Using a “Train the Trainer” Model and Active Learning to Reach Biology Freshmen

Valerie Perry
University of Kentucky, vperry@uky.edu

Jason Keinsley
University of Kentucky, jkeinsley@uky.edu

Renae Newhouse
University of Kentucky, renae.newhouse@gmail.com

Patricia Hartman
Auburn University Main Campus, pjh0011@auburn.edu

Meghan Moran
University of Kentucky, mdmoran2@uiaa.alaska.edu

Click here to let us know how access to this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/libraries_present

Part of the Library and Information Science Commons

Repository Citation
Perry, Valerie; Keinsley, Jason; Newhouse, Renae; Hartman, Patricia; and Moran, Meghan, "Using a "Train the Trainer" Model and Active Learning to Reach Biology Freshmen" (2013). Library Presentations. 67.
https://uknowledge.uky.edu/libraries_present/67
USING A “TRAIN THE TRAINER” MODEL AND ACTIVE LEARNING TO REACH BIOLOGY FRESHMEN

University of Kentucky Libraries

Kentucky Library Association
Library Instruction Roundtable Retreat
June 2013
Our Information Literacy Team
No information literacy role in Biology

Problem-based

Filling gap between theory and practice

Making connections in applied science

Goal: Students can locate peer-reviewed journal articles in Web of Science by using appropriate keywords and search operators.
Faculty Buy-in is Essential

- Pick the right course
- Establish individual relationships
 - What do your students need to know to succeed in this course and beyond?
- Align with course goals
- Compromise/Collaborate
BIO 155 Course Description

- Intro Biology Lab for Biology majors
 - Approximately 80% freshman and sophomores
- 17 sections of 20-30 students
 - Total of 34 sessions over 2 weeks
 - 1st class session typically lasted 1 hour 15 minutes
 - 2nd class session typically lasted 50 minutes
Interactive Environment
Train-the-Trainer Model
Instructors

- BIO 155 Course Coordinator (Dr. Lin Xiang)
- 9 BIO 155 Teaching Assistants
- 2 Agriculture Librarians (Jason & Valerie)
- 3 SLIS Graduate Students (Renae, Patricia, & Meghan)
Modeling

- Introduce the content
- Model the content
- Assist the TA with the content
Advantages

- Students are already familiar with the instructor/Teaching Assistant
- TA will continue to be a resource for the students after the two class sessions
- TA helps Librarians cover more courses/sections with limited personnel
- TAs possibly become train-the-trainer advocates for other courses and more aware of library services
- Effective and non-threatening way to share information with TAs: “Only thing I’ve ever used is Google Scholar”
Each Teaching Assistant has their own individual teaching style and comfort level with new material.

Train-the-Trainer model is a great way to get feedback from Teaching Assistants and fellow Librarians.

Hearing crickets isn’t necessarily a bad thing!
Welcome BIO 155 Students!

This guide will help you with lab reports and provide a basic understanding of how to find and use information effectively. Here you will find links to the following:

- Databases covered in class
- Ways to find background information
- Research tips
- Appropriate citation format for your lab reports
- Plagiarism policies and tutorials

Please feel free to contact me or any other personnel at the Agricultural Information Access Office if you have any questions.

Popular Science Databases

- Web of Science
 Web of Science is the main database you will use when searching for articles in this class. It contains links to >12 million journals and >46 million records. You can search by subject, author, article title, and more. You can also find references cited by a particular article, as well as articles that cite a known author or work.

- PubMed (University of Kentucky)
 From the U.S. National Library of Medicine. Indexes >22 million citations in the fields of medicine, nursing, veterinary, dentistry, health care, and pre-clinical sciences going back to 1948. Includes links to full-text articles and other related resources.

- BIOSIS Previews and Biological Abstracts/RRM

Director of Branch Libraries, Agriculture Liaison, Biology Liaison

Valerie Perry
Active Learning

- Follow along on computers
- Brainstorm
- Live search demonstrations
- In-class exercises
 - Formative assessment
 - Made students turn something in for a grade
Brainstorming Example

What are your favorite active learning or brainstorming tools?

Send a text to **37607** and type **111890** and your response

OR

Submit **111890** and your response to **pollev.com**
In-class Brainstorming

How does climate change affect bird behavior?
How does climate change affect bird behavior?
Live Search Demonstrations

Web of Science®

Results Topic=(climate) AND Topic=(bird) AND Topic=(behavior)
Timespan=All years. Databases=SCI-EXPANDED, SSCI, A&HCI.

