2015

CFD MODELING OF MULTIPHASE COUNTER-CURRENT FLOW IN PACKED BED REACTOR FOR CARBON CAPTURE

Li Yang
University of Kentucky, lya226@g.uky.edu

Click here to let us know how access to this document benefits you.

Recommended Citation
Yang, Li, "CFD MODELING OF MULTIPHASE COUNTER-CURRENT FLOW IN PACKED BED REACTOR FOR CARBON CAPTURE" (2015). Theses and Dissertations--Mechanical Engineering. 59.
https://uknowledge.uky.edu/me_etds/59

This Doctoral Dissertation is brought to you for free and open access by the Mechanical Engineering at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Mechanical Engineering by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in future works (such as articles or books) all or part of my work. I understand that I am free to register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of the program; we verify that this is the final, approved version of the student’s thesis including all changes required by the advisory committee. The undersigned agree to abide by the statements above.

Li Yang, Student

Dr. Kozo Saito, Major Professor

Dr. Haluk E. Karaca, Director of Graduate Studies
CFD MODELING OF MULTIPHASE COUNTER-CURRENT FLOW IN PACKED BED REACTOR FOR CARBON CAPTURE

DISSERTATION

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Engineering at the University of Kentucky

By
Li Yang
Lexington, Kentucky

Director: Dr. Kozo Saito, Professor of Mechanical Engineering
Lexington, Kentucky
2015
Copyright © Li Yang 2015
Packed bed reactors with counter-current, gas-liquid flows have been considered to be applicable in CO₂ capture systems for post-combustion processing from fossil-fueled power production units. However, the hydrodynamics within the packing used in these reactors under counter-current flow has not been assessed to provide insight into design and operational parameters that may impact reactor and reaction efficiencies. Hence, experimental testing of a laboratory-scale spherical ball, packed bed with two-phase flow was accomplished and then a meso-scale 3D CFD model was developed to numerically simulate the conditions and outcomes of the experimental tests. Also, the hydrodynamics of two-phase flow in a packed bed with structured packing were simulated using a meso-scale, 3D CFD model and then validated using empirical models.

The CFD model successfully characterized the hydrodynamics inside the packing, with a focus on parameters such as the wetted surface areas, gas-liquid interactions, liquid distributions, pressure drops, liquid holdups, film thicknesses and flow regimes. The simulation results clearly demonstrated the development of and changes in liquid distributions, wetted areas and film thicknesses under various gas and liquid flow rates. Gas and liquid interactions were observed to occur at the interface of the gas and liquid through liquid entrainment and droplet formation, and it became more dominant as the Reynolds numbers increased. Liquid film thicknesses in the structured packing were much thinner than in the spherical ball packing, and increased with increasing liquid flow rates. Gas flow rates had no significant effect on film thicknesses. Film flow and trickle flow regimes were found in both the spherical ball and structured packing.

A macro-scale, porous model was also developed which was less computationally intensive than the meso-scale, 3D CFD model. The macro-scale model was used to study the spherical ball packing and to modify its closure equations. It was found that the Ergun equation, typically used in the porous model, was not suitable for multi-phase flow. Hence,
it was modified by replacing porosity with the actual pore volume within the liquid phase; this modification successfully accounted for liquid holdup which was predicted via a proposed equation.

KEYWORDS: Packed bed reactor, CFD modeling and scaling, gas-liquid counter current flow, hydrodynamics, modified Ergun equation

Li Yang
Student’s Signature
August 05, 2015
Date
CFD MODELING OF MULTIPHASE COUNTER-CURRENT FLOW IN PACKED BED REACTOR FOR CARBON CAPTURE

By

Li Yang

Prof. Kozo Saito
Director of Dissertation

Prof. Haluk E. Karaca
Director of Graduate Studies

August 05, 2015
Acknowledgments

It has been a long journey to complete this dissertation, and fortunately a great many people have provided help. I wish to express my gratitude to all of them. I have greatly benefited from their kind help and support, and they have made my graduate study experience one that I will cherish forever.

First, I would like to thank my advisor Dr. Kozo Saito for enabling me to study and perform my PhD dissertation at the University of Kentucky. His patience, insightful instructions, encouragement and continued support helped me overcome many difficulties and provided guidance for completing this dissertation.

Second, I am grateful to Dr. Kunlei Liu for his instruction and financial support. He is a great person from whom I learned how to do quality research and the importance of having attitudes of seriousness and dedication that are necessary for accomplishing goals in research and life.

Third, I am thankful to Dr. John M. Stencel, who gave numerous comments and great technical sport for writing my dissertation.

Fourth, I would like to thank my committee members, Dr. Yang-Tse Cheng, Dr. Tim Wu, Dr. Keith Rouch and Dr. Rick Honaker for reviewing my dissertation, for their alternative ideas and explanations which have undoubtedly augmented this work, and for their timely flexibility.

Fifth, I am also grateful to people who have helped to make this dissertation better. Special thanks to Dr. Tianxiang Li, Dr. Zhengchang Song, Dr. Nelson K. Akafuah, Dr. Ahmad
Salaimeh, Dr. Liangyong Chen, Dr. Zhen Fan, Dr. Guojie Qi, Dr. Dazhi E, Dr. Harisawa and Dr. Fuchiha who gave insightful comments and constructive criticism on how to improve the dissertation.

Finally, and most importantly, I would like to thank my husband Fang Liu for his love, understanding and dedication to our family, and to my daughters Alice and Lucy. I am also indebted to my parents for their encouragement and support.
Table of Content

Acknowledgments .. iii

List of Tables ... viii

List of Figures .. ix

CHAPTER1. INTRODUCTION ... 1

1.1. Research Motivation .. 1

1.1.1 Amine-based Post Combustion CO₂ Capture ... 2

1.1.2. Packed Bed Reactors ... 3

1.2 Objectives ... 9

1.3 Overview of the Dissertation .. 10

CHAPTER 2. LITERATURE REVIEW ... 12

2.1 Introduction ... 12

2.2 Hydrodynamic Characterizations ... 12

2.2.1 Flow Regime Studies ... 13

2.2.3 Liquid Distribution Studies .. 15

2.2.4 Liquid Holdup Studies ... 17

2.2.5 Wetted Area Studies ... 19

2.2.6. Film Thickness Studies .. 20

2.2.7 Pressure Drop Studies ... 21

2.3 CFD Modeling Approaches ... 21
2.4 Summary .. 27

CHAPTER 3. NUMERICAL STUDY OF SPHERICAL BALL PACKED BED REACTOR ... 29

3.1 Experiments Data Collection .. 29

3.2 Development of the Numerical Model ... 32

 3.2.1 Geometry and Mesh Generation ... 32
 3.2.2 Governing Equation in the VOF Model ... 35
 3.2.3 Turbulence Model .. 37

3.3. Results and Discussion .. 39

 3.3.1 Stationary State Determination ... 39
 3.3.2 CFD Model Validation .. 42
 3.3.3 Liquid Distribution and Flow Regime Characterization ... 42
 3.3.4 Liquid Holdup, Pressure Drop, Wetted Area, Gas-Liquid Interactions 53
 3.3.5 Effect of the Number of Liquid Inlets .. 56
 3.3.6 Effect of Liquid Surface Tension ... 58

3.4. Conclusions .. 61

CHAPTER 4. NUMERICAL SIMULATIONS OF A STRUCTURED PACKED BED 62

4.1 CFD Model Development .. 62

4.2 Results and Discussion .. 67

 4.2.1 Steady State Determination .. 67
 4.2.2 Liquid Holdup and Pressure Drop .. 67
 4.2.3 Liquid Distribution, Flow Regime, Film Thickness and Gas-Liquid Interactions 74

 4.2.4 Wetted Area and Film Thickness .. 83

4.3 Conclusions .. 84

CHAPTER 5. DEVELOPMENT OF MACRO-SCALE MODEL ... 86
5.1 Macro-scale Model Description ... 86
 5.1.1 Closure Model ... 86
 5.1.2 Geometry Model and Boundary Conditions .. 87
 5.1.3 Results based on the Ergun Equation ... 89
 5.2 Modified Closure Model ... 90
 5.3 Results of a New Closure Model ... 94
 5.4 Conclusions ... 96

