2016

ACUTE KIDNEY INJURY IN PATIENTS TREATED WITH VANCOMYCIN AND PIPERACILLIN-TAZOBACTAM: A RETROSPECTIVE COHORT ANALYSIS

Wilbur Cliff Rutter
University of Kentucky, cliff.rutter@uky.edu
Digital Object Identifier: http://dx.doi.org/10.13023/ETD.2016.290

Click here to let us know how access to this document benefits you.

Recommended Citation
Rutter, Wilbur Cliff, "ACUTE KIDNEY INJURY IN PATIENTS TREATED WITH VANCOMYCIN AND PIPERACILLIN-TAZOBACTAM: A RETROSPECTIVE COHORT ANALYSIS" (2016). Theses and Dissertations--Pharmacy. 60.
https://uknowledge.uky.edu/pharmacy_etds/60

This Master’s Thesis is brought to you for free and open access by the College of Pharmacy at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Pharmacy by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in future works (such as articles or books) all or part of my work. I understand that I am free to register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of the program; we verify that this is the final, approved version of the student’s thesis including all changes required by the advisory committee. The undersigned agree to abide by the statements above.

Wilbur Cliff Rutter, Student
Dr. David S. Burgess, Major Professor
Dr. David J. Feloa, Director of Graduate Studies
ACUTE KIDNEY INJURY IN PATIENTS TREATED WITH VANCOMYCIN AND PIPERACILLIN-TAZOBACTAM: A RETROSPECTIVE COHORT ANALYSIS

THESIS

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the College of Pharmacy at the University of Kentucky

By

Wilbur Cliff Rutter

Lexington, Kentucky

Director: Dr. David S. Burgess, Professor of Pharmacy Practice and Science

Lexington, Kentucky

2016

Copyright© Wilbur Cliff Rutter 2016
Empiric antimicrobial therapy often consists of the combination of Gram-positive coverage with vancomycin (VAN) and Gram-negative coverage, specifically an anti-pseudomonal beta-lactam, such as piperacillin-tazobactam (PTZ). Nephrotoxicity is commonly associated with VAN therapy; however, recent reports demonstrate increasing nephrotoxicity rates among patients treated with the combination of VAN and PTZ. This study evaluated the effect of the VAN/PTZ combination on acute kidney injury (AKI), as defined by the RIFLE criteria, compared to VAN and PTZ monotherapies.

Overall, 11,650 patients were analyzed, with 1,647 (14.1%) AKI cases occurring. AKI was significantly more frequent in the VAN/PTZ group (21%) compared to either monotherapy group (VAN 8.3%, PTZ 7.8%, p<0.001 for both). Combination therapy was independently associated with higher AKI odds compared to monotherapy with either agent (aOR=2.03; 95% CI 1.74-2.39; aOR=2.31; 95% CI 1.97-2.71, for VAN and PTZ, respectively). Receipt of concomitant nephrotoxic drugs were independently associated with increased AKI rates, as were increased duration of therapy, length of hospital stay, increasing severity of illness, and increasing baseline renal function.

VAN combined with PTZ was associated with twice the odds of AKI development compared to either agent as monotherapy. This demonstrates the need for judicious use of combination empiric therapy.

KEYWORDS: Antimicrobial stewardship, Vancomycin, Piperacillin-tazobactam, Acute Kidney Injury, Electronic health record
ACUTE KIDNEY INJURY IN PATIENTS TREATED WITH VANCOMYCIN AND PIPERACILLIN-TAZOBACTAM: A RETROSPECTIVE COHORT ANALYSIS

By

Wilbur Cliff Rutter

Dr. David S. Burgess
(Director of Thesis)

Dr. David J. Feola
(Director of Graduate Studies)

June 27th, 2016
TABLE OF CONTENTS

List of Tables... iii

List of Figures... iv

Chapter One: Introduction 1

Chapter Two: Materials and Methods

 Data source.. 2
 Outcome ascertainment... 3
 Exposure ascertainment... 4
 Statistical analysis... 4
 Role of funding source... 5

Chapter Three: Results

 Baseline patient characteristics.. 6
 Unadjusted acute kidney injury incidence.. 11
 Adjusted acute kidney injury incidence... 12

Chapter Four: Conclusions

 Summary of findings.. 17
 Limitations.. 18
 Application to clinical practice... 19

Appendices

 Appendix A: R code.. 20

References... 35

Vita.. 37
LIST OF TABLES

Table 1, Baseline Patient Characteristics.. 8
Table 2, Univariate and multivariate association between combination VAN/PTZ
 therapy and AKI odds independent of other baseline covariates........... 13
LIST OF FIGURES

Figure 1, Patient Exclusion Flowchart... 7
Figure 2, Unadjusted Incidence of AKI... 12
Chapter One: Introduction

The glycopeptide antibiotic vancomycin is commonly utilized in empiric coverage for methicillin-resistant *Staphylococcus aureus* (MRSA) in many types of infections. Literature from a variety of patient populations reports nephrotoxicity associated with vancomycin, targeting troughs greater than 15 µg/mL, to occur in 5 to 43% of patients.[1] In a study of critically ill patients, acute kidney injury (AKI) was found in 21% of patients receiving vancomycin, with increasing duration of vancomycin treatment, greater vancomycin levels, concomitant vasoactive medication administration, and intermittent infusion methods being associated with higher odds of AKI.[2] A recent report from adult internal medicine patients estimated the incidence of vancomycin-associated nephrotoxicity at 13.6% and implicated concomitant piperacillin-tazobactam therapy as a key factor in these patients.[3]

Further studies have explored the interaction between empiric beta-lactam and vancomycin therapy, showing mixed results. Reports of AKI associated with the combination of vancomycin and piperacillin-tazobactam range from 16.3 to 34.8% [4-8], while the cefepime-vancomycin combination is reported to range from 12.5 to 13.3%. [5,6] While vancomycin monotherapy groups were well represented, only one of these studies compared the piperacillin-tazobactam-vancomycin combination to a control group of piperacillin-tazobactam monotherapy.[7]
Chapter Two: Methods

This is a retrospective cohort study of adult patients conducted at the University of Kentucky Chandler Medical Center (UKMC) from September 1, 2010 through August 31, 2014. Patients were included if they: were at least 18 years of age on admission; remained hospitalized for at least 48 hours; received vancomycin combined with piperacillin-tazobactam (VAN/PTZ), vancomycin alone (VAN), or piperacillin-tazobactam alone (PTZ); and had at least 48 hours of therapy (and 48 hours of overlapping therapy in the VAN/PTZ group). Patients were excluded if they had underlying chronic kidney disease, were receiving renal replacement therapy prior to admission, had a diagnosis of cystic fibrosis, or were pregnant. Additionally, patients were excluded if: they presented with AKI, defined as baseline creatinine clearance less than 30 mL/min, or if baseline creatinine clearance was greater than four times the standard deviation from the mean; serum creatinine values were not obtained during admission; and if AKI occurred prior to therapy initiation, within 48 hours of initiation, or greater than 7 days after treatment was discontinued. Patients were followed throughout their stay until time of discharge.

Data Source

Patient data were collected from the University of Kentucky Center for Clinical and Translational Science Enterprise Data Trust (EDT). The EDT contains clinical data from the inpatient population of UKMC from 2006 to present. Data stored and updated nightly by the EDT includes: demographics, financial classification (Medicare, Medicaid, private insurance), provider-level detail (service line), medical diagnosis (International
Classification of Diseases 9 [ICD-9] codes), medical procedures (Current Procedural Terminology [CPT] codes), lab tests and results, medication administration details, visit details (age, length of stay, etc.), and vital signs. This study was approved by the UKMC Institutional Review Board.

Data collected for each patient included: demographic data, visit details (length of stay, admitting and primary diagnosis codes, etc.), severity of underlying illness as defined by the Charlson Comorbidity Index (CCI), all serum creatinine levels drawn per visit, medication administration information (dose, date, and time administered), all vancomycin trough levels, receipt of other nephrotoxic agents, blood pressures, and receipt of vasopressors.

Outcome Ascertainment

AKI was defined based on the RIFLE criteria (Risk, Injury, Failure, Loss, End-stage) [9] with risk defined as a 25 to 50% decrease in estimated glomerular filtration rate (GFR), injury as a 50 to 75% decrease in estimated GFR, and failure defined as a greater than 75% decrease in estimated GFR. Loss and end-stage classifications were not assessed due to the follow-up period of this study. The adjusted Cockcroft and Gault equation [10] was used to estimate GFR due to the inconsistency of weight availability in the dataset. Baseline creatinine clearance was calculated with the first serum creatinine obtained, and the minimum creatinine clearance was calculated using the maximum serum creatinine during each patient’s visit; the percent decrease in creatinine clearance was calculated from these two values. AKI status was defined as meeting any of the RIFLE criteria. Mortality
was assessed for all patients and defined as the composite of in-hospital mortality and discharge or transfer to hospice care.