Create Alert / RSS

Results: 353

Refine Results
Search within results for
Search

Web of Science Categories
ECOLOGY (147)
ORNITHOLOGY (72)
ZOOLOGY (87)
ENVIRONMENTAL SCIENCES (37)
BIOLOGY (38)

Document Types
ARTICLE (219)
REVIEW (50)
PROCEDINGS PAPER (27)
EDITORIAL MATERIAL (3)
LETTER (1)

Research Areas

Authors
Group Authors
Editors
Source Titles
Book Series Titles
Publication Years
Organizations-Enhanced
Funding Agencies
Languages
Countries/Territories

Title: Migratory strategies of waterbirds shape the continental-scale dispersal of aquatic organisms
Author(s): Viana, Duarte S.; Santamaria, Luis; Michot, Thomas C., et al.
Times Cited: 0 (from Web of Science)

Get Text
[@ View abstract]

Title: Effects of Climate-Induced Changes in Parasitism, Predation and Predator-Predator Interactions on Reproduction and Survival of an Arctic Marine Bird
Author(s): Gaston, Anthony J.; Elliott, Kyle H.
Source: ARCTIC Volume: 66 Issue: 1 Pages: 43-51 Published: MAR 2013
Times Cited: 0 (from Web of Science)

Get Text
[@ View abstract]

Title: A multilocus coalescent analysis of the speciational history of the Australo-Papuan butcherbirds and their allies
Author(s): Kearns, Anne M.; Joseph, Leo; Cook, Lyn O.
Times Cited: 0 (from Web of Science)

Get Text
[@ View abstract]

Title: The effects of climate change on avian migratory patterns and the dispersal of commercial poultry diseases in Canada - Part 1
Author(s): Patterson, C. D.; Guerin, M. T.
Source: WORLDS POULTRY SCIENCE JOURNAL Volume: 69 Issue: 1 Pages: 17–25 DOI: 10.1017/S0043933013000020 Published: MAR 2013
Times Cited: 0 (from Web of Science)

Get Text
[@ View abstract]

Title: Assessing the state of knowledge of utility-scale wind energy development and operation on non-volant terrestrial and marine wildlife
Author(s): Lovich, Jeffrey E.; Ennen, Joshua R.
Source: APPLIED ENERGY Volume: 103 Pages: 52-60 DOI: 10.1016/j.apenergy.2012.10.001 Published: MAR 2013
Times Cited: 0 (from Web of Science)

Get Text
[@ View abstract]

Title: Strictly for the birds? On ecosystem services of forage fish

View Web Results >>

more options / values...
In-class Exercise

Searching in Web of Science

Think back to the termite lab you did in class earlier in the semester. Imagine you want to review the scientific literature in order to better understand why the termites followed the trail of the ballpoint pen. In this exercise, you will use Web of Science to search for articles about termite behavior.

Part 1: Starting your search
Brainstorm for keywords or phrases related to your topic. If you need some inspiration, try one of the websites listed under Background Information on the Starting Research page of the BIO 155 Course Guide (libguides.uky.edu/BIO155) — these are not primary sources or peer-reviewed articles, but you can use them to help generate ideas. Your textbook is also a good place to look.

From the list above, which words do you think best describe your topic?

Go to Web of Science and try a search using the words in the box above as keywords (Topic).

How many results did you get? ________
If you didn’t get any results, try a different combination of words, reduce the number of keywords, or ask for help from the instructors. Which words did you use and how many results do you get now? ______________
Student Responses

- There are a lot of ways to find articles besides Google.

- I learned how to effectively use keywords when looking for relevant articles.

- I didn't know the web of science existed.
I learned how to use web of science and how to broaden and narrow my search.

I learned how to use the UK library website and how to retrieve scientific articles to incorporate into research-based assignments.

I learned that Web of Sciences exists, and can definitely see it helping in the future when I need a scientific, peer-reviewed, accredited source.
1. Determines the nature and extent of the information needed.
2. Accesses needed information effectively and efficiently.
3. Evaluates information and its sources critically and incorporates selected information into his or her knowledge base and value system.
4. Individually or as a member of a group, uses information effectively to accomplish a specific purpose.
5. Understands many of the ethical, legal and socio-economic issues surrounding information and information technology.

http://www.ala.org/acrl/standards/informationliteracycompetency
UK Information Literacy Learning Outcomes

1. Students will be able to define an information need in order to construct an effective research strategy.

2. Students will be able to construct an effective research strategy in order to identify a variety of relevant information sources.