CHAPTER 6. CONCLUSIONS AND FUTURE WORK .. 97

Nomenclature .. 101

References ... 104

Vita ... 119
List of Tables

Table 3.1 Experimental parameters and operating conditions................................. 31
Table 3.2 Experimental matrix and gas side pressure drops................................... 32
Table 3.3 Boundary conditions of all simulations.. 33
Table 4.1 Packing and column characteristics (Petre, Larachi et al. 2003).............. 63
Table 4.2 Details of boundary conditions of all simulations.................................. 66
Table 5.1 Boundary conditions of the simulations.. 88
Table 5.2 New resistance coefficient of the simulation... 93
List of Figures

Figure 1.1 Post combustion solvent based CO₂ capture process (Ranade, Chaudhari et al.)…………………………………………………………………………………………3

Figure 1.2 Packed beds with (a) random and (b) structured packing materials………..4

Figure 1.3 A schematic of a fixed bed reactor………………………………………………….6

Figure 1.4 Basic concept of scale modeling and numerical simulation (Saito and Williams 2015)………………………………………………………………………………8

Figure 2.1 Physical picture of the flow in spherical packed bed reactors (Gunjal, Kashid et al. 2005)…………………………………………………………………………14

Figure 3.1 (a) Flow diagram of experiment setup; (b) experimental setup………………31

Figure 3.2 Experimental packed column (left) and simulation geometry (right)………34

Figure 3.3 Details of the mesh structure……………………………………………………35

Figure 3.4 The evolution of wetted area as a function of time at various liquid flow rates under fixed gas flow rate of \(Re_g = 199 \)…………………………………………………………40

Figure 3.5 The evolution of wetted area as a function of time at various liquid flow rates under a fixed gas flow rate of \(Re_g = 298 \)…………………………………………………………40

Figure 3.6 Pressure drops obtained from experiments and simulation using six different conditions. (a) Pressure drop as a function of gas flow rate at a fixed liquid flow rate of \(V_{\text{water}} \)= 200 (mL/min); (b) Pressure drop as a function of liquid flow rate at a fixed gas flow rate of \(V_{\text{gas}} \)= 10 (L/min)……………………………………………………………………41

Figure 3.7 Flow distribution of iso-surface 0 at different liquid \(We \) from 0.014 to 2.16 at fixed \(Re_g = 199 \)…………………………………………………………………47

Figure 3.8 Liquid flow regime and wetted area at different liquid \(We \) numbers from 0.014 to 2.16 at fixed \(Re_g = 199 \)…………………………………………………………51
Figure 3.9 Influence of gas velocity with fixed liquid velocities on (a) wetted area, (b) liquid hold up…………………………………………………………………………………………52

Figure 3.10 Influence of gas flow rate with fixed liquid velocities on pressure drop………53

Figure 3.11 Gas and liquid velocity vectors at \(Re_g = 199 \) and \(Re_L = 180 \)…………55

Figure 3.12 Gas and liquid velocity vectors at \(Re_g = 199 \) and \(Re_L = 884 \)………………55

Figure 3.13 Gas and liquid velocity vectors at \(Re_g = 497 \) and \(Re_L = 1056 \)…………55

Figure 3.14 CFD model with different numbers of liquid inlet………………………….57

Figure 3.15 Influence of liquid inlet numbers on wetted area, liquid hold up, pressure drop………………………………………………………………………………………………57

Figure 3.16 Influence of surface tension on pressure drop under liquid flow rate of \(Re_L = 180 \) and 704……………………………………………………………………………………………………59

Figure 3.17 Influence of surface tension on liquid holdup under liquid flow rate of \(Re_L = 180 \) and 704……………………………………………………………………………………………………59

Figure 3.18 Influence of surface tension on wetted area under liquid flow rate of \(Re_L = 180 \) and 704……………………………………………………………………………………………………60

Figure 3.19 Influence of surface tension on film thickness under liquid flow rate of \(Re_L = 180 \) and 704……………………………………………………………………………………………………60

Figure 4.1 Images of the structured packing within a bed: (a) Overview; (b) Top View; and (c) the geometric model used during CFD analyses……………………………………64

Figure 4.2 Mesh model and the details of the mesh………………………………………65
Figure 4.3 Schematic overview of flow directions…………………………………………………..66

Figure 4.4 The evolution of wetted area with time while varying liquid flow rates at a
fixed the gas flow rate of $Re_g = 911$………………………………………………………………………..68

Figure 4.5 The evolution of wetted area with time with varying liquid flow rates and a
fixed gas rate of $Re_g = 1106$…………………………………………………………………………………….68

Figure 4.6 Comparison of liquid hold up when using Billet’s (Billet, R. and Mackowiak,
1984) empirical model and CFD simulation results at different gas flow rates………..70

Figure 4.7 A comparison of pressure drops from J.Stichlmair’s (Stikkelman, de Graauw
et al. 1989) empirical model and the CFD simulation results for three different gas flow
rates: (a) $Re_g = 911$, (b) $Re_g = 1106$, (c) $Re_g = 1431$……………………………………71

Figure 4.8 Influence of gas flow rate with fixed liquid flow rate on liquid holdup……73

Figure 4.9 Influence of gas flow rates with fixed liquid velocities on pressure drop………..73

Figure 4.10 Liquid distribution at (a)$Re_g = 650$; (b) $Re_g = 911$ under $Re_L = 488……74

Figure 4.11 Flow regime and liquid distribution at different liquid Weber numbers from
0.57 to 5.13 at fixed $Re_g = 1431$………………………………………………………………………………78

Figure 4.12 Flow development with time at $Re_g = 1431$ and $Re_L = 488$ (in which a red
color represents 100 vol. % of liquid and blue color is 100 vol.% of gas.)…………………..80
Figure 4.13 The film thickness as a function of liquid flow rate at constant $Re_g = 1431$
(in which a red color represents 100 vol. % of liquid and blue color is 100 vol.% of gas.)

Figure 4.14 Gas and liquid flow vectors at $Re_g = 1431$ and $Re_L = 488$. (a) The velocity
vector in the whole domain. (b) Velocity vector in an element channel

Figure 4.15 Influence of gas flow rate with fixed liquid flow rate on wetted area

Figure 4.16 Influence of gas flow rate on film thickness under fixed liquid flow rate

Figure 5.1 Geometry of the simulations

Figure 5.2 Mesh geometry and details for the simulations

Figure 5.3 Comparison of experimental and simulated pressure drops at (a)$V_{water} = 200$
(mL/min) (b) $V_{gas}=10$(L/min)

Figure 5.4 Comparison of modified Ergun model that considered liquid holdup model
and the simulation results of Chapter 3 for spherical ball packing with changes in the
liquid Reynolds numbers

Figure 5.5 Comparison of experimental and simulated pressure drops under the new
closure model using a modified Ergun equation: (a)$V_{water} = 200$ (mL/min) (b)$V_{gas}=10$(L/min)
1.1. Research Motivation

Scientific consensus exists on the primary driving mechanisms for global increases in atmospheric carbon dioxide (CO$_2$) concentrations – they are anthropogenic emissions from the use of fossil fuels and changes in land use. The use of coal alone accounted for 43% of the total global CO$_2$ emissions in 2010 (Yu 2013) and is a part of the reason that atmospheric CO$_2$ concentrations climbed to 403.7 ppm in May, 2015 (Pieter, NOAA/ESRL), a value 40% above pre-industrial levels. Other greenhouse gases (GHG), including, methane (CH$_4$), water vapor (H$_2$O) and ozone (O$_3$) are also recognized as the main atmospheric constituents that affect global warming trends (Watson, Rodhe et al. 1990). Hence, if the deleterious effects of rising GHG concentrations are to be averted or avoided, an imperative need exists to reduce the extent to which they are emitted into the atmosphere (Liu 2013).