Exposure Ascertainment

Hypotension exposure was defined as experiencing one of the following: mean arterial blood pressure less than 60 mmHg, a diagnosis of hypotension by a physician, or receipt of vasopressors or inotropic agents. Days of therapy for each drug was obtained, and combination days of therapy was calculated by including only those days in which the patient received both medications. Total days of therapy was calculated by the sum of all days receiving at least one of the study agents. The average daily vancomycin dose was calculated for each patient by taking the sum of all vancomycin doses received and dividing by the days of vancomycin therapy. Exposure to other nephrotoxic agents (acyclovir, angiotensin converting enzyme inhibitors, angiotensin II receptor antagonists, aminoglycosides, amphotericin B, cyclosporine, foscarnet, loop diuretics, nonsteroidal anti-inflammatory drugs [NSAIDs], sulfonamides, tacrolimus, and tenofovir) was defined as receipt of at least one dose of the agent during hospitalization.

Statistical Analysis

Characteristics between groups were described with basic descriptive statistics. Continuous variables were compared with one-way ANOVA or the Kruskal-Wallis test. Categorical variables were compared with χ^2 or Fisher’s exact test. Yearly AKI trends were assessed with Pearson’s correlation coefficient. Univariate models for all covariates were
created with probability of AKI as the outcome. Covariates significant after univariate were then incorporated into the multivariate model, which was subsequently adjusted to achieve the highest predictive accuracy by minimizing the Akaike information criterion (AIC). Model fit was assessed with a standardized Hosmer-Lemeshow goodness of fit test.[11] All statistical analyses were completed with RStudio v0.98 running R v3.1.2 (R Foundation for Statistical Computing, Vienna, Austria)[12]. All tests were two-tailed and significance was defined at an alpha of 0.05.

Role of Funding Source

The project described was supported by the National Center for Advancing Translational Sciences, National Institutes of Health, through grant number UL1TR000117. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.
Chapter Three: Results

Baseline Patient Characteristics

Of 17,879 patients initially screened, 11,650 patients were evaluated, of which 5,497 received VAN and PTZ (VAN/PTZ), 3,055 received VAN alone, and 3,098 received PTZ alone (Figure 2). Table 1 contains basic demographic information. The average age of patients was 52.5 ± 16.8 years with 6,242 (53.6%) males. Patients receiving VAN/PTZ had higher CCIs than either monotherapy group and had significantly increased length of hospitalization. While patients in the combination therapy group were more likely to experience some level of hypotension, concomitant nephrotoxic agent exposure was more common in the VAN monotherapy group.
FIGURE 1: Patient exclusion flowchart

Patients receiving VAN, PTZ, or VAN/PTZ

N = 17,874
- Adults ≥ 18
- No pregnancy
- No CF
- No diagnosed CKD or

Patients excluded

N = 6,224
- Less than 48 hours of treatment = 1,685
- Combination therapy < 48 hours = 1,508
- Length of stay < 48 hours = 1,398
- Baseline CrCl < 30 mL/min = 449
- AKI within 48 hours of treatment = 446
- No serum creatinine values = 290
- AKI occurred prior to treatment = 219
- AKI occurred > 7 days after treatment discontinued = 199
- Outlier baseline CrCl = 30

Final population

N = 11,650
- VAN = 3,055
- PTZ = 3,098
- VAN/PTZ = 5,497
TABLE 1: Baseline patient characteristics

<table>
<thead>
<tr>
<th>Outcome</th>
<th>VAN (N=3,055)</th>
<th>PTZ (N=3,098)</th>
<th>VAN/PTZ (N=5,497)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years) [Mean (± SD)]</td>
<td>52.5 (16.9)</td>
<td>53.3 (17.5)</td>
<td>52.0 (16.3)</td>
</tr>
<tr>
<td>Age group (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-29</td>
<td>333 (10.9%)</td>
<td>379 (12.2%)</td>
<td>594 (10.8%)</td>
</tr>
<tr>
<td>30-49</td>
<td>940 (30.8%)</td>
<td>837 (27.0%)</td>
<td>1736 (31.6%)</td>
</tr>
<tr>
<td>50-64</td>
<td>984 (32.2%)</td>
<td>1034 (33.4%)</td>
<td>1904 (34.6%)</td>
</tr>
<tr>
<td>65-79</td>
<td>630 (20.6%)</td>
<td>632 (20.4%)</td>
<td>1019 (18.5%)</td>
</tr>
<tr>
<td>≥80</td>
<td>168 (5.5%)</td>
<td>216 (7.0%)</td>
<td>244 (4.4%)</td>
</tr>
<tr>
<td>Male gender</td>
<td>1462 (47.9%)</td>
<td>1523 (49.2%)</td>
<td>3257 (59.3%)</td>
</tr>
<tr>
<td>Charlson Comorbidity Index</td>
<td>2 (0-4)</td>
<td>2 (0-5)</td>
<td>3 (1-5)</td>
</tr>
<tr>
<td>Baseline creatinine clearance (mL/min) [Mean (±SD)]*</td>
<td>100.9 (40.4)</td>
<td>100.1 (42.7)</td>
<td>101.9 (43.6)</td>
</tr>
<tr>
<td>Outcome</td>
<td>VAN (N=3,055)</td>
<td>PTZ (N=3,098)</td>
<td>VAN/PTZ (N=5,497)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CrCl group (mL/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-59</td>
<td>394 (12.9%)</td>
<td>528 (17.0%)</td>
<td>855 (15.6%)</td>
</tr>
<tr>
<td>60-89</td>
<td>984 (32.2%)</td>
<td>888 (28.7%)</td>
<td>1539 (28.0%)</td>
</tr>
<tr>
<td>≥90</td>
<td>1677 (54.9%)</td>
<td>1682 (54.3%)</td>
<td>3103 (56.4%)</td>
</tr>
<tr>
<td>Transfer from outside facility</td>
<td>646 (21.1%)</td>
<td>867 (28.0%)</td>
<td>1487 (27.1%)</td>
</tr>
<tr>
<td>Admission type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>904 (29.6%)</td>
<td>398 (12.8%)</td>
<td>644 (11.7%)</td>
</tr>
<tr>
<td>Emergency</td>
<td>1329 (43.5%)</td>
<td>1692 (54.6%)</td>
<td>2956 (53.8%)</td>
</tr>
<tr>
<td>Trauma</td>
<td>102 (3.3%)</td>
<td>137 (4.4%)</td>
<td>524 (9.5%)</td>
</tr>
<tr>
<td>Urgent</td>
<td>720 (23.6%)</td>
<td>871 (28.1%)</td>
<td>1373 (25.0%)</td>
</tr>
<tr>
<td>Hypotension exposure</td>
<td>447 (14.6%)</td>
<td>442 (14.3%)</td>
<td>1560 (28.4%)</td>
</tr>
<tr>
<td>Dehydration diagnosis</td>
<td>98 (3.2%)</td>
<td>225 (7.3%)</td>
<td>312 (5.7%)</td>
</tr>
<tr>
<td>Length of Stay (days) [Median (IQR)]</td>
<td>5 (3-9)</td>
<td>5 (3-9)</td>
<td>7 (4-14)</td>
</tr>
<tr>
<td>Total Days of Therapy (days) [Median (IQR)]</td>
<td>3 (2-5)</td>
<td>4 (3-6)</td>
<td>5 (4-8)</td>
</tr>
<tr>
<td>Outcome</td>
<td>VAN (N=3,055)</td>
<td>PTZ (N=3,098)</td>
<td>VAN/PTZ (N=5,497)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length of Stay (days)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤7</td>
<td>2084 (68.2%)</td>
<td>2144 (69.2%)</td>
<td>2760 (50.2%)</td>
</tr>
<tr>
<td>8-14</td>
<td>596 (19.5%)</td>
<td>641 (20.7%)</td>
<td>1438 (26.2%)</td>
</tr>
<tr>
<td>15-21</td>
<td>182 (6.0%)</td>
<td>179 (5.8%)</td>
<td>637 (11.6%)</td>
</tr>
<tr>
<td>>21</td>
<td>193 (6.3%)</td>
<td>134 (4.3%)</td>
<td>662 (12.0%)</td>
</tr>
<tr>
<td>Nephrotoxic agent exposure</td>
<td>1970 (64.5%)</td>
<td>1434 (46.3%)</td>
<td>3343 (60.8%)</td>
</tr>
<tr>
<td>Acyclovir</td>
<td>202 (6.6%)</td>
<td>19 (0.6%)</td>
<td>109 (2.0%)</td>
</tr>
<tr>
<td>ACE-inhibitor</td>
<td>595 (19.5%)</td>
<td>545 (17.6%)</td>
<td>1142 (20.8%)</td>
</tr>
<tr>
<td>ARB</td>
<td>159 (5.2%)</td>
<td>133 (4.3%)</td>
<td>167 (3.0%)</td>
</tr>
<tr>
<td>Aminoglycoside</td>
<td>336 (11.0%)</td>
<td>126 (4.1%)</td>
<td>630 (11.5%)</td>
</tr>
<tr>
<td>Amphotericin B</td>
<td>30 (1.0%)</td>
<td>11 (0.4%)</td>
<td>78 (1.4%)</td>
</tr>
<tr>
<td>Cyclosporine*</td>
<td>8 (0.3%)</td>
<td>12 (0.4%)</td>
<td>13 (0.2%)</td>
</tr>
<tr>
<td>Foscarnet*</td>
<td>4 (0.1%)</td>
<td>1 (0.03%)</td>
<td>5 (0.1%)</td>
</tr>
<tr>
<td>Loop diuretic</td>
<td>594 (19.4%)</td>
<td>607 (19.6%)</td>
<td>1828 (33.3%)</td>
</tr>
<tr>
<td>NSAID</td>
<td>874 (28.6%)</td>
<td>309 (10.0%)</td>
<td>752 (13.7%)</td>
</tr>
<tr>
<td>Sulfonamide</td>
<td>19 (0.6%)</td>
<td>18 (0.6%)</td>
<td>95 (1.7%)</td>
</tr>
<tr>
<td>Tacrolimus</td>
<td>34 (1.1%)</td>
<td>75 (2.4%)</td>
<td>108 (2.0%)</td>
</tr>
<tr>
<td>Tenofovir*</td>
<td>27 (0.9%)</td>
<td>18 (0.6%)</td>
<td>29 (0.5%)</td>
</tr>
</tbody>
</table>
Footnote for Table 1:

