosis is a “forgotten disease of vulnerable and poverty” which infects the many in rural (Hotez, 2008) as well as urban area. While, poverty persists, obesity has become a cosmopolitan complication with undetermined pathogenesis. This investigation reports accumulation of excessive infectious and inflammatory adiposity and pathological weight gain in Toxoplasma infected dams. Toxoplasma association with obesity was supported in a clinical trial with 999 psychiatric healthy normal subjects with exclusion of those with personality and serious mental disorders which have strong association with toxoplasmosis as well as obesity (Reeves et al., 2013). Individuals with positive anti-Toxoplasma antibodies had twice the odds to be obese compared to seronegative individuals. Further, obese individuals had significantly higher anti-Toxoplasma IgG titers compared to those who were not obese (Reeves et al., 2013). In contrast, no relation with obesity and anti-Toxoplasma IgG titers was reported in a trial with confounding factor of excluding individuals over 45 years of age when subjects mostly are prone to develop toxoplasmosis reactivation and obesity (Thjodleifsson et al., 2008). Toxoplasma may alter weight gain by reducing muscle lipoprotein lipase and modulating tissue lipoprotein lipase activity during chronic infection to promote triglyceride distribution in adipose tissue (Picard et al., 2002). From 1227 Mexican Americans tested for anti-Toxoplasma, 110 (9%) were found seropositive. In fact, this population commonly suffers from high rates of chronic inflammatory diseases, obesity and type-2 diabetes, further suggesting a correlation between toxoplasmosis and these chronic complications (Rubicz et al., 2011).

Toxoplasmosis may manifest with clinical symptoms of acute or recurrent abdominal pain and pancreatitis (Parenti et al., 1996). Chronic progressive pancreatitis may be associated with fat necrosis, obstruction of bile duct, focal hepatic necrosis, elevated amylase and lipase serum values, and abdominal fat. Similarly, in this study infected dams developed increased abdominal inflammatory pain related modifications and severe pancreatitis and hepatitis. There is an association of Toxoplasma infection with liver cirrhosis. While, severity of toxoplasmosis complications depend on the immune status of the patient and the strain. Acute Toxoplasma infection in mice with RH strain reveal a significant correlation between the increased number of hepatic stellate cells and the amount of Toxoplasma antigens, representing an active role for hepatic stellate cells in the pathogenesis of Toxoplasma-induced hepatitis (Atmaca et al., 2013). Moreover, the prevalence of anti-Toxoplasma IgG is significantly higher among the primary biliary cirrhosis patients (71%) compared with controls without cirrhosis (40%, p < 0.0001), whereas the infection burden is rare in healthy subjects (20% vs. 3%, respectively, p < 0.0001). It is predicted that Toxoplasma to increase the risk of primary biliary cirrhosis in patients (Shapira et al., 2012). Since, latent infection is fairly common, and once infected organisms reside for the lifelong; the Toxoplasma interventions with safe and effective regimens will have a great impact on health related concerns in vulnerable individuals.

Available treatments for toxoplasmosis, sulfadiazine, pyrimethamine, sulfadiazine, and spiramycin, have major side effects and not always effective. Seroconvert pregnant women are treated with spiramycin to reduce the risk of fetal placental transmission. However, spiramycin treated patients retain Toxoplasma DNA in peripheral blood and remain infected (Habib, 2008). In addition, spiramycin is effective only in early pregnancy and not after organisms penetrate the placenta and fetus (Juliaic et al., 2010). In a 20 year prospective trial of infected moms treated with spiramycin alone or combined with pyrimethamine-sulfadoxine, 17% of newborns had established congenital toxoplasmosis and 26% developed chorioretinitis after birth (Berrebi et al., 2010). In another study the transmission rates of toxoplasmosis were 7% in the first, 24% second, and 59% in third trimesters, respectively, for infected mothers treated with combination spiramycin and pyrimethamine-sulfadoxine (Bessieres et al., 2009).

Because of these shortfalls, there is urgent need for more effective therapeutic modalities with no toxicity to encounter.