Currently, technologies are under development for capturing and sequestering CO$_2$, with a primary focus on power generation. Technologies for CO$_2$ capture include pre-combustion, post-combustion, oxy-fuel combustion and chemical looping combustion scenarios. Post-combustion capture is removing CO$_2$ from the flue gas, a stage when fuel is already combusted, solvent based CO$_2$ absorption is one of the most popular approaches (Chen, Yates et al. 2012, Mathias, Reddy et al. 2013). Pre-combustion capture is the removal of CO$_2$ from syngas prior to its combustion, usually in application with Integrated Gasification Combined Cycle (IGCC) (Spleithoff 2010, Padurean, Cormos et al. 2012). Oxy-fuel combustion uses pure oxygen to combust fuels instead of
air, so nitrogen is not involved in the combustion process, thus CO$_2$ in the flue gas is in high concentration (Figueroa, Fout et al. 2008, Jones, Bhattacharyya et al. 2011). Chemical looping combustion belongs to the category of oxy-fuel combustion, it uses oxygen carriers to provide oxygen instead of a costly air separation unit (ASU), thus the energy penalty is low (Liu, Li et al. 2012, Liu 2013, Liu, Zhang et al. 2013, Zhang, Liu et al. 2013, Chen, Liu et al. 2014, Liu, Chen et al. 2014, Chen, Zhang et al. 2015, Fan, Chen et al. 2015, Liu, Kozo et al. 2015). Of these carbon capture technologies, post combustion CO$_2$ capture is the most technologically mature, and may be implemented at the large-scale needed for application to power production in the near future.

1.1.1 Amine-based Post Combustion CO$_2$ Capture

A process diagram of a post-combustion CO$_2$ capture using a packed bed reactor is presented in Figure 1.1 (Feron 2010, Chung, Patiño-Echeverri et al. 2011); it includes two reactors, one of which is called an absorber and the other is a stripper. An aqueous solution that is usually amine based is circulated between the two reactors in which one absorbs CO$_2$ (absorber) and the other releases CO$_2$ (stripper) to produce a flow of highly concentrated CO$_2$. In the absorber, the CO$_2$ and solvent are in counter-current flow where CO$_2$ is absorbed by the amine based solvent, thereby producing a gas outlet product that is CO$_2$-depleted; simultaneously, the CO$_2$ enriched amine exits the column from the bottom of the absorber and flows into the top of the stripper. In the stripper, the CO$_2$ enriched amine solution is heated up to a temperature exceeding 100 °C to release CO$_2$ and generate a high purity CO$_2$ stream that is ready for sequestration. The regenerated amine (without CO$_2$) is pumped back to the top of the absorber for a next
cycle. Because the amine from the stripper is at a relatively high temperature, a heat exchanger (HEX) is typically applied for improving overall process efficiency.

The absorber is a packed bed reactor which is filled with packing materials. The main objective of using a packed bed is to improve the effective contact between the gas and liquid phase reactants (Ranade, Chaudhari et al.).

![Diagram](image-url)

Figure 1.1 Post combustion solvent based CO$_2$ capture process (Ranade, Chaudhari et al.).

1.1.2. Packed Bed Reactors

The packed bed reactor, also called a trickle bed reactor, was originally designed for wastewater treatment but has become very useful in diverse industries in which two-phase flow and chemical reactions are prevalent. In general, a packed bed is a hollow tube, pipe or other vessel that is filled with packing materials (Henley, Seader et al. 2011). The packing materials can be small objects like spherical balls, rings or specifically designed, structured packing materials; arranged in random or structured
orientations; a random packing consists of randomly distributed packing material within the bed while structured packing consists of uniformly arranged material in the bed. Figure 1.2 shows some examples for random packing and structured packing.

(a) Random packing materials (http://www.amacs.com/packing/random/).

(b) Structured packing materials (Ranade, Chaudhari et al. 2011)

Figure 1.2 Packed beds with (a) random and (b) structured packing materials.

Packing materials improve the contact area at which chemical or physical reactions take place and, thereby, can increase markedly the efficiency by using a packed bed reactor. As an example, for gas-liquid multi-phase flow in a packed bed the liquids will spread onto the packing materials and tend to wet its surface to form a liquid film layer; then
when a gas flows across the packing material, the gas-liquid contact area within the reactor will therefore be enhanced. This contact area is where mass transfer occurs (Mahr and Mewes 2007), and increasing contact area is one important pathway recognized to enhance mass transfer and chemical reactions. Therefore, the use of packing bed promotes reactor and reaction advantages such as high capacity, high efficiency and, if designed appropriately, low pressure drop.

Different-shaped packing materials provide possibilities to vary contact areas and void space between the packing. Both of these factors affect performance but typical selection of a packing material depends, to a large extent, on the application and the cost. In general, random packing is a lower cost approach as compared to structured packing, and this advantage leads random packed beds to be used most frequently during the next decades (Calis, Nijenhuis et al. 2001). However, structured packing can provide higher separation efficiency, higher capacity and better radial mixing than random packing. Due to these advantages, it has been estimated that 25% of all refinery vacuum towers are now equipped with structured packing (Mahr and Mewes 2007). Because both random and structured packing are used throughout industry but their assessment and application within CO2 capture technological applications are only beginning, it is important to study the hydrodynamics like liquid distribution, hold-up and wetted area caused by the packing materials to enable more accurate and efficient reactor designs that will be needed to minimize investment and operation costs of the huge systems envisioned for the power industry (Kapteijn, Heiszwolf et al. 1999). For example, for a CO2 absorber capable of handling emissions from only a 0.7MW power system, a height of approximately 19.5 m would be required with an inside packing material covering a
length at least 13.7 m. However, a commercial CO\textsubscript{2} capture capacity would be typically near and greater than 300 MW, a scale-up of greater than 300-to-1! Hence, improving CO\textsubscript{2} capture rates is a decisive way to limit the size of commercial reactors, and achieving this goal can be assisted by understanding the hydrodynamics inside a packed bed where gas-liquid interfaces control the important reactions.

Although the most mature technology for CO\textsubscript{2} capture is in a post combustion operational mode, all CO\textsubscript{2} capture technological options are still in their infancy because no full-scale commercial system on an actual fossil fuel power plant has ever been built. A schematic of a packed bed reactor with spherical ball packing materials is shown in Figure 1.3. The reactants, i.e. amine solution and CO\textsubscript{2}-laden gas flow counter-currently the packing.

Figure 1.3 A schematic of a fixed bed reactor.
Since packed bed reactors are widely used for gas-liquid flow reactions, and the packing is one of the key factors affecting overall reaction rates. Therefore, understanding the hydrodynamics within packed beds is essential. Although extensive investigations have been performed on packed bed reactors over the years, the current understanding of flows within them is insufficient to enable optimization within the large scales needed for applications within power production (Kuzeljevic 2010, Kaskes, Vervloet et al. 2014). Furthermore, experimental studies of packed bed reactors and reactions are very time consuming and expensive, not only because of extensive scale-up needs for transitioning from a laboratory to a commercial system (Saito, Ito et al. 2014) but also because of the high number of options that are possible for the interior components, or packing, of the reactors. Also, experimentally it is very difficult to measure the very complex geometry of most packed bed materials and, especially when limited space exists between the packing, it is impractical to insert measuring devices which by themselves may disturb or alter liquid and gas flow patterns.

Hence, this dissertation focuses on packed bed reactors and packing for application to studying multiphase flow and hydrodynamics during post combustion CO₂ capture. Instead of an experimental approach, computational fluid dynamics (CFD) was the primary tool used during the research (Zhang, Weng et al. 2014, Yang, Akafuah et al. 2015)(Zhang 2015); when possible, the results of the CFD studies are compared to laboratory-scale experimentation. Scale modeling technique (Saito and Finney 2014, Saito and Williams 2015) offers basic concepts and methods to use scale model experiments to validate numerical modeling predictions. Figure 1.4, adopted from (Saito and Williams 2015) shows the concept of scale and numerical modeling methods. After
this validation is made, numerical modeling approach leverages the ever-increasing computational power of computers with sophisticated CFD software. Because the geometry of any one packing material can be very complex and the resulting flow patterns also demanding to simulate, a need existed to focus on a limited number of predetermined packing configurations that are described and discussed in the following chapters.