Reported values are N (%) unless otherwise specified; All values are significantly different by standard tests unless denoted by * where p>0.05; SD: standard deviation; IQR: interquartile range; CrCl: creatinine clearance; ACE: angiotensin converting enzyme; ARB: angiotensin receptor blocker; NSAID: non-steroidal anti-inflammatory drug

Unadjusted Acute Kidney Injury Incidence

RIFLE-defined AKI occurred in 1,647 (14.1%) across the entire cohort. AKI occurred in 21% of VAN/PTZ patients, 8.3% of VAN patients, and 7.8% of PTZ patients (p<0.0001). RIFLE-defined Risk, Injury, and Failure occurred more frequently in the VAN/PTZ cohort compared to the VAN and PTZ monotherapy groups (Figure 2). There were no differences in AKI rates between years studied (r²=0.4732, p=0.2). Patients in the VAN/PTZ group experienced AKI on average of 8.0 days after treatment initiation, compared to 8.7 and 5.2 days for VAN and PTZ monotherapy groups, respectively. The composite of in-hospital mortality and transfer to hospice care was more common in VAN/PTZ patients (9.6%) compared to monotherapy groups (VAN 3.9%, PTZ 3.4%), most likely due to the increased severity of illness.

Factors associated with AKI in univariate analyses included treatment with VAN/PTZ, days of therapy, baseline creatinine clearance, transfer from outside hospitals, CCI, admission type, length of hospitalization, dehydration exposure, and hypotension exposure. Exposure to aminoglycosides, amphotericin B, ACE inhibitors, NSAIDs, tacrolimus, foscarnet, loop diuretics, sulfonamides, and tenofovir were all associated with increased odds of AKI in simple univariate logistic regression. Gender, age, year of
treatment, angiotensin II receptor antagonist exposure, and cyclosporine exposure were not significantly associated with AKI incidence.

FIGURE 2: Unadjusted incidence of AKI

![Bar chart showing unadjusted incidence of AKI](image)

Adjusting Acute Kidney Injury Incidence

After multivariate logistic regression, VAN/PTZ therapy was associated with increased odds of AKI compared to VAN and PTZ monotherapies (aOR\textsubscript{VAN}=2.03; 95% CI\textsubscript{VAN} 1.74-2.39; aOR\textsubscript{PTZ}=2.31; 95% CI\textsubscript{PTZ} 1.97-2.71). No difference in AKI incidence was observed between VAN and PTZ groups (aOR\text{PTZ compared to VAN}=0.88; 95% CI 0.72-1.07). Table 2 describes the relationship between AKI and other covariates included in the model. Increased odds of AKI were seen with concomitant administration of amphotericin B, tacrolimus, loop diuretics, and tenofovir. Patients admitted urgently and emergently were at higher risk of AKI, while those admitted via the trauma center were less likely to
experience AKI compared to patients who were electively admitted. Increased length of stay and duration of therapy were both associated with increased likelihood of AKI, independent of treatment group; however, durations of therapy beyond 12 days was not associated with increased AKI. Hypotension, as previously defined, and diagnosed dehydration both independently increased AKI odds. Aside from those greater than 80 years old, increasing age was not associated with increased AKI risk. No evidence of overfitting was observed with the standardized Hosmer-Lemeshow p-value of 0.33, and the model provides good predictive accuracy with a c-statistic of 0.787.

TABLE 2: Univariate and multivariate association between combination VAN/PTZ therapy and AKI odds independent of other baseline covariates

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Unadjusted</th>
<th>Adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR</td>
<td>95% CI</td>
</tr>
<tr>
<td>Treatment group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAN/PTZ</td>
<td>(ref)</td>
<td></td>
</tr>
<tr>
<td>PTZ</td>
<td>0.34</td>
<td>0.29 - 0.39</td>
</tr>
<tr>
<td>VAN</td>
<td>0.32</td>
<td>0.27 - 0.37</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>(ref)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>0.99</td>
<td>0.89 - 1.10</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-29</td>
<td>(ref)</td>
<td></td>
</tr>
<tr>
<td>30-49</td>
<td>1.09</td>
<td>0.91 - 1.32</td>
</tr>
<tr>
<td>50-64</td>
<td>1.23</td>
<td>1.02 - 1.48</td>
</tr>
<tr>
<td>Covariate</td>
<td>Unadjusted</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td>95% CI</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65-79</td>
<td>1.11</td>
<td>0.91 - 1.36</td>
</tr>
<tr>
<td>≥ 80</td>
<td>1.12</td>
<td>0.84 - 1.47</td>
</tr>
<tr>
<td>CCI (per point)</td>
<td>1.07</td>
<td>1.06 - 1.09</td>
</tr>
<tr>
<td>Baseline CrCl (mL/min)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-59</td>
<td>(ref)</td>
<td></td>
</tr>
<tr>
<td>60-89</td>
<td>1.02</td>
<td>0.85 - 1.23</td>
</tr>
<tr>
<td>≥ 90</td>
<td>1.7</td>
<td>1.45 - 2.01</td>
</tr>
<tr>
<td>Admission type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>(ref)</td>
<td></td>
</tr>
<tr>
<td>Emergency</td>
<td>1.19</td>
<td>1.02 - 1.39</td>
</tr>
<tr>
<td>Trauma</td>
<td>1.03</td>
<td>0.79 - 1.33</td>
</tr>
<tr>
<td>Urgent</td>
<td>1.63</td>
<td>1.38 - 1.94</td>
</tr>
<tr>
<td>Transfer from outside facility</td>
<td>1.56</td>
<td>1.39 - 1.74</td>
</tr>
<tr>
<td>Hypotension exposure</td>
<td>2.81</td>
<td>2.52 - 3.15</td>
</tr>
<tr>
<td>Dehydration exposure</td>
<td>1.29</td>
<td>1.04 - 1.59</td>
</tr>
<tr>
<td>Covariate</td>
<td>Unadjusted</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td>95% CI</td>
</tr>
<tr>
<td>Nephrotoxic drug exposures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acyclovir</td>
<td>1.22</td>
<td>0.90-1.63</td>
</tr>
<tr>
<td>Aminoglycoside</td>
<td>1.89</td>
<td>1.62-2.20</td>
</tr>
<tr>
<td>Amphotericin B</td>
<td>4.35</td>
<td>2.99-6.27</td>
</tr>
<tr>
<td>ACE inhibitor</td>
<td>1.34</td>
<td>1.18-1.51</td>
</tr>
<tr>
<td>ARB</td>
<td>0.87</td>
<td>0.65-1.15</td>
</tr>
<tr>
<td>Cyclosporine</td>
<td>1.35</td>
<td>0.50-3.06</td>
</tr>
<tr>
<td>Foscarnet</td>
<td>6.09</td>
<td>1.69-21.92</td>
</tr>
<tr>
<td>Loop diuretic</td>
<td>3.51</td>
<td>3.15-3.91</td>
</tr>
<tr>
<td>NSAID</td>
<td>0.82</td>
<td>0.71-0.95</td>
</tr>
<tr>
<td>Sulfonamide</td>
<td>1.8</td>
<td>1.18-2.68</td>
</tr>
<tr>
<td>Tacrolimus</td>
<td>2.66</td>
<td>1.97-3.56</td>
</tr>
<tr>
<td>Tenofovir</td>
<td>1.96</td>
<td>1.12-3.28</td>
</tr>
<tr>
<td>Year of admission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>(ref)</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>0.85</td>
<td>0.69-1.05</td>
</tr>
<tr>
<td>2012</td>
<td>0.95</td>
<td>0.78-1.18</td>
</tr>
<tr>
<td>2013</td>
<td>0.87</td>
<td>0.70-1.07</td>
</tr>
<tr>
<td>2014</td>
<td>0.84</td>
<td>0.67-1.05</td>
</tr>
<tr>
<td>Covariate</td>
<td>Unadjusted</td>
<td>Adjusted</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td>95% CI</td>
</tr>
<tr>
<td>Duration of therapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(days)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td>(ref)</td>
<td>(ref)</td>
</tr>
<tr>
<td>4-5</td>
<td>1.81</td>
<td>1.55 - 2.13</td>
</tr>
<tr>
<td>6-7</td>
<td>3.23</td>
<td>2.74 - 3.81</td>
</tr>
<tr>
<td>8-9</td>
<td>5.09</td>
<td>4.22 - 6.13</td>
</tr>
<tr>
<td>10-11</td>
<td>5.94</td>
<td>4.71 - 7.46</td>
</tr>
<tr>
<td>12-13</td>
<td>5.25</td>
<td>3.84 - 7.12</td>
</tr>
<tr>
<td>≥ 14</td>
<td>5.31</td>
<td>4.19 - 6.72</td>
</tr>
<tr>
<td>Length of stay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(days)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 7</td>
<td>(ref)</td>
<td>(ref)</td>
</tr>
<tr>
<td>8-14</td>
<td>3.35</td>
<td>2.94 - 3.81</td>
</tr>
<tr>
<td>15-21</td>
<td>4.48</td>
<td>3.79 - 5.29</td>
</tr>
<tr>
<td>>21</td>
<td>5.88</td>
<td>5.01 - 6.91</td>
</tr>
</tbody>
</table>

