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Figure 24: Circumferential distribution of fiber stress near base region. Stress was calculated as 

the average of three elements in the same circumferential location. Solid lines represent results of 

FE models in which only fiber angle distributions were deviated from measured experimental 

values and dashed lines represent results of FE models in which only sheet angle distributions 

were deviated from measured experimental values. 
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Figure 25: Circumferential distribution of fiber stress near mid-ventricle region. Stress was 

calculated as the average of three elements in the same circumferential location. Solid lines 

represent results of FE models in which only fiber angle distributions were deviated from 

measured experimental values and dashed lines represent results of FE models in which only 

sheet angle distributions were deviated from measured experimental values. 
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The time step in Eq. (38) was taken identical to the finite element solver time step. The value of 

scaling parameter 𝜏 is not reported for pig heart in literature; therefor we tried various values to 

reach a rough approximation. Using very small values of 𝜏, the finite element model will grow 

unrealistically fast; on the other hand, using very large values of 𝜏 the resulting growth will not be 

visible. Following the calculation of the growth multiplier, the growth tensor 𝑭𝑔 is constructed 

using either Eq. (37) or Eq. (38) depending on which growth model is chosen in the input deck (a 

flag was defined in the user defined material subroutine to choose between transverse and 

longitudinal growth models in the finite element input deck). Subsequently, the elastic tensor 𝑭𝑒 is 

calculated using Eq. (32): 

 𝑭𝑒 = 𝑭 ∙ 𝑭𝑔−1
                                                                                                                                            (35) 

It should be noted that only 𝑭 is the gradient of a continuous mapping and two other tensors (the 

elastic tensor 𝑭𝑒 and the growth tensor 𝑭𝑔) generally cannot be derived as gradient from a vector 

field. Additionally, only elastic deformation generates stress, therefor the strain energy function is 

a function of elastic deformation only [57]. In the next step the elastic tensor 𝑭𝑒 is fed into the 

hyper-elastic constitutive model to update the stress. The resulting stresses are used to calculate 

new deformations. Fig. 30-31 show some qualitative results of a single finite element solution in 

which the growth module was triggered due to pressure overload.   

The simulation presented in this chapter was a rudimentary growth model and in order to get 

reliable results that predict real growth in animal heart it needs further refinement. For example, 

the ordinary differential equation (Eq. (37)) which represents the kinetics of the growth should be 

replaced with a more elaborate equation that caps the maximum growth [58], involves reverse 

growth [60] or is stress dependent (for stress-driven growth modeling) [61]. Additionally, in our 
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simulation the value of parameter 𝜏 was based on some computational experiments that resulted in 

a qualitative representation of growth. To develop an animal specific growth model, the value of 

this parameter should be estimated for that animal. These details will be the subject of future 

investigations in our lab.      
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Figure 27: The flowchart of user defined material subroutine for modeling growth 

 

Figure 28: The ventricle is loaded to a pressure two times the physiological end-diastolic 

pressure, then allowed to grow for a duration and then unloaded 
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Figure 29: Short axis view of a mid-slice of the finite element model before (left) and after 

growth (right), myocardial wall thickness decreased because the longitudinal growth tensor was 

used (Eq. (36)) 

 

Figure 30: Total elements’ volume versus time; growth triggers at t=0.05 
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Figure 31: Cavity volume versus time 
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Chapter Six: Conclusion 

In chapter two, a newly developed structural constitutive model was incorporated in the finite 

element solver as a user defined material subroutine. Using four MRI data sets, we showed that 

using this constitutive model would approximate the physiological behavior of the heart more 

accurately during simulation. In chapter three, we implemented a previously reported numerical 

technique to unload the geometry of the heart from its partially loaded geometry obtained from 

imaging of the beating heart. We showed that when these unloaded geometries were used as the 

reference state of the finite element simulations, the resulting estimated material parameters would 

be more accurate. In chapter 4, we used computational model developed in chapters 2 and 3 to 

study the sensitivity of the computational model to myofiber structure. Finally in chapter 5, a stretch 

driven continuum growth model was incorporated in the finite element solver which was one of the 

first steps of growth modeling in our lab and needs further refinement and development.  

In future investigations the computational model we presented here will be further refined and 

developed toward a patient specific computational model that could be used in clinical settings. For 

example, currently the material parameters estimation is based on using specialized MRI techniques 

that a human patient would not usually experience in clinic. Pressure catheterization is also not a 

regular clinical practice for measuring heart pressure. Additionally, in order to have a 

comprehensive and realistic computer model of the heart, the left ventricular models should be 

extended to biventricular and ultimately whole heart models that contain all four chambers of the 

heart and its valves. Obviously, these goals cannot be achieved in a single dissertation but will 

create fascinating research opportunities for the new graduate students and research fellows in our 

lab.        
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