Figure 1.4 Basic concept of scale modeling and numerical simulation (Saito and Williams 2015).

Historically, the sizes reactors and the number of packing elements under assessment have been limited by computational constraints. It has been a challenge to simulate the whole domain of a reactor with its packing material but symmetry, selected arrangements of the packing structures and judicious meshing choices make CFD assessments more productive than pure experimentation. To date, some computational research has been performed based on a meso-scale model approach, however, these simulations have been

1.2 Objectives

The overall goal of this dissertation is to develop: (1) a comprehensive three dimensional (3D) counter-current, multiphase meso-scale model, and (2) a macro-scale model for CO₂ absorber simulation. The meso-scale model, which does not require as much detailed information compared to the micro-scale model, still can provide sufficiently detailed results to bridge between the micro-scale and the macro-scale (actual industrial level). Therefore, the meso-scale model was chosen in this study to understand the fundamental aspects of liquid film formation, and predict flow distributions, pressure drops, liquid holdups, wetted areas and the interactions between gas and liquid phases. The meso-scale model also will be used to point out ways for enhancing the contact between gas and liquid phases. Using scale modeling theory (Saito and Finney 2014), the meso-scale model can be used to optimize the performance of macro-scale model.

Specific objectives to achieve the aforementioned goal are to:
(1) develop a comprehensive 3D CFD model for simulating liquid-gas counter-current multiphase flow while using both spherical ball and structured packing, and then to verify the model with experimental data;

(2) obtain insight into film formation, flow distributions, pressure drops, liquid holdups, wetted areas and the interactions between phases in both spherical ball and structured packing;

(3) assess the effects of operating conditions on film formation, flow distributions, pressure drops, liquid holdups, wetted areas and the interactions between phases and then to develop a working relationship between these parameters and the operating conditions;

(4) develop a fundamental understanding of controlling factors influencing gas-liquid interactions; and

(5) modify and optimize a macro-scale packed bed model for simulating the hydrodynamics in a CO₂ capture process using amine-based liquids.

However, this thesis does not offer detailed analysis and discussions on rigorous scaling relationships and scaling laws that can relate all three scales: micro-scale, meso-scale and macro-scale. This scaling study is important and interesting, but simply beyond the scope of this thesis and therefore leaves it as future study.

1.3 Overview of the Dissertation

The following is a summary of the remainder of this dissertation. Chapter 2 provides a comprehensive literature review on previous research in this field. The status of research for liquid flow regimes, distributions, holdups, and pressure drops are discussed; a status of understanding wetted surface areas of packing materials is given and a closure model
in different packed beds is presented that assess current experimental and CFD methods and results. Also identified are gaps in data and knowledge, and shortcomings are analyzed which may be overcome by the research carried out through this dissertation.

Chapter 3 introduces the hydrodynamic assessment on a meso-scale while using a spherical ball packed bed reactor. The outcome of the CFD model will be compared to data like pressure drops from experimentation that was accomplished while using various mass flow conditions. This hydrodynamic assessment also examines relationships between the flow regime, flow distributions, pressure drops, liquid holdups and wetted areas and the operating conditions.

Chapter 4 introduces the hydrodynamic study on a meso-scale model on a structured packed bed reactor. The numerical model is validated by comparing simulated and empirical pressure drop model from scientific literature. Also analyzed the relationships between flow regimes, flow distributions, pressure drops, liquid holdups and wetted areas and the operating conditions.

Chapter 5 presents the hydrodynamic study using a macro-scale model and a closure model from literature data. A new closure model was modified.

Chapter 6 Conclusion and future work.
CHAPTER 2. LITERATURE REVIEW

2.1 Introduction

Multiphase flow occurs when more than one phase (gas, liquid, solid) is present in a flow field. For the gas-liquid flow systems considered in this dissertation it is convenient to treat one phase as primary and the other as the secondary phase (ANSYS fluent help) in which the primary phase is characterized by continuous flow. The secondary phase can be distributed throughout the primary phase; each phase presented may be in either laminar or turbulent flow, which then leads to a variety of potential flow regimes. For gas-liquid systems, four types of flow regimes exist, including filming flow, trickle, sprayed and bubbling flow. These regimes are depicted in Figure 2.1, and a detailed explanation of them is presented in section 2.2

2.2 Hydrodynamic Characterizations

For a packed bed reactor, the packing is considered to be stationary and contributes to complex interactions between and flows of the gas and liquid phases (Gualito, Cerino et al. 1997). These interactions are manifested under different flow regimes and cause distinct gas and liquid distributions in a packed bed. Hence, for packed bed reactors, it is imperative to understand hydrodynamic characterizations like flow regimes, pressure drops, liquid holdups, wetted areas, liquid distributions and the packing arrangement if optimized reactor and reaction performance are to be realized (Gunjal, Kashid et al. 2005).
2.2.1 Flow Regime Studies

When gas and liquid flows are co-current or counter-current through a packed bed, several flow regimes are established depending on the operating and design parameters, as shown in Figure 2.1. With small gas and liquid flow rates, the liquid flows as a film moving over the solid surface; this regime is called film flow and the liquid is considered the continuous phase [see Figure 2.1 (a)]. In this regime, the solid surface is partially or fully wetted, depending on the liquid flow rates. If the gas flow rate is slowly increased with a fixed liquid flow rate under film flow conditions, then part of the liquid will begin to flow in the form of suspended droplets, like in Figure 2.1 (b). This transition is due to the increasing interactions of the gas with the liquid film, and is called the trickle regime. With further increases in both gas and liquid flow rates, all of the liquid will flow in the form of suspended droplets; this regime is called the spray regime, and is depicted in Figure 2.1 (c). If the gas flow rate is very small and the liquid flow rate is quickly increased, the gas will become a dispersed phase and the gas will flow in the form of bubbles, a regime known as the bubble regime and depicted in Figure 2.1 (d). Finally, at high liquid and gas flow rates, a flow transition occurs to what is called the pulse flow regime. In post combustion CO$_2$ capture technology using packed bed reactors, the best operational regime has been determined to be the pulse flow regime (Gunjal, Kashid et al. 2005).
It is relatively simple to experimentally identify trickle flow or bubbly flow, but not pulse flow (Latifi, Rode et al. 1992), because microelectrodes have to be embedded within a non-conducting wall of a reactor and they have to continuously irrigated if their signals provide assessments of flow regime transitions, particularly in the transition to pulse flow. The type of signal analysis is also of interest; for example, research on the use of nonlinear time series data analyses to determine flow regime transitions has been extensive (Drahoš, Zahradník et al. 1991, Horowitz, Cukierman et al. 1997, Letzel, Schouten et al. 1997, Lin, Juang et al. 2001), with the conclusion that this method is not able to capture regime transitions accurately. In other flow transition measurement approaches, Krieg et al.(Krieg, Helwick et al. 1995, Urseanu, Boelhouwer et al. 2004)
used pressure fluctuations to characterize flow regimes but transitions between regimes were difficult to establish because no sharp boundaries between the regimes could be identified. Hence, no effective experimental method has yet been developed for the flow regime determinations. As a consequence, the mapping of flow regime transitions remains to a large extent mostly empirical (Kuzeljovic 2010).

Although it is very difficult to identify flow regime transitions in the packed bed reactor using experimental methods, several CFD method approaches have been identified. For example, Gualito, et al. (Gualito, Cerino et al. 1997, Gunjal, Kashid et al. 2005) used CFD modelling of wall pressure fluctuation measurements to identify prevailing flow regimes in trickle beds. Battista, et al. (Battista, Muzen et al. 2003) and Tong (Tong, Marek et al. 2013) described co-current, two-phase flow patterns within corrugated structures in detail by using a meso-scale model. However, no detailed examinations and delineations in 3D have been found within scientific literature that cover gas–liquid, counter-current flow regimes in a packed bed reactor.