Footnote for Table 2:

PTZ: piperacillin-tazobactam; VAN: vancomycin; VAN/PTZ: vancomycin plus piperacillin-tazobactam; CrCl: creatinine clearance; CCI: Charlson Comorbidity Index; ACE: angiotensin converting enzyme; ARB: angiotensin receptor blocker; NSAID: non-steroidal anti-inflammatory drug
Chapter Four: Conclusions

Summary of Findings

Acute kidney injury secondary to vancomycin therapy is a well characterized adverse effect, while AKI incidence secondary to piperacillin-tazobactam is less understood. Additionally, there appears to be an increased effect when these agents are used in combination. To date, this is the largest review of AKI in patients receiving vancomycin, piperacillin-tazobactam, or the combination of both agents.

There has been a recent surge in evidence suggesting increased nephrotoxicity in patients treated with the combination of vancomycin and anti-pseudomonal beta-lactams. The mechanism for the apparent increase in nephrotoxicity with the combination is not well-understood and needs further study in both animal models and humans.

Acute kidney injury rates related to vancomycin vary widely, with recent studies in critically ill and internal medicine patients estimating rates of 21% and 13.6%, respectively.[2,3] In our vancomycin monotherapy cohort, which includes critically ill patients, the AKI rate was 8.3%, with 2.3% of patients experiencing a greater than 50% decrease in creatinine clearance. Piperacillin-tazobactam-related AKI rates are not well-characterized; however, a small retrospective analysis estimated that 11.1% of piperacillin-tazobactam patients experienced acute renal failure (defined as either increase in serum creatinine ≥ 0.5 mg/dL or 50% increase from baseline).[13] In the present study, we found the piperacillin-tazobactam-related AKI rate to be 7.8%, which may be due to a more stringent definition of AKI. Additionally, Hellwig et al [13], found that piperacillin-tazobactam monotherapy was associated with higher AKI rates compared to vancomycin
monotherapy (11.1% vs. 4.9%; p=0.014). This was not replicated in our study, with vancomycin and piperacillin-tazobactam monotherapy having similar AKI rates (8.3% and 7.8%, respectively) and an adjusted odds ratio for AKI between piperacillin-tazobactam and vancomycin of 0.88 (95% CI 0.72-1.07). The estimated AKI incidence in the combination therapy group of 21% at our institution is consistent with prior literature which ranges from 16.3 to 34.8%.[4-8, 13]

Limitations

This study is not without limitations. As with all retrospective studies, it is difficult to determine a causal link between vancomycin and piperacillin-tazobactam combination therapy and increased AKI incidence due to confounding. We employed a rigorous study design that controlled for major confounders of AKI, such as concomitant nephrotoxic exposure, hypotension, and previous renal disease. Nephrotoxic potential of agents was assumed to be equal, which is not necessarily true. Additionally, the binary representation of nephrotoxic exposure does not describe the amount of the agent received; as such, our estimations of AKI odds may be artificially elevated. Approximately one quarter of the patients in this study were transferred from an outside hospital, for which no data regarding initial treatment is available. This may lead to exposure misclassification; however, we attempted to control for this factor in the regression model and found that, after controlling for other covariates, hospital transfer was not associated with odds of AKI. Finally, data was collected retrospectively from the electronic medical record and is subject to inaccuracies documented in the chart; however, any bias introduced should be nondifferential.
Application to Clinical Practice

In our large retrospective study of combination empiric therapy with vancomycin and piperacillin-tazobactam, we found that combination therapy was associated with over double the odds of AKI occurring compared to either monotherapy with vancomycin or piperacillin-tazobactam. Increasing duration of therapy was also associated with increases in AKI. These findings demonstrate the need for judicious use of combination therapy and strengthen the need for antimicrobial de-escalation when appropriate in order to avoid deleterious effects.
Cleaning up the medication dataset for better analysis.

Load the stringr package for access to the str_trim which eliminates whitespace generated in the steps above

```r
library(stringr)
```

```r
meds$drug <- str_trim(meds$drug)
```

```r
## Cleaning up the medication dataset for better analysis.
```

```r
colClasses(meds) <- character()
```

Acute Kidney injury in Vanc mono vs. PTZ mono vs. PTZ+VAN

Appendix A: R codes

```r
# Read the file
meds <- read.csv('../Desktop/AKI data files/New_meds.csv', colClasses = 'character')
```

```r
## Cleaning up the medication dataset for better analysis.
```

```r
# Using a separate dataset so nothing is changed in the original unintentionally
meds$date <- sub('\(Inj\)\|\|\|', '', meds$drug)
meds$date <- sub('\(Drip\)\|\|', '', meds$drug)
meds$date <- sub('\(PEDIATRIC\)\|\|', '', meds$drug)
meds$date <- sub('\(IntraMuscular\)\|\|', '', meds$drug)
meds$date <- sub('-\|\|', '', meds$drug)
meds$date <- sub('Inj', '', meds$drug)
```

```r
library(dplyr)
```

```r
meds2 <- select(meds, Encounter.ID, MRN, drug)
meds2 <- unique(meds2)
```

```r
library(data.table)
```

```r
meds3 <- data.table(meds2)
meds3 <- dcast.data.table(meds3, data = meds2, Encounter.ID + MRN ~ drug)
```

```r
for(i in 1:nrow(meds3)){
  if(!is.na(meds3$Cefepime[i]) & is.na(meds3$PTZ[i]) &
    is.na(meds3$Vancomycin[i])){
    meds3$group[i] = 'CM'
  }
  if(is.na(meds3$Cefepime[i]) & !is.na(meds3$PTZ[i]) &
    is.na(meds3$Vancomycin[i])){
    meds3$group[i] = 'PM'
  }
  if(is.na(meds3$Cefepime[i]) & is.na(meds3$PTZ[i]) &
    !is.na(meds3$Vancomycin[i])){
    meds3$group[i] = 'VM'
  }
  if(is.na(meds3$Cefepime[i]) & !is.na(meds3$PTZ[i]) &
    !is.na(meds3$Vancomycin[i])){
    meds3$group[i] = 'PV'
  }
  if(!is.na(meds3$Cefepime[i]) & is.na(meds3$PTZ[i]) &
    !is.na(meds3$Vancomycin[i])){
    meds3$group[i] = 'CV'
  }
  if(!is.na(meds3$Cefepime[i]) & !is.na(meds3$PTZ[i]) &
    !is.na(meds3$Vancomycin[i])){
    meds3$group[i] = 'CP'
  }
  if(!is.na(meds3$Cefepime[i]) & !is.na(meds3$PTZ[i]) &
    !is.na(meds3$Vancomycin[i])){
    meds3$group[i] = 'CVP'
  }
}
```
for(i in 1:nrow(dat)){
 x<-scr[scr$EID==dat$EID[i],]
 dat$baseline_scr_date[i]<-as.character(min(x$date))
 dat$baseline_scr[i]<-x$VAL_NUM[x$date==min(x$date)]
}

for(i in 1:nrow(dat)){
 x<-scr[scr$EID==dat$EID[i],]
 dat$max_scr_date[i]<-as.character(x$date[x$VAL_NUM==max(x$VAL_NUM, na.rm=T)])
 dat$max_scr[i]<-max(x$VAL_NUM, na.rm=T)
}

class(meds$Performed.Date.Time)
meds$date<-sapply(strsplit(x = meds$Performed.Date.Time, split = ' '), ignore.case = T)
van<-meds[grep1('vancomycin', ignore.case = T, meds$drug),]
ptz<-meds[grep1('PTZ', meds$drug),]

for(i in 1:nrow(dat)){
 medx<-meds[meds$Encounter.ID == dat$EID[i],]
 dat$Total_DOT[i]<-length(unique(medx$date))
}