FIGURE 5 | Pancreatic section from Toxoplasma infected and treated dams stained with H&E. (A) Pancreatitis: demonstrates loss of microstructure, degeneration, and necrosis of pancreatic cells, degeneration and loss of islets, replaced with infiltration of inflammatory cells. (B) Combination diclazuirl plus atovaquone (Dic + Atov) therapy protected pancreatic architecture against inflammatory and infectious response, and preserved panc and beta cells, and islet’s microstructure. (n = 6–8/group).
As such, combination therapy with a promising safety and efficacy that the novel combination diclazuril plus atovaquone specifically in pregnancy as well as in pets. It is antici-
ated this investigation was supported by the Grant from National Institutes of Health NIH-DE019177 (Helieh S. Oz). University of Kentucky invention property Invention Disclosure is INV11/1773.

ACKNOWLEDGMENTS Tachyzoites were provided by Dr. Daniel Howe. Dr. Thomas Tobin from Maxwell H. Gluck Equine Center, College of Agriculture, University of Kentucky, provided a portion of funding from Ken-
tucky Science and Technology KSTC 721-RFP-006 and the concept of diclazuril in congenital toxoplasmosis as referenced (Oz and Tobin, 2014). Dr. David S. Lindsay kindly provided anti-mouse Toxoplasma specific antibody for IHC. Felicia Kost assisted with animal handling and Dana Napier with preparation of IHC and Giemsa staining. Toledo, OH, USA.

REFERENCES

Oz, H. S., and Tobin, T. (2014). Diclazuril protects against maternal gastrointesti-
10.4236/ijcm.2014.53017
Oz, H. S., and Westlund, K. H. (2012). “Human Babesiosis” an emerging transmis-
Petersen, E., and Schmidt, D. R. (2003). Sulfadiazine and pyrimethamine in the
postnatal treatment of congenital toxoplasmosis: what are the options? Expert
Rev. Anti Infect Ther. 1, 175–182. doi: 10.1586/14787210.1.1.175
Picard, F., Arsenijevic, D., Richard, D., and Deshaies, Y. (2002). Responses of adi-
pose and muscle lipoprotein lipase to chronic infection and subsequent acute
Reeves, G. M., Mazaheri, S., Snikker, S., Langenberg, P., Giegling, I., Hartmann,
A. M., et al. (2013). A positive association between T. gondii seropositivity and
Remington, J. S., Thulliez, P., and Montoya, J. G. (2004). Recent develop-
10.1128/jcm.42.3.941-945.2004
Rubicz, R., Leach, C. T., Kraig, E., Dhurandhar, N. V., Grubbs, B., Blangero, J.,
et al. (2011). Seroprevalence of 13 common pathogens in a rapidly growing U.S.
majority population: mexican Americans from San Antonio, TX. BMC Res. Notes
4:433. doi: 10.1186/1756-0500-4-433
Shapira, Y., Agmon-Levin, N., Renaudineau, Y., Porat-Katz, B. S., Barzilai, O.,
Ram, M., et al. (2012). Serum markers of infections in patients with primary
biliary cirrhosis: evidence of infection burden. Exp. Mol. Pathol. 93, 386–390. doi:
10.1016/j.yexmp.2012.09.012
Thjodleifsson, B., Olafsson, I., Gislason, D., Gislason, T., Jogi, R., and Janson, C.
J. Infect. Dis. 40, 381–386. doi: 10.1080/0365540701708293
A novel serine/threonine protein phosphatase type 5 from second generation mero-
zoite of Eimeria tenella is associated with diclazuril-induced apoptosis. Parasitol.

Conflict of Interest Statement: The author declares that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 01 July 2014; accepted: 28 August 2014; published online: 15 September 2014.
Citation: Oz HS (2014) Toxoplasmosis complications and novel therapeutic syn-
ergism combination of diclazuril plus atovaqueone. Front. Microbiol. 5:484. doi:
10.3389/fmicb.2014.00484
This article was submitted to Microbial Immunology, a section of the journal Frontiers in
Microbiology.
Copyright © 2014 Oz. This is an open-access article distributed under the terms of the
Creative Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) or licensor are credited and
that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.