2.2.3 Liquid Distribution Studies

Liquid flow distribution and the extent of mixing are also keys for designing and improving the performance of a packed bed reactor. Liquid distribution is influenced by phase properties, flow rates, operating pressures, packing sizes, shapes and the orientation of the packing in the bed.

Both experiments and CFD simulations have been performed to assess liquid distributions, but some of these have been based on single phase flow. For example, Sebastia-Saez, et al. (Sebastia-Saez, Gu et al. 2013) studied liquid flow distributions at
different Weber numbers, while Jiang, et al. (Jiang, Khadilkar et al. 2002) used a two
dimensional (2D) discrete cell approach to study liquid distributions. Some simulation
studies have studied co-current, two phase gas-liquid flows (Sundaresan 1994, Saroha,
Nigam et al. 1998, Gunjal, Ranade et al. 2003, Lopes and Quinta-Ferreira 2007, Jafari,
Zamankhan et al. 2008, Niegodajew, Asendrych et al. 2014). Gunjal, et al. (Gunjal,
Ranade et al. 2003) found that the liquid distribution became more uniform when liquid
was introduced through a port located within the central part of a reactor as compared to
when it was introduced through an inlet on the wall of the reactor. Sundaresan
(Sundaresan 1994), using 2D geometry, found that the liquid distribution in trickle bed
reactors was in the form of rivulet and film flow and revealed that an injector at the top of
a reactor could produce more uniform liquid distributions.

Experimental studies of liquid distributions have also been performed. Saroha, et al.
(Saroha, Nigam et al. 1998), in experimental measurements on liquid distribution in a
trickle-bed reactor, found that the radial liquid distribution during two-phase flow was
affected by the liquid flux values. Gamma and X-ray tomography, magnetic resonance
imaging, radioactive particle tracking, electrical capacitance tomography and positron
emission tomography have also been used to investigate multiphase flows (Moslemian,
Devanathan et al. 1992, Gladden and Alexander 1996, Boyer, Duquenne et al. 2002,
Elkins and Alley 2007, Llamas, Pérat et al. 2008). Each of these experimental techniques
has limitations in the spatial and temporal resolution that can be accomplished, especially
when considering reactor size and its operating condition (Kuzeljevic 2010).
Hence, although research literature on liquid distributions within packed bed reactors has been found, most of it has assessed single phase flow or co-current two-phase flow in 2D. Liquid distributions have clearly not been described for two-phase, counter-current flow in 3D. Liquid distributions in a packed bed are essential to its performance; furthermore, for packed bed, post-combustion CO$_2$ capture technology, it is imperative these distributions are determined while using counter-current, gas-liquid flows.

2.2.4 Liquid Holdup Studies

Liquid hold-up has a strong influence on pressure drop in a packed bed reactor (Pangarkar, Schildhauer et al. 2008). Higher liquid holdup is usually beneficial by giving more efficient mass transfer and higher reaction rates and, therefore, a bed’s structure needs to be manipulated to achieve higher liquid holdup (Satterfield 1975). Levec, et al. (Levec, Saez et al. 1986, Levec, Grosser et al. 1988) observed changes in liquid hold up with changes in liquid flow rates in single phase operation. Chu (Chu and Ng 1989) modeled liquid holdup by considering that the upper branch of a hysteresis loop corresponded to film flow under co-current flow. Rode (Rode, Midoux et al. 1994) performed an experimental study using electrochemical shear rate sensors to measure hydrodynamics of packed beds also operating under co-current gas liquid downward.

Some researchers (Raynal and Royon-Lebeaud 2007, Haroun, Legendre et al. 2010, Said, Nemer et al. 2011) have used CFD numerical simulations to study liquid holdup. Lopes (Lopes and Quinta-Ferreira 2009) studied co-current gas–liquid flows through a catalyst bed comprised of mono-sized, spherical, solid particles arranged in a cylindrical container of a pilot Trickle Bed Reactor (TBR) unit that was 50 mm in internal diameter.
1.0 m in length. Others studied counter-current flow based on simple geometry (Wen, Shu et al. 2001, Xu, Paschke et al. 2009, Haroun, Raynal et al. 2014). For example, Wen (Wen, Shu et al. 2001) used the Manning formula CFD model to predict liquid holdup with the width of a liquid rivulet on a packing surface modified by the Shi and Mersmann correlation (Shi and Mersmann 1985) but with a simulation geometry that was a small inclined, flat plate which cannot describe wave instabilities for a complex structured packing. Iliuta (Iliuta, Petre et al. 2004) used a one-dimensional (1D) model to predict the irrigated two-phase, total liquid holdup in a gas-liquid, counter-current flow while using structured packing. However, a 3D is significantly different from a 1D model and it is not accurate to use a 1D model to estimate the results for 3D turbulent flow.

Experimental studies also have been reported for the measurement of liquid hold-up in multiphase counter-current, packed reactors but their design is still a major engineering challenge (Maćkowiak 1991, Wu, Khadilkar et al. 1996, Ellenberger and Krishna 1999, Olujić 1999, Wilson 2004, Sidi-Boumedine and Raynal 2005, Toye, Crine et al. 2005, Pangarkar, Schildhauer et al. 2008, Basden, Eldridge et al. 2013, Guo, Sun et al. 2014). Although liquid hold up phenomena are more well studied than liquid distribution and wetted surface area, most of the experimental and simulation research has examined co-current flow or counter-current flow but with a simple geometry. These results, although useful, provide limited information for understanding complex random and structured packing. Hence, it is necessary to study counter-current flow under realistic random or structured packing to help fully understand liquid hold-up.
2.2.5 Wetted Area Studies

Wetting is the ability of a liquid to adhere to and then maintain contact with a solid surface. A larger wetted area can increase the mass transfer area between the gas and liquid phases. If the solid surface is rough or textured, then mass transfer is also increased by having increased turbulence; however, an increase of liquid viscosity will cause a reduction in the mass transfer area and counter-current gas flow will not heavily influence mass transfer area.

De Brito (De Brito, Von Stockar et al. 1994) showed that the interfacial area could be significantly larger than the geometric surface area which was attributed to instabilities in the liquid flow as represented by ripples or waves. A few studies employed more direct methodology to characterize the mass transfer area (Zhao and Cerro 1992, Luo, Li et al. 2009). Green (Green 2006) used x-ray computed tomography to measure the wetted area of a stainless steel structured packing under an irrigated condition and observed it to be well coated on its top and bottom sheet sides but, unfortunately, significant parts on the inside of the sheets were not well covered. Hence, this type of data were not sufficient to discern the wetted area from just the packing surface.

Tsai et al. (Tsai, Seibert et al. 2011) used a dimensionless model to predict the mass-transfer area of structured packing based on experimental studies. His model was based on estimating an efficiency for mass transfer but is considered inaccurate because of the many uncertain parameters which had to be used. Hoffmann (Hoffmann, Ausner et al. 2005) used both experimental studies and numerical simulations to examine gas-liquid flows on an inclined plate. Relatively good agreement was reached between the surface
velocities and wetted area from both the experimental results and numerical simulations. In general, experimental investigations of wetted area for complex packing arrangements are very difficult to accomplish (Hoffmann, Ausner et al. 2005) whereas CFD methods use a meso-scale model which can measure the wetted area of a packing surface directly. This type of information is critical for understanding CO₂ absorption in a packed bed.

2.2.6. Film Thickness Studies

Film thicknesses, distribution and flow mechanisms in a packed bed are also critical to maximize contact between the gas and liquid phases. Hence, a finite volume method-based on a CFD model was developed and used to simulate annular gas-liquid flow through pipes and bends (Tkaczyk and Morvan 2011). Interactions causing film to droplet transitions, i.e. entrainment, and droplets-to-film transitions, i.e. stick, bounce, spread and splash were recreated successfully. However, a structured packing is substantially different than pipes or bends.