for(i in 1:nrow(dat)){
 if(dat$group[i]=='PV'){
 vanx<-van[van$Encounter.ID == dat$EID[i],]
 ptzx<-ptz[ptz$Encounter.ID == dat$EID[i],]
 dat$Van_DOT[i]<-length(unique(vanx$date))
 }
}
dat$PTZ_DOT[i]<-length(unique(ptzx$PTZ_DATE))
}
if (dat$group[i]=='PM'){
 dat$Van_DOT[i]<-NA
 dat$PTZ_DOT[i]<-dat$Total_DOT[i]
}
if (dat$group[i]=='VM'){
 dat$PTZ_DOT[i]<-NA
 dat$Van_DOT[i]<-dat$Total_DOT[i]
}

medstest<-meds[meds$Encounter.ID %in% dat$EID,]
dot(head(medstest))
library(plyr)
dot2<-ldply(DOT_list)
dot3<-select(dot2, V1,V5)
dot3$EID<-dot3$V1
dot3$Combo_DOT<-dot3$V5
dot3$V1<-NULL
dot3$V5<-NULL
dat<-merge(dat, dot3, by='EID')
dat<-dat[dat$Total_DOT>=2,]

for(i in 1:nrow(dat)){
 if (dat$GENDER[i]=='UNKNOWN'){
 dat$GENDER[i]<-'MALE'
 }
}
dat$baseline_scr<-as.numeric(dat$baseline_scr)
dat$max_scr<-as.numeric(dat$max_scr)

for(i in 1:nrow(dat)){
 dat$baseline_crcl[i]<-(140-dat$AGE[i])/dat$baseline_scr[i]
 dat$min_crcl[i]<-(140-dat$AGE[i])/dat$max_scr[i]
 if (dat$GENDER[i]=='FEMALE'){
 dat$baseline_crcl[i]<-dat$baseline_crcl[i]*0.85
 dat$min_crcl[i]<-dat$min_crcl[i]*0.85
 }
}
dat$percent_change<-{(dat$min_crcl/dat$baseline_crcl[i]-1)*100
for(i in 1:length(dat$EID))
 ##assign RIFLE labels to appropriate degrees of renal impairment
 if (dat$percent_change[i]>=0){
 ##if percent change is >=0, the max SCR is equal to baseline, suggesting GFR improvement
 dat$RIFLE[i]<-'No injury'
 } else {
 if (abs(dat$percent_change[i])<25){
 dat$RIFLE[i]<-'No injury'
 }
 if (abs(dat$percent_change[i])>=25 & abs(dat$percent_change[i])<50){
 dat$RIFLE[i]<-'RISK'
 }
 if (abs(dat$percent_change[i])>=50){
 dat$RIFLE[i]<-'CRIT'
 }
 }
if (abs(dat$percent_change[i]) >= 50 & abs(dat$percent_change[i]) < 75) {
 dat$RIFLE[i] <- 'INJURY'
} else if (abs(dat$percent_change[i]) >= 75) {
 dat$RIFLE[i] <- 'Failure'
}

for (i in 1:length(dat$EID)) {
 # Assigns binary outcome for AKI (Risk, Injury, Failure) vs No AKI
 if (dat$RIFLE[i] == 'No injury') {
 # Can convert to a 0/1 answer for modeling.
 dat$AKI[i] <- 'No AKI'
 } else {
 dat$AKI[i] <- 'AKI'
 }
}

dat$van_start <- NA
dat$ptz_start <- NA
ptz$date <- as.Date(ptz$date, format = '%m/%d/%Y')
van$date <- as.Date(van$date, format = '%m/%d/%Y')

for (i in 1:nrow(dat)) {
 if (dat$group[i] == 'PM') {
 x <- van[van$Encounter.ID == dat$EID[i],]
 x <- x[!is.na(x$date),]
 dat$van_start[i] <- as.character(min(x$date))
 y <- ptz[ptz$Encounter.ID == dat$EID[i],]
 y <- y[!is.na(y$date),]
 dat$ptz_start[i] <- as.character(min(y$date))
 dat$van_start[i] <- NA
 } else if (dat$group[i] == 'VM') {
 x <- van[van$Encounter.ID == dat$EID[i],]
 x <- x[!is.na(x$date),]
 dat$van_start[i] <- as.character(min(x$date))
 dat$ptz_start[i] <- NA
 y <- ptz[ptz$Encounter.ID == dat$EID[i],]
 y <- y[!is.na(y$date),]
 } else if (dat$group[i] == 'PV') {
 x <- van[van$Encounter.ID == dat$EID[i],]
 x <- x[!is.na(x$date),]
 dat$van_start[i] <- as.character(min(x$date))
 y <- ptz[ptz$Encounter.ID == dat$EID[i],]
 y <- y[!is.na(y$date),]
 }
}

dat$ptz_start <- as.Date(dat$ptz_start)
dat$van_start<-as.Date(dat$van_start)

for(i in 1:nrow(dat)){
 dat$tx_index[i]<-as.character(min(dat$van_start[i], dat$ptz_start[i], na.rm = T))
}

for(i in 1:nrow(dat)){
 for(j in 1:nrow(dat)) {
 if(dat$group[j]=='PM' | dat$group[j]=='VM'){
 dat$Combo_DOT[j]<-NA
 }
 }
}

dat<-dat[dat$Combo_DOT>=2 | is.na(dat$Combo_DOT),]

crclcut<-mean(dat$baseline_crcl)+4*sd(dat$baseline_crcl)
dat<-dat[dat$baseline_crcl<=crclcut,]
dat<-dat[dat$baseline_crcl>=30,]

dat$max_scr_date2<-sapply(strsplit(dat$max_scr_date, ' '), '[',1)
dat$max_scr_date2<-as.Date(dat$max_scr_date2)

for(i in 1:nrow(dat)){
 if(dat$max_scr_date2[i] < dat$tx_index[i]){
 dat$aki_before_tx[i]<-'Y'
 }
 else{
 dat$aki_before_tx[i]<-'N'
 }
}

dat<-dat[!(dat$aki_before_tx=='Y'
 & dat$AKI=='AKI') ,]

for(i in 1:nrow(dat)){
 if(dat$AKI[i]=='No AKI'){
 dat$time_to_aki[i]<-NA
 }
else{
 dat$time_to_aki[i]<-as.numeric(dat$max_scr_date2[i]-
 dat$tx_index[i])
 }
}

dat_b<-dat

dat<-dat[dat$time_to_aki>=2 | is.na(dat$time_to_aki),]

dat$van_end<-NA

dat$ptz_end<-NA

for(i in 1:nrow(dat)){
 if(dat$group[i]=='VM'){
 x<-van[van$Encounter.ID==dat$EID[i],]
 x<-x[!is.na(x$date),]
 dat$van_end[i]<-as.character(max(x$date))
 dat$ptz_end[i]<-NA
 }
```r
if (dat$group[i] == 'PM') {
  dat$van_end[i] <- NA
  y <- ptz[ptz$Encounter.ID == dat$EID[i],]
  y <- y[!is.na(y$date),]
  dat$ptz_end[i] <- as.character(max(y$date))
}
if (dat$group[i] == 'PV') {
  x <- van[van$Encounter.ID == dat$EID[i],]
  x <- x[!is.na(x$date),]
  dat$van_end[i] <- as.character(max(x$date))
  y <- ptz[ptz$Encounter.ID == dat$EID[i],]
  y <- y[!is.na(y$date),]
  dat$ptz_end[i] <- as.character(max(y$date))
}

dat$van_end <- as.Date(dat$van_end)
dat$ptz_end <- as.Date(dat$ptz_end)
for (i in 1:nrow(dat)) {
  dat$tx_end[i] <- as.character(max(dat$van_end[i], dat$ptz_end[i], na.rm = T))
}
dat$tx_end <- as.Date(dat$tx_end)
for (i in 1:nrow(dat)) {
  if (as.numeric(dat$tx_end[i] - dat$max_scr_date2[i]) > 7) {
    dat$aki_out_range[i] <- 'Y'
  } else {
    dat$aki_out_range[i] <- 'N'
  }
}
dat <- dat[, !(dat$aki_out_range == 'Y' & dat$AKI == 'AKI'),]

for (i in 1:length(dat$EID)) {
  # gives a single Y/N variable for occurrence of hypotension
  ifelse(dat$MEAN_ARTERIAL_UNDER_60_FLG[i] == 'Y' |
          dat$HYPOTENSION_FLG[i] == 'Y',
          dat$vasopressors_FLG[i] == 'Y',
          dat$hypotension[i] <- 'Y',
          dat$hypotension[i] <- 'N')
}

for (i in 1:length(dat$EID)) {
  # Y/N for nephrotoxic drug exposure. Does not give a count.
  ifelse(dat$ACYCLOVIR_FLG[i] == 'Y',
          dat$AMINOGLYCOSIDES_FLG[i] == 'Y',
          dat$AMPHOTERICIN_B_FLG[i] == 'Y',
          dat$ANGIOTENSIN_FLG[i] == 'Y',
          dat$ANGIOTENSION_FLG[i] == 'Y',
          dat$COLISTIN_FLG[i] == 'Y',
          dat$CYCLOSPORINE_FLG[i] == 'Y',
          dat$FOSCARNET_FLG[i] == 'Y',
          dat$LOOP_DIURETICS_FLG[i] == 'Y',
          dat$NON_STEROIDAL_ANTIFLAG[i] == 'Y',
          dat$SULFONAMIDES_FLG[i] == 'Y',
          dat$TACROLIMUS_FLG[i] == 'Y',
          dat$TENOFOVIR_FLG[i] == 'Y',
          dat$nephrotoxic_drug[i] <- 'Y',
          dat$nephrotoxic_drug[i] <- 'N')
```