3. Students will be able to identify and select relevant information sources in order to analyze and interpret the information.

4. Students will be able to analyze and interpret information in order to evaluate, synthesize, and draw conclusions.

http://libguides.uky.edu/infolit101
Please use the research topic given below to answer the rest of the questions.

- How does mercury impact aquatic food webs?

What are the major concepts/topics of your research topic chosen above? *

Please list the keywords or key phrases that could be used to locate information on your research topic.*

Create search queries using combinations of keywords and key phrases that could be used in a library database, such as Web of Science.*
Rubric

Learning Outcome 2.1: Constructs Effective Research Strategy / Constructs Search Terms and Phrases

<table>
<thead>
<tr>
<th>2 Constructs effective research strategy</th>
<th>0 Emerging</th>
<th>1 Developing</th>
<th>2 Proficient</th>
<th>3 Distinguished</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Constructs search terms and phrases</td>
<td>Uses everyday language to describe key concepts.</td>
<td>Uses everyday language to describe key concepts. Lists synonyms to expand key concepts.</td>
<td>Uses everyday language and synonyms to describe key concepts. Translates everyday language and synonyms into appropriate subject terms for key concepts.</td>
<td>Uses everyday language and synonyms to describe key concepts. Translates everyday language and synonyms into appropriate subject terms for key concepts. Combines key concepts to formulate a search strategy.</td>
</tr>
</tbody>
</table>
Scoring Sheet Example

BIO 155 Spring 2013 (Responses) as of 4-25-2013

<table>
<thead>
<tr>
<th>Year in School</th>
<th>Section Code</th>
<th>Research Topic</th>
<th>Major Concepts/Topics Chosen</th>
<th>Keywords for Research</th>
<th>Other Search Queries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sophomore (30 - 59 hours)</td>
<td>BIO 155 - 001</td>
<td>How does mercury impact aquatic food webs?</td>
<td>Animal endangerment and health of animals in the environment and humans who use the water for drinking</td>
<td>Mercury, water, danger</td>
<td>Ocean and mercury and health</td>
</tr>
<tr>
<td>Sophomore (30 - 59 hours)</td>
<td>BIO 155 - 001</td>
<td>How does mercury impact aquatic food webs?</td>
<td>Mercury, aquatic food webs, impact of mercury on food webs</td>
<td>Mercury, aquatic food webs, impact, mercury impact on food webs, food webs</td>
<td>Mercury, Aquatic food webs, Effects, Impact</td>
</tr>
<tr>
<td>Freshman (1-29 hours)</td>
<td>BIO 155 - 001</td>
<td>How does mercury impact aquatic food webs?</td>
<td>Ecological effects, Species health, Fitness, Adaptation, Evolutionary Niche</td>
<td>Mercury, Aquatic, Ecosystem</td>
<td>Mercury, Aquatic, Ecosystem</td>
</tr>
</tbody>
</table>
Scoring Results

- Zero: 64%
- One: 26%
- Two: 6%
- Three: 4%

Scores:
0 – Emerging
1 – Developing
2 – Proficient
3 - Distinguished
What We Learned

- Scheduling challenges
 - Covered 34 sessions in two weeks
- Lab environment +
 - Adapted to facility
 - Adapted to computer & networking environment
- Be open to compromise!
 - Share your expertise
 - Be willing to consider other viewpoints
What We Learned: Train-the-Trainer

- Kept content consistent through the use of common outlines and other tools
 - Powerpoint presentation, outline, exercises and in-class activities for each week
 - One course guide for all sections
- Should reduce library personnel workload
- Effective way to broaden our audience
 - TAs admitted learning!
- Overall positive experience
Future Plans

- Simplify PowerPoint and outline
- Provide instructions to TAs more than one week in advance
- Send out assessments earlier in semester
- Consider embedding in Blackboard
- Request for inclusion in syllabus
- Conduct TA evaluations for feedback
Questions?

Feel free to contact us for more information:
Valerie Perry vperry@uky.edu Jason Keinsley jkeinsley@uky.edu

Please share something that resonated with you or you would like to learn more about.

Send a text to 37607 and type 105367 and your response OR
Submit 105367 and your response to pollev.com

View our presentation: http://go.uky.edu/NU