Co-current, two-phase flow has been examined extensively. For example, numerical methods have been used to predict film thicknesses (Panday 2003, Groff, Ormiston et al. 2007, Balusu and Mohanty 2011, Min and Park 2011, Schwidder and Schnitzlein 2012, Abdolkarimi 2013), with the results showing detailed changes of film thickness with various input parameters and the effects of the solid surface on the liquid film characteristics (Shetty and Cerro 1995) (Craster and Matar 2009, Luo, Li et al. 2009). Interestingly, these studies found the behavior of the film width was affected greatly by the smoothness of the surface and the degree to which the surfaces were inclined with respect to the co-current flow field. However, film thickness studies for counter-current,
gas-liquid flows over structured packing have not progressed to a point where they can contribute important insight into the design and operation of a CO₂ absorber system.

2.2.7 Pressure Drop Studies

Pressure drop is important in determining energy consumption and in the sizing of system compression equipment. Pressure drop can be affected by liquid and gas flow rates, and the packing type and shape (Petre, Larachi et al. 2003, Pangarkar, Schildhauer et al. 2008). It is possible to manipulate the bed structure, including particle and packing characteristics, to reduce pressure drop and maintain it at acceptable levels.

In a meso-scale model, the pressure drop can be calculated directly. For example, Said et al. (Said, Nemer et al. 2011) elucidated the relationships between pressure drop, channel height dimensions, channel opening angles and corrugation angle changes using CFD simulations for a structured packing. Experimentally, Olujić (Olujić 1999) predicted the effect of column diameter on pressure drop for a corrugated sheet, structured packing and Chu et al. (Chu and Ng 1989) measured the pressure gradient corresponding to fixed gas flow rates.

2.3 CFD Modeling Approaches

CFD is an advanced tool based on the Navier–Stokes equations for analyzing complex flows through the development of a numerical solution from the controlling equations with proper boundary conditions. With the development of super computer and commercial software, CFD is now extensively applied for product design, and academic and industrial research development (Sachdev, Pareek et al. 2012).
Flows through a packed bed can be modeled using appropriate approaches that depending on the objectives and intended uses. Hydrodynamic characterizations of the gas-liquid flows in packed beds have been extensively studied using CFD at three different scales, including micro-scale, meso-scale and macro-scale (Raynal and Royon-Lebeaud 2007). Micro-scale and meso-scale meteorology are sometimes grouped together ("AMS Glossary of Meteorology" 2008-04-12); hence, the wording of meso-scale that is used in the following content represents both micro-scale and meso-scale.

Meso-scale modelling uses parts of a packed bed structure as a simulation object. In this model, the exact geometry of the packing bed is developed for the benefit of developing a detailed understanding of flow pattern, including trickle flow, spray flow, film flow or bubble flow, liquid hold up, pressure drop and wetted areas (Gunjal, Kashid et al. 2005). It has also been used to provide insight into hydrodynamic phenomena inside of the packed bed (Calis, Nijenhuis et al. 2001, Raynal, Boyer et al. 2004, Raynal and Royon-Lebeaud 2007, Haroun, Legendre et al. 2010, Gao, Zhang et al. 2011, Mousazadeh, van Den Akker et al. 2013, Sebastia-Saez, Gu et al. 2013). In general, single-phase flow has been extensively studied (Van Baten, Ellenberger et al. 2001, Petre, Larachi et al. 2003, Gao, Zhang et al. 2011, Said, Nemer et al. 2011, Li, Zhang et al. 2012, Yu 2013, Haroun, Raynal et al. 2014).

Macro-scale modelling is actually a porous media concept approach (Raynal and Royon-Lebeaud 2007). In this approach, an entire packed bed is considered as a porous media zone in which the media is usually represented by spherical particles arranged either in a regular or random fashion (Ranade, Chaudhari et al. 2011). It treats the phases as inter-penetrating continua and entails the use of a very attractive form which does not require
detailed geometry of the system as input (Kuzeljevic 2010). This approach is a main
method that has been used to incorporate complexities like chemical reactions into the
modelling (Niegodajew, Asendrych et al. 2013) and when scaling up the packed beds. By
using the Eulerian k-fluid CFD model (Jiang, Khadilkar et al. 2002) it is possible to
include closure equations to describe flow pressure drops. One attribute of the k-fluid
CFD model is its computational efficiency, particularly for large-scale systems including
packed beds. In the model, a statistical description of the bed structure is introduced into
the multiphase k-fluid model framework. It can be applied to gas, liquid and solid phases,
but to consider the effects of a solid phase on gas and liquid flows the model has to have
the solid as a stationary phase with its porosity and porosity distribution well defined.

In all CFD models, the continuum approximation is applied for all phases. Volume-
averaged mass and momentum balance equations for the k-th fluid can be written as:

Mass balance equation:

$$\frac{\partial \varepsilon_k \rho_k}{\partial t} + \nabla \cdot (\varepsilon_k \rho_k U_k) = 0 \tag{2.1}$$

Momentum balance equation:

$$\frac{\partial (\varepsilon_k \rho_k U_k)}{\partial t} + \nabla \cdot (\varepsilon_k \rho_k U_k U_k) = -\varepsilon_k \nabla P_k + \nabla \cdot (\varepsilon_k \mu \nabla U) + \varepsilon_k \rho_k g + F_{K,R}(U_k - U_R) \tag{2.2}$$

where ε_k represents the volume fraction of each phase, ρ_k is the density of k-th phase, U_k
is the cell velocity of k-th phase, and P is a mean pressure shared by all the phases
present in the system. $F_{K,R}$ is an interphase(between k and R phases) momentum
exchange term. The left-hand side of Equation 2.2 represents the rate of change of
momentum for the k-th phase. The right-hand side represents pressure forces, average
shear stresses, gravitational acceleration and interphase momentum exchange.
2.4 Closure Model

The pressure drop is called a closure model in CFD. The first closure model was developed by Darcy (Darcy 1856) who in 1856 proposed a linear relationship between the pressure gradient and superficial velocity in used one phase flow through a porous media, as is shown in equation 2.3. Later, Forchheimer (ANSYS Help) modified this model to a power relationship to also include and quantify viscous and inertial force contributions to the pressure loss, as is seen in equation 2.4.

\[\nabla p = -\frac{\mu}{a} \vec{v} \]
(2.3)

Where \(a = \frac{D_p^2}{150} \left(\frac{\varepsilon^3}{1-\varepsilon} \right)^2 \)

\[\frac{dP}{dz} = \frac{\mu U}{\varepsilon K} + \frac{\rho U^2}{(1-\varepsilon)g} \]
(2.4)

An important and famous empirical relationship is the Ergun equation (Ergun 1952). For turbulent flow in a packed bed reactor, the friction factor of a single particle can be expressed as a function of the Reynolds number based on the particle diameter,

\[f_p = \frac{150}{Re_p} + 1.75 \]
(2.5)

where the \(f_p \) and \(Re_p \) are defined as

\[f_p = \frac{\Delta p}{l \rho V_{\infty}^2} \left(\frac{\varepsilon^3}{1-\varepsilon} \right) \]
(2.6)

and

\[Re_p = \frac{D_p \rho V_{\infty}}{(1-\varepsilon)\mu} \]
(2.7)

where \(\Delta p \) is the pressure drop across the length of the bed, \(L \) the length of the bed, \(D_p \) the equivalent diameter of the packing spheres, \(\rho \) the density of fluid, \(V_{\infty} \) the superficial
velocity measured upstream of the bed entrance, \(\mu \) the dynamic viscosity of the fluid, and \(\varepsilon \) the void fraction of the bed. Substituting Eqs. 2.6 and 2.7 into Eq. 2.5 yields the pressure drop per unit length of the bed,

\[
\frac{|\Delta p|}{l} = \frac{150 \mu}{D_p^2} \frac{(1-\varepsilon)^2}{\varepsilon^3} v_\infty + \frac{1.75 \rho}{D_p} \frac{(1-\varepsilon)}{\varepsilon^3} v_\infty^2 \quad (2.8)
\]

Therefore a permeability \(\alpha \) and an inertial loss coefficient \(C_2 \), and are defined as

\[
\alpha = \frac{150}{D_p^2} \frac{(1-\varepsilon)^2}{\varepsilon^3} \quad (2.9)
\]

\[
C_2 = \frac{3.5}{D_p} \frac{(1-\varepsilon)}{\varepsilon^3} \quad (2.10)
\]

The parameters used to describe the characteristics of a porous media are the viscous resistance coefficient and intertial resistance coefficient. The Ergun equation can then be used to predict the pressure drop along the length of a packed bed if fluid velocity, packing size, viscosity and the density of the fluid are known.