for(vtr labs)
for(van labs)
for(van dat)
for(van ptz meds)
if(van)
for(van)
for(van)
for(van)
for(van)
for(van)
for(van)
for(van)
for(van)

vtr labs
for(vitr labs)

vitr labs
dat$max_van_tr[i]<-max(x$VAL_NUM)
dat$max_van_tr_date[i]<-
as.character(x$date[x$VAL_NUM==max(x$VAL_NUM)])
}

dat$max_van_tr<-as.numeric(dat$max_van_tr)
dat$first_van_tr<-as.numeric(dat$first_van_tr)

for(i in 1:nrow(dat)){
 if(!is.na(dat$first_van_tr[i])){
 if(dat$first_van_tr[i]<10){
 dat$first_van_tr_class[i]<-'subtherapeutic'
 }
 if(dat$first_van_tr[i]<15 & dat$first_van_tr[i]>=10){
 dat$first_van_tr_class[i]<-'therapeutic_low'
 }
 if(dat$first_van_tr[i]<=20 & dat$first_van_tr[i]>=15){
 dat$first_van_tr_class[i]<-'therapeutic_high'
 }
 if(dat$first_van_tr[i]>20){
 dat$first_van_tr_class[i]<-'supratherapeutic'
 }
 }
 if(!is.na(dat$max_van_tr[i])){
 if(dat$max_van_tr[i]<10){
 dat$max_van_tr_class[i]<-'subtherapeutic'
 }
 if(dat$max_van_tr[i]<15 & dat$max_van_tr[i]>=10){
 dat$max_van_tr_class[i]<-'therapeutic_low'
 }
 if(dat$max_van_tr[i]<=20 & dat$max_van_tr[i]>=15){
 dat$max_van_tr_class[i]<-'therapeutic_high'
 }
 if(dat$max_van_tr[i]>20){
 dat$max_van_tr_class[i]<-'supratherapeutic'
 }
 }
}

for(i in 1:nrow(dat)){
 if(is.na(dat$max_van_tr[i])){
 dat$max_van_tr_class[i]<-NA
 dat$first_van_tr_class[i]<-NA
 }
}

for(i in 1:nrow(dat)){
 if(dat$baseline_crcl[i]>=90){
 dat$baseline_crcl_group[i]<='>=90'
 dat$baseline_crcl_group_num[i]<='1'
 }
 if(dat$baseline_crcl[i]<90 & dat$baseline_crcl[i]>=60){
 dat$baseline_crcl_group[i]<='>=60 to <90'
 dat$baseline_crcl_group_num[i]<='2'
 }
 if(dat$baseline_crcl[i]<60 & dat$baseline_crcl[i]>=30){
 dat$baseline_crcl_group[i]<='>=30 to <60'
 }
}
dat$baseline_crcl_group_num[i]<-'3'
}
}
for(i in 1:nrow(dat)){
 if(dat$AKI[i]=='AKI'){
 dat$aki_num[i]<-1
 }
 else{
 dat$aki_num[i]<-0
 }
}
for(i in 1:nrow(dat)){
 if(grepl('TRANS', dat$ADMT_SRC_CD_DES[i])){
 dat$transfer[i]<-1
 }
 else{
 dat$transfer[i]<-0
 }
}
for(i in 1:nrow(dat)){
 if(grepl('HOSPICE', dat$DISCHRG_DES[i])|grepl('DEATH', dat$DISCHRG_DES[i])){
 dat$mortality[i]<-1
 }
 else{
 dat$mortality[i]<-0
 }
}
dat$TOTAL_CHARLSON_SCORE<-as.numeric(dat$TOTAL_CHARLSON_SCORE)
for(i in 1:nrow(dat)){
 if(dat$AGE[i]>=65){
 dat$age_65[i]<-'Y'
 }
 else{
 dat$age_65[i]<-'N'
 }
}
for(i in 1:nrow(dat)){
 if(dat$AGE[i]<30){
 dat$age_group[i]<-'<30'
 }
 if(dat$AGE[i]>=30 & dat$AGE[i]<50){
 dat$age_group[i]<-'30 to <50'
 }
 if(dat$AGE[i]>=50 & dat$AGE[i]<65){
 dat$age_group[i]<-'50 to <65'
 }
 if(dat$AGE[i]>=65 & dat$AGE[i]<80){
 dat$age_group[i]<-'65 to <80'
 }
 if(dat$AGE[i]==80){
 dat$age_group[i]<-'=80'
 }
for(i in 1:nrow(dat)){
 if(dat$LENGTH_OF_STAY_NUM[i]>7){
 dat$los_7[i]<-'Y'
 }
 else{
 dat$los_7[i]<-'N'
 }
}
dat$los_weeks<-dat$LENGTH_OF_STAY_NUM/7
for(i in 1:nrow(dat)){
 if(dat$LENGTH_OF_STAY_NUM[i]<=7){
 dat$los_group[i]<-'<7'
 } else {
 if(dat$LENGTH_OF_STAY_NUM[i]>7 & dat$LENGTH_OF_STAY_NUM[i]<=14){
 dat$los_group[i]<-'8-14'
 } else {
 if(dat$LENGTH_OF_STAY_NUM[i]>14 & dat$LENGTH_OF_STAY_NUM[i]<=21){
 dat$los_group[i]<-'15-21'
 } else {
 dat$los_group[i]<-'>21'
 }
 }
 }
}
#begin simple models
x<-'binomial'
age<-.glm(aki_num~AGE, family='binomial') #AGE as continuous variable
age65<-.glm(aki_num~age_65, family='binomial', data=dat) # age as binary >=65 variable
agegroup<-.glm(aki_num~age_group, family='binomial', data=dat)
gender<-.glm(aki_num~GENDER, family='binomial', data=dat)
cci<-.glm(aki_num~TOTAL_CHARLSON_SCORE, family = 'binomial', data=dat)
adsrc<-.glm(aki_num~ADMT_SRC_CD_DES, family='binomial', data=dat) # ugly regression use adtype
adtype<-.glm(aki_num~ADMT_TYP_CD_DES, family=x, data=dat)
los<-.glm(aki_num~LENGTH_OF_STAY_NUM, family=x, data=dat)
los7<-glm(aki_num~los_7, family=x, data=dat)
losw<-glm(aki_num~los_weeks, family=x, data=dat)
losg<-glm(aki_num~los_group, family=x, data=dat)
map<-glm(aki_num~MEAN_ARTERIAL UNDER_60_FLG, family=x, data=dat)
dehy<-glm(aki_num~DEHYDRATION_FLG, family=x, data=dat)
hypo<-glm(aki_num~HYPOTENSION_FLG, family=x, data=dat)
acy<-glm(aki_num~ACYCLOVIR_FLG, family=x, data=dat)
ag<-glm(aki_num~AMINOGLYCOSIDES_FLG, family=x, data=dat)
ab<-glm(aki_num~AMPHOTERICIN_B_FLG, family=x, data=dat)
ace<-glm(aki_num~ANGIOTENSIN_FLG, family=x, data=dat)
arb<-glm(aki_num~ANGIOTENSION_FLG, family=x, data=dat)
acearb<-glm(aki_num~ace.arb, family=x, data=dat)
cyc<-glm(aki_num~CYCLOSPORINE_FLG, family=x, data=dat)
tac<-glm(aki_num~TACROLIMUS_FLG, family=x, data=dat)
taccyc<-glm(aki_num~tac.cyc, family=x, data=dat)
fos<-glm(aki_num~FOSCARNET_FLG, family=x, data=dat)
nsaids<-glm(aki_num~NON_STEROIDAL ANTI_FLG, family=x, data=dat)
sulf<-glm(aki_num~SULFONAMIDES_FLG, family=x, data=dat)
ten<-glm(aki_num~TENOPROFIR_FLG, family=x, data=dat)
vas<-glm(aki_num~VASOPRESSORS_FLG, family=x, data=dat)
ino<-glm(aki_num~INOTROPES_FLG, family=x, data=dat)
txgroup<-glm(aki_num~group, family=x, data=dat)
tdot<-glm(aki_num~Total DOT, family=x, data=dat)
vdot<-glm(aki_num~Van_DOT, x, dat)
pdot<-glm(aki_num~PTZ_DOT, x, dat)
crcl<-glm(aki_num~baseline_crcl, x, dat)
crclg<-glm(aki_num~factor(baseline_crcl_group), x, dat)
hypoc<-glm(aki_num~hypotension, x, dat)
neph<-glm(aki_num~nephrotoxic_drug, x, dat)
yr<-glm(aki_num~factor(year), x, dat)
v<glm(aki_num~avg_daily_van_dose, x, dat)
dat$avd_grams<-dat$avd_daily_van_dose/1000
dat$davg<glm(aki_num~avd_grams, x, dat)
trans<-glm(aki_num~transfer, x, dat)
dat$group<-relevel(dat$group, ref = 'PV')