Niegodajew (Niegodajew, Asendrych et al. 2013) studied phase transformations and heat transfer based on the Ergun equation for single-phase flow. However, a large number of empirical correlations are available for predicting pressure drop in trickle beds; furthermore, by using a permeability model (Atta, Roy et al. 2007), as shown in equation 2.11, and the pressure drop equation shown in equation 2.12, it is possible to compute pressure drops using a macro-scale model (Gunjal, Kashid et al. 2005), Hosseini et al. (Hosseini, Shojaaee et al. 2012) studied the pressure drop in dry and wetted structured packing for a structured 2D packing geometry. In general, no 3D counter-current CFD studies have been found.

Ellenberger et al. (Ellenberger and Krishna 1999) used experimental methods to develop a ‘wet’, empirical pressure drop equation for counter-current flow (see equation 2.13).
Stichlmair et al. (Stikkelman and Wesselingh 1987) developed a generalized model (see equation 2.14 and 2.15) for predicting pressure drop and liquid holdup under counter-current flow; it has been validated for a wide variety of packing, both random and structured on low flow rate. However, this model does not provide information about local flow and transport occurring within the bed.

\[
\frac{\Delta p}{l} = \frac{F_g}{\varepsilon_g} = \frac{1}{k_g} \left[A \frac{Re_g}{Ga_g} + B \frac{Re_g^3}{Ga_g} \right] \rho_g g
\]

(2.11)

\[k_g = s_g^{4.8}, s_g = 1 - \frac{\varepsilon_0}{\varepsilon}\]

A and B are values of Ergun’s constants.

\[
P_G - P_L = 2 \sigma \frac{5.416}{d_p} \left(\frac{1-\varepsilon}{1-\varepsilon_g} \right)^{0.333} F\left(\frac{\rho_G}{\rho_L}\right)
\]

(2.12)

Where \(F\left(\frac{\rho_G}{\rho_L}\right) = 1 + \frac{88.1 \rho_G}{\rho_L} \) for \(\frac{\rho_G}{\rho_L} < 0.025 \)

\[
\frac{\Delta p}{l} = \frac{\Delta p_{dry}}{l} \exp \left[1.3 \varepsilon_{L,oc} \left(\frac{Re_{L,oc}}{Pr_{L,oc}} \right)^{0.3} \right]
\]

(2.13)

\[
\frac{\Delta p_{irr}}{l} = \frac{3}{4 f'' \left(\frac{1-\varepsilon'}{1-\varepsilon''} \right)} \rho_g u_g^2 / d_p '
\]

(2.14)

\[
h_0 = 0.555 \left(U_L^2 \frac{d_p}{\varepsilon g^{4.65}} \right)^{1/3} \rho_k
\]

(2.15)

In this dissertation, a closure equation will be developed for counter-current flow in a packed bed. Modifications to it will be introduced based on comparison between simulation and experimental results, in relationship to the empirical equations. These developments will be explored in depth within Chapter 5.
2.4 Summary

The knowledge about the hydrodynamics within a post combustion, CO$_2$ capture process using counter-current, multiphase flow is yet in its infancy, but a good understanding of the flows are necessary to enhance the relatively slow CO$_2$ absorption reaction that takes place during this process (Force 2009, Aferka, Viva et al. 2011, Chen, Yates et al. 2012, Basden, Eldridge et al. 2013, Niegodajew, Asendrych et al. 2013). Although a limited number of numerical studies have examined counter-current flows for packed beds, most of these studies have been based on either single-phase or co-current flow, neither of which represent design reality for a counter-current flow, packed bed reactor.

Pressure drops and liquid holdups are well studied and can be obtained directly from experiments. However, the wetted area, film thickness and the interactions between the two phases under counter-current flows have not been studied sufficiently to provide a clear understanding of their dependencies. Rather, at this time, they can only be deduced from experimentation if certain assumptions are included.

In the CO$_2$ absorber process, the gas and liquid are in turbulent flow, 1D or 2D simulations of the hydrodynamics are not suitable and 2D film flow cannot describe the flow structure of three-dimensional waves caused by instabilities of the flows (Hoffmann, Ausner et al. 2005). Therefore, a complete three-dimensional meso-scale model for counter-current, multiphase flow needs to be developed for characterizing the liquid film, flow distribution, pressure drop, liquid holdup, wetted area and the interactions between phases. If successfully accomplished, this development will assist in understanding how to maximize contact between phases and to improve CO$_2$ capture efficiency.
Similarly, macro-scale models that have been used for large scale reactors with a closure model were based on single phase, co-current flow or empirical equations, and are not satisfactory for application in the counter-current flow approach. Therefore, this dissertation will develop a comprehensive CFD model for a counter-current, multiphase flow, packed bed reactor to enable a better understanding of the complex phenomena associated with it. A successful model would help in identifying optimized designs and assist in the development of full scale industrial units (Ghosh 2013).
CHAPTER 3. NUMERICAL STUDY OF SPHERICAL BALL PACKED BED REACTOR

This chapter describes the development of 3D CFD model with counter-current gas-liquid flow and of the analyses of the hydrodynamics within a spherical ball packing, fixed bed reactor configuration. First, an experimental set-up was developed using spherical ball packing materials, after which experimentation was performed to measure pressure drops under various test conditions. Then, the 3D CFD model using a Volume of Fluid (VOF) interface was developed and validated by comparison to the experimental data. Also, the liquid distribution, flow regime, liquid holdup, pressure drop, wetted area, and gas-liquid interactions were studied and characterized parametrically. Finally, the effect of the liquid and gas inlet flow rates and surface tensions were examined and discussed as related to liquid hold up, wetted area and pressure drop.

3.1 Experiments Data Collection

Even though numerical simulation is well developed, and has been confirmed and is applied widely, to provide accurate replications of reactor and reaction phenomena it is understood that the CFD model and its results should be validated by comparisons with experimental results under similar test conditions. For this validation, pressure drops from the experiments were compared with the 3D CFD model results because the flow distribution, wetted area and the interaction between the gas-liquid phases were extremely difficult to measure experimentally.

In the experiments, the absorption reaction was not considered, and air and water were used as the flow fluids. A schematic of the experimental setup is shown in Figure 3.1 and the operating parameters are listed in Table 3.1. The packing materials were spherical,
plastic balls with a diameter of 9.5 mm; they were packed uniformly in the bed with a packed height of 580 mm. By knowing the diameter of the balls, the void fraction within the packed volume was calculated to be 0.39. Air was purged into the column from the bottom and contacted the down flow of water in a counter-current flow setup. Air flow rates were measured via an air mass flow controller (MFC) and water flow rates were produced via a peristaltic pump. The pressure drop along the height of the packed bed was measured using an inclined manometer. A Lab-View program was used for controlling the flow rate devices and for recording data. Gas flow rates were 5, 10 or 15 L/min while the liquid flow rates were 100, 200 or 300 mL/min (See Table 3.1); the test conditions and the resulting pressure drops are listed in Table 3.2.

In the first group of tests, the liquid flow rate was constant at 200 mL/min while gas flow rates were varied between 5-15 L/min. In the second group of tests, the gas flow rate was constant at 10 L/min but the liquid flow rates were varied between 100 to 300 mL/min. The final tests were accomplished with 10 L/min air flow and 300 mL/min water flow.
Figure 3.1 (a) Flow diagram of experiment setup; (b) experimental setup.