modellrm<-
 lrm(aki_num~group+age_65+TOTAL_CHARLSON SCORE+transfer+DEHYDRATION FLG+
 ACYCLOVIR FLG+AMINOGLYCOSIDES FLG+AMPHOTERICIN B FLG+ANGIOTENSIN FLG
 +
 LOOP_DIURETICS FLG+TACROLIMUS FLG+Total DOT+baseline_crcl_group+hypotension,
data=dat)
modellglm<-
 glm(aki_num~group+age_65+TOTAL_CHARLSON SCORE+transfer+DEHYDRATION FLG+
 ACYCLOVIR FLG+AMINOGLYCOSIDES FLG+AMPHOTERICIN B FLG+ANGIOTENSIN FLG
 +
 LOOP_DIURETICS FLG+TACROLIMUS FLG+Total DOT+baseline_crcl_group+hypotension,
data=dat, x)

compmodelglm<-glm(aki_num~group + factor(age_group) +
 TOTAL_CHARLSON SCORE + factor(baseline_crcl_group) + transfer+hypotension+GENDER+

 year+factor(los_group)+DEHYDRATION_FLG+ACYCLOVIR_FLG+AMINOGLYCOSIDES_FLG+
 AMPHOTERICIN_B_FLG+
ace.arb\n+ tac.cyc\n+ FOSCARNET_FLG\n+ LOOP_DIURETICS_FLG\n+ NON_STEROIDALANTI_FLG\n+ SULFONAMIDES_FLG+ TENOFOVIR_FLG \n+ Total_DOT + nephrotoxic_drug, x, dat

commpmodellrm<-lrm(aki_num~group + factor(age_group) + TOTAL_CHARLSON_SCORE + factor(baseline_crcl_group) + transfer + hypotension + GENDER+

year + factor(los_group) + DEHYDRATION_FLG + ACYCLOVIR_FLG + AMINOGLYCOSIDES_FLG + AMPHOTERICIN_B_FLG +

ace.arb + tac.cyc + FOSCARNET_FLG + LOOP_DIURETICS_FLG + NON_STEROIDALANTI_FLG + SULFONAMIDES_FLG +

TENOFOVIR_FLG + Total_DOT + nephrotoxic_drug, dat)

compssteplrmlrm<-lrm(aki_num ~ group + factor(age_group) +

TOTAL_CHARLSON_SCORE + factor(baseline_crcl_group) + transfer + hypotension + GENDER +

year + factor(los_group) + DEHYDRATION_FLG +

AMPHOTERICIN_B_FLG +

tac.cyc + LOOP_DIURETICS_FLG + NON_STEROIDALANTI_FLG +

tenofovir +

Total_DOT + nephrotoxic_drug, dat)

finmodel1glm<-glm(aki_num ~ group + factor(age_group) +

TOTAL_CHARLSON_SCORE + factor(baseline_crcl_group) + transfer + hypotension + GENDER +

factor(year) + factor(los_group) + DEHYDRATION_FLG +

AMPHOTERICIN_B_FLG +

aceterb + tac.cyc + FOSCARNET_FLG + LOOP_DIURETICS_FLG + NON_STEROIDALANTI_FLG +

SULFONAMIDES_FLG +

TENOFOVIR_FLG + Total_DOT, x, dat)

finmodel2glm2<-glm(aki_num~group + factor(age_group) +

TOTAL_CHARLSON SCORE + factor(baseline_crcl_group) + transfer + hypotension + GENDER +

factor(year) + factor(los_group) + DEHYDRATION_FLG +

AMPHOTERICIN_B_FLG +

aceterb + tac.cyc + FOSCARNET_FLG + LOOP_DIURETICS_FLG + NON_STEROIDALANTI_FLG +

SULFONAMIDES_FLG +

TENOFOVIR_FLG + Total_DOT, x, dat)

finmodel21rm<-lrm(aki_num~group + factor(age_group) +

TOTAL_CHARLSON_SCORE + factor(baseline_crcl_group) + transfer + hypotension +

GENDER +

factor(year) + factor(los_group) + DEHYDRATION_FLG + Total_DOT + nephrotoxic_drug, x, dat)
\begin{verbatim}
ace.arb+tac.cyc+FOSCARNET_FLG+LOOP_DIURETICS_FLG+NON_STEROIDALANTI_FLG+SULFONAMIDES_FLG
 TENOFOVIR_FLG+Total_DOT, dat)
finmodel2lrm2<-lrm(aki_num~group + factor(age_group) +
TOTAL CHARLSON_SCORE+ factor(baseline_crcl_group)+ transfer+hypotension+GENDER+
factor(year)+factor(los_group)+DEHYDRATION_FLG+Total_DOT+nephrotoxic_drug, dat)

dat$dc_date<-sapply(strsplit(dat$DISCHRG_DT, ' '),c[,1]

dat$dc_date<-as.Date(dat$dc_date, format='%m/%d/%Y')
dat$starttime<-0
for(i in 1:nrow(dat)){
 if(dat$AKI[i]=='No AKI'){
 dat$stoptime[i]<-as.numeric(dat$dc_date[i]-dat$tx_index[i])
 }
 if(dat$AKI[i]=='AKI'){
 dat$stoptime[i]<-as.numeric(dat$time_to_aki[i])
 }
}
for(i in 1:nrow(dat)){
 if(dat$AKI[i]=='No AKI'){
 dat$stoptime2[i]<-min(as.numeric(dat$tx_end[i]-dat$tx_index[i])+7,
 as.numeric(dat$dc_date[i]-dat$tx_index[i]))
 }
 if(dat$AKI[i]=='AKI'){
 dat$stoptime2[i]<-as.numeric(dat$time_to_aki[i])
 }
}

cxmod<-coxph(S~group+factor(age_group)+nephrotoxic_drug+hypotension+DEHYDRATION_FLG+
TOTAL CHARLSON_SCORE+factor(baseline_crcl_group)+GENDER+factor(year), data=dat)
dat$b<-dat
dat$age_group<-as.factor(dat$age_group)
treat<-with(dat, data.frame(group=levels(group),
 age_group=rep(levels(age_group)[1],3),
nephrotoxic_drug=rep('N',3), #rep(levels(nephrotoxic_drug)[1],3),
hypotension=rep('N',3),
DEHYDRATION_FLG=rep('N',3),
TOTAL CHARLSON_SCORE=rep(mean(TOTAL CHARLSON SCORE),3),
baseline_crcl_group=rep(levels(baseline_crcl_group)[1],3),
 GENDER=rep("MALE",3),
 year=rep(levels(year)[1],3)
#los_group=rep(levels(los_group)[1],3),
#Total_DOT=rep(mean(Total_DOT),3)
\end{verbatim}
plot(survfit(cxmod, newdata = treat),
 col=c('red', 'blue', 'green'),
 xlab='Days after treatment initiation',
 ylab='Proportion without AKI',
 conf.int=F)
legend('bottomright', c('PTZ/VAN', 'PTZ', 'VM'), lty=1, col=c('red', 'blue', 'green'))

finmodel2glm<-glm(aki_num~group + factor(age_group) +
TOTAL_CHARLSON_SCORE+ factor(baseline_crcl_group)+ transfer+hypotension+
GENDER+
factor(los_group)+DEHYDRATION_FLG+ACYCLOVIR_FLG+AMINOGYCOSIDES_FLG+
AMPHOTERICIN_B_FLG+
ace.arb+tac.cyc+FOSCARNET_FLG+LOOP_DIURETICS_FLG+NON_STEROIDAL_ANI_FLG+
SULFONAMIDES_FLG+
 TENOFOVIR_FLG+Total_DOT, x, dat)

finmodel2lrm<-lrm(aki_num~group + factor(age_group) +
TOTAL_CHARLSON_SCORE+ factor(baseline_crcl_group)+ transfer+hypotension+
GENDER+
factor(los_group)+DEHYDRATION_FLG+ACYCLOVIR_FLG+AMINOGYCOSIDES_FLG+
AMPHOTERICIN_B_FLG+
ace.arb+tac.cyc+FOSCARNET_FLG+LOOP_DIURETICS_FLG+NON_STEROIDAL_ANI_FLG+
SULFONAMIDES_FLG+
 TENOFOVIR_FLG+Total_DOT, dat)

for(i in 1:nrow(dat)){
 if(dat$Total_DOT[i]<=3){
 dat$tdot_group[i]<-'2-3'
 }
 if(dat$Total_DOT[i]>=4 & dat$Total_DOT[i]<6){
 dat$tdot_group[i]<-'4-5'
 }
 if(dat$Total_DOT[i]>=6 & dat$Total_DOT[i]<8){
 dat$tdot_group[i]<-'6-7'
 }
 if(dat$Total_DOT[i]>=8 & dat$Total_DOT[i]<10){
 dat$tdot_group[i]<-'8-9'
 }
 if(dat$Total_DOT[i]>=10 & dat$Total_DOT[i]<12){
 dat$tdot_group[i]<-'10-11'
 }
 if(dat$Total_DOT[i]>=12 & dat$Total_DOT[i]<14){
 dat$tdot_group[i]<-'12-13'
 }
 if(dat$Total_DOT[i]>=14)
 dat$tdot_group[i]<-'14'

 dat$tdot_week<-(dat$Total_DOT/7)
 dat$tdot_group<-as.factor(dat$tdot_group)
dat$tdot_group <- relevel(dat$tdot_group, ref = '2-3')
finmodel2glm <- glm(aki_num ~ group + factor(age_group) +
TOTAL_CHARLSON_SCORE + factor(baseline_crcl_group) + transfer + hypotension +
GENDER +

factor(los_group) + DEHYDRATION_FLG + ACYCLOVIR_FLG + AMINOGLYCOSIDES_FLG +
AMPHOTERICIN_B_FLG +
ace.arb + tac.cyc + FOSCARNET_FLG + LOOP_DIURETICS_FLG + NON_STEROIDAL_ANTI_FLG +
SULFONAMIDES_FLG +
 TENOFOVIR_FLG + tdot_group, x, dat)
finmodel2lrm <- lrm(aki_num ~ group + factor(age_group) +
TOTAL_CHARLSON_SCORE + factor(baseline_crcl_group) + transfer + hypotension +
GENDER +

factor(los_group) + DEHYDRATION_FLG + ACYCLOVIR_FLG + AMINOGLYCOSIDES_FLG +
AMPHOTERICIN_B_FLG +
ace.arb + tac.cyc + FOSCARNET_FLG + LOOP_DIURETICS_FLG + NON_STEROIDAL_ANTI_FLG +
SULFONAMIDES_FLG +
 TENOFOVIR_FLG + tdot_group, dat)

MODEL <-
glm(aki_num ~ group + factor(age_group) + TOTAL_CHARLSON_SCORE + factor(baseline_crcl_group) +
transfer + hypotension + GENDER +

factor(los_group) + DEHYDRATION_FLG + ACYCLOVIR_FLG + AMINOGLYCOSIDES_FLG +
AMPHOTERICIN_B_FLG + ANGIOTENSIN_FLG + ANGIOTENSION_FLG +
TACROLIMUS_FLG + FOSCARNET_FLG + CYCLOSPORINE_FLG +
LOOP_DIURETICS_FLG + NON_STEROIDAL_ANTI_FLG + SULFONAMIDES_FLG + TENOFOVIR_FLG +
 factor(tdot_group), x, dat)
MODELlrm <-
lrm(aki_num ~ group + factor(age_group) + TOTAL_CHARLSON_SCORE + factor(baseline_crcl_group) +
transfer + hypotension + GENDER +

factor(los_group) + DEHYDRATION_FLG + ACYCLOVIR_FLG + AMINOGLYCOSIDES_FLG +
AMPHOTERICIN_B_FLG + ANGIOTENSIN_FLG + ANGIOTENSION_FLG +
TACROLIMUS_FLG + FOSCARNET_FLG + CYCLOSPORINE_FLG +
LOOP_DIURETICS_FLG + NON_STEROIDAL_ANTI_FLG + SULFONAMIDES_FLG + TENOFOVIR_FLG +
 factor(tdot_group), dat)
References:

WILBUR CLIFF RUTTER

EDUCATION

08/2009 – 05/2013 Doctor of Pharmacy
The University of Texas at Austin College of Pharmacy
The University of Texas Health Science Center at San Antonio
Graduate School

08/2007 – 05/2009 Undergraduate/Chemistry
The University of Texas at Austin College of Natural Sciences

08/2006 – 08/2007 Undergraduate/Chemistry
The University of Texas at San Antonio College of Sciences

PROFESSIONAL TRAINING

07/2014 – 06/2016 Pharmacy Fellowship in Infectious Disease
The University of Kentucky College of Pharmacy, Lexington, KY
Director: David S. Burgess, PharmD, FCCP

07/2013 – 06/2014 ASHP Accredited Pharmacy Practice Residency
St. Claire Regional Medical Center, Morehead, KY
Directors: Catherine L. Shely, PharmD, BCPS
 Samuel H. Wornall, PharmD, BCPS

PROFESSIONAL POSITIONS

12/2014 – Present On-Call Pharmacist – Internal Medicine
University of Kentucky Medical Center, Lexington, KY

10/2007 – 08/2011 Certified Pharmacy Technician
Seton Medical Center, Austin, TX

PUBLICATIONS

Rutter WC, Burgess DR, Burgess DS. Increasing Incidence of Multidrug Resistance among Cystic Fibrosis Respiratory Bacterial Isolates. Microbial Drug Resistance. [In Press]

Rutter WC, Talbert JC, Burgess DS. Factors associated with supratherapeutic vancomycin levels in adult patients. *Pharmacotherapy*. [In Preparation]

Rutter WC, Burgess DR, Burgess DS. Unit-specific Pharmacodynamic Modelling to Aid in Empiric Therapy Selection. [In Preparation]

POSTER PRESENTATIONS/ABSTRACTS

Crass RL, Rutter WC, Burgess DR, Martin CA, Burgess DS. *Comparative Nephrotoxicity of Polymyxin B and Colistimethate Sodium in Patients with Cystic Fibrosis.* Presented at ID Week 2016; 26-30 Oct 2016; New Orleans, LA. [submitted]

Cady E, Rutter WC, Burgess DR, Kincaid SE, Martin CA, Burgess DS. *Utilizing Nanosphere's Verigene® Technology to Assist with Possible Rapid Pharmacologic De-escalation of Antimicrobial Therapy In A University Hospital Setting.* Presented at ID Week 2016; 26-30 Oct 2016; New Orleans, LA. [submitted]

Rutter WC, Talbert JC, Burgess DS. *Characteristics of Multidrug Resistant Cultures at an Academic Medical Center.* Presented at ID Week 2016; 26-30 Oct 2016; New Orleans, LA. [submitted]

Rutter WC, Lee GC, Burgess DS. *Antimicrobial Susceptibility and Resistomes of Carbapenem Resistant Enterobacteriaceae.* Presented at ASM Microbe 2016; 16-20 June 2016; Boston, MA.

Rutter WC, Burgess DS. *In-Vitro Characterization of Amikacin and Polymyxin B Therapy in Combination with Meropenem for Carbapenem-resistant Enterobacter cloacae.* Presented at ASM Microbe 2016; 16-20 June 2016; Boston, MA.

Rutter WC, Burgess DR, Burgess DS. *Unit-specific Pharmacodynamic Modelling to Aid in Empiric Therapy Selection.* Presented at ID Week 2015; 7-11 Oct 2015; San Diego, CA.

Rutter WC, Talbert JC, Burgess DS. *Factors Associated with Supratherapeutic Vancomycin Trough Concentrations in a Referral Center.* Presented at ID Week 2015; 7-11 Oct 2015; San Diego, CA.

Thompson RZ, Martin CA, Burgess DR, Rutter WC, Burgess DS. Optimizing Beta-Lactam Pharmacodynamics Against Pseudomonas aeruginosa in Adult Cystic Fibrosis Patients. Presented at ID Week 2015; 7-11 Oct 2015; San Diego, CA.

Rutter WC, Burgess DS. Multiple methods of describing antimicrobial susceptibility: What do they tell us? Presented at Rho Chi Research Day, University of Kentucky; 17 Apr 2015; Lexington, KY.

Rutter WC, Burgess DS. In vitro characterization of amikacin and polymyxin b therapy in combination with meropenem for carbapenem-resistant Enterobacter cloacae. Presented at Rho Chi Research Day, University of Kentucky; 17 Apr 2015; Lexington, KY.

Cox JN, Rutter WC, Martin CA, Burgess DR, Zephyr D, Burgess DS. Incidence of Acute Kidney Injury During Therapy with Vancomycin in Combination with Beta-Lactam Antibiotics. Presented at Rho Chi Research Day, University of Kentucky; 17 Apr 2015; Lexington, KY.

Association, and the Pediatric Infectious Disease Society; 17-21 Oct 2012; San Diego, CA.

SCHOLASTIC AND PROFESSIONAL HONORS

11/2015 – Present

The Medicines Company Infectious Disease Pharmacotherapy Research Award
Society of Infectious Disease Pharmacists

04/2013

Student Research/Scholarship Award
Graduate School of Biomedical Sciences – College of Pharmacy

05/2008 – 05/2013

The University of Texas at Austin – University Honors

08/2010 – 08/2012

Pharmacy Alumni Association Endowed Scholarship

08/2007 – 01/2008

The National Science & Mathematics Access to Retain Talent (SMART) Grant Recipient

12/2006

The University of Texas at San Antonio – Dean’s List

PROFESSIONAL SERVICE

07/2013 – 06/2014

Pharmacy and Therapeutics committee
St. Claire Regional Medical Center

10/2013

Medication administration Kaizen event team member
St. Claire Regional Medical Center