<table>
<thead>
<tr>
<th>Table 3.1 Experimental parameters and operating conditions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column diameter (mm)</td>
</tr>
<tr>
<td>Column height (mm)</td>
</tr>
<tr>
<td>Fluids used</td>
</tr>
<tr>
<td>Gas mass flow rate (L/min)</td>
</tr>
<tr>
<td>Liquid mass flow rate (mL/min)</td>
</tr>
<tr>
<td>Package materials</td>
</tr>
<tr>
<td>Diameter of spheres (mm)</td>
</tr>
<tr>
<td>Height of packed area (mm)</td>
</tr>
<tr>
<td>Void fraction</td>
</tr>
</tbody>
</table>
Table 3.2 Experimental matrix and gas side pressure drops.

<table>
<thead>
<tr>
<th>Cases</th>
<th>Gas phase mass flow rate (L/min)</th>
<th>Liquid phase mass flow rate (mL/min)</th>
<th>Gas side pressure drop (Pa/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>200</td>
<td>23.64</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>200</td>
<td>58.18</td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>200</td>
<td>105.45</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>100</td>
<td>54.55</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>200</td>
<td>65.45</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>300</td>
<td>72.73</td>
</tr>
</tbody>
</table>

3.2 Development of the Numerical Model

3.2.1 Geometry and Mesh Generation

The geometry of the simulation was same as the packing structure used during the experiments, as depicted in Figure 3.2, but the simulation domain was only a portion of the packed bed to save computational time. The simulation geometry was built using ANSYS Workbench software. The size of the cuboid domain was 19.2 × 19.2 × 52 mm and the diameter of the spheres during simulation was 9.5 mm, which was identical with these used in the experiments. During simulation, a 0.1 mm gap was placed between any two nearby spheres to facilitate meshing on the sphere surface.
The first layer at the top of the simulation included four spheres, and the second layer had one sphere at the center with one semi-sphere on each of its sides, and one ¼th - sphere at each corner. The remaining layers proceeding downward were arranged repeatedly using these patterns to produce a total of six layers along the height of the domain. A 1 mm gap was placed between the top, first layer of spheres and the liquid inlet to enable uniformly developed liquid flow; the same separation distance was placed between the bottom row of spheres and the reactor gas inlet. In this arrangement, the calculated void fraction for the whole domain was 0.40, a value very close to the experimental void fraction of 0.39.

One liquid inlet was placed at the top and one liquid outlet was placed at the bottom; each had a diameter of 7.2 mm. Because of counter-flow, gas entered the bottom hole around which liquid flowed outward and then gas exited the top outlet around which liquid entered. Side wall boundaries were set as symmetric boundaries instead of solid wall boundaries because the cuboid domain was only part of the total packed bed used experimentally; the contact angle of the wall is set as 70°. The fluids are assumed to be Newtonian, isothermal, and incompressible, boundary conditions are listed in Table 3.3.

Table 3.3 Boundary conditions of all simulations.

<table>
<thead>
<tr>
<th>Boundary</th>
<th>Materials</th>
<th>Type</th>
<th>Value</th>
<th>Velocity</th>
<th>Reynolds Number</th>
<th>Web Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid inlet</td>
<td>Water</td>
<td>Mass flow rate</td>
<td>100mL/min-1200mL/min</td>
<td>0.012-0.147m/s</td>
<td>180-1100</td>
<td>0.014-2.2</td>
</tr>
<tr>
<td>Gas inlet</td>
<td>Air</td>
<td>Mass flow rate</td>
<td>5L/min-25L/min</td>
<td>0.076m/s-0.382m/s</td>
<td>99-500</td>
<td></td>
</tr>
<tr>
<td>Liquid outlet</td>
<td>Pressure-outlet</td>
<td>0 Pa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas outlet</td>
<td>Pressure-outlet</td>
<td>0 Pa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 3.2 Experimental packed column (left) and simulation geometry (right).

The constructed geometry was then exported to a mesh generator using ANSYS software with a fine spacing of between 0.0001 m to 0.0004 m using the CutCell meshing method; details of the mesh structure are provided in Figure 3.3. Overall, the total number of elements was 236,559 within the simulation volume and the grids were denser at the liquid inlet to enable a more accurate determination of liquid film formation and properties. The mesh file was then imported to ANSYS Fluent solver for simulation. After importing, the mesh was first checked by the ANSYS Fluent solver to determine if a warning message was generated; if not, the mesh quality was accepted to be usable for calculations.
3.2.2 Governing Equation in the VOF Model

The model was solved using a multi-fluid CFD Volume of Fluid (VOF) model. The VOF model is a surface-tracking technique developed for two or more immiscible fluids where the position of the interface between the fluids is of interest (Zhang, Zhang et al. 2013). In it, a single set of momentum equations is shared by the fluids, and the volume fraction of each fluid in each computational cell is tracked throughout the domain. The phasic volume fraction concept is described as the volume gas and liquid two-phase flow through the packed bed determined by solving the governing equations (Hirt and Nichols 1981). Applications of VOF are quite general and have been quite frequently used for simulating liquid break up and the interaction of two phases (Gueyffier, Li et al. 1999,
Welch and Wilson 2000, Ginzburg and Wittum 2001, Renardy and Renardy 2002, Olsson and Kreiss 2005, Srinivasan 2006). The numerical simulations were carried out using ANSYS Fluent 14.0, which used the finite volume method to solve Navier-Stokes equations for gas-liquid, incompressible and iso-thermal flow (Sebastia-Saez, Gu et al. 2013, Haroun, Raynal et al. 2014). The VOF model is implemented within the software. The governing equations of the two phase flow are given as:

Continuity equation

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \bar{v}) = 0
\]

(3.1)

Momentum equation

\[
\frac{\partial (\rho \bar{v})}{\partial t} + \nabla (\rho \bar{v} \bar{v}) = -\nabla p + \nabla \left[\mu \left(\nabla \bar{v} + \nabla \bar{v}^T \right) \right] + \rho \bar{g} + \bar{F}
\]

(3.2)

Where \(\bar{v} = \frac{a_1 \rho_1 \bar{v}_1 + a_2 \rho_2 \bar{v}_2}{\rho} \), \(\bar{F} \) is the interface drag force.

Each phase’s volume fraction is \(a_k \), where:

\[
\sum_{k=1}^{n} a_k = 1
\]

(3.3)

For a two phase system:

\[
\rho = a_2 \rho_L + (1 - a_2) \rho_g
\]

(3.4)

\[
\mu = a_2 \mu_L + (1 - a_2) \mu_g
\]

(3.5)

where \(a_k \) ranges from 0-to-1; a zero corresponds to a cell filled with gas phase and a value of one corresponds to a celled filled with the liquid phase. Intermediate values correspond to interfaces between phases. Also, the drag force term in equation 3.2 considered only surface tension.
The surface tension model was developed by (Brackbill, Kothe et al. 1992), and is governed by:

\[\vec{F} = \sigma \frac{\rho_k \nabla a_k}{\sqrt{0.5(\rho_l + \rho_g)}} \]

(3.6)

where \(k \) is the free surface curvature, which is defined as

\[k = \nabla \cdot \hat{n} = \frac{1}{|n|} \left[\left(\frac{n}{|n|} \cdot \nabla \right) |n| - (\nabla \cdot n) \right] \]

(3.7)

The symbol \(\hat{n} \) is a unit normal vector. And \(n = \nabla a_k \).

In this study, mass transfer terms between the two immiscible phases were neglected. The VOF model can account for the effect of surface tension along interfaces between the two phases (Chung, Patiño-Echeverri et al. 2011, Srinivasan, Salazar et al. 2011).

3.2.3 Turbulence Model

In fluid dynamics, turbulent flow is characterized by chaotic property changes. These changes include low momentum diffusion, high momentum convection, and rapid variation of pressure and flow velocity in space and time. Multiphase flows in packed beds are often characterized as laminar flow but several studies have reported them to be turbulent (Lopes and Quinta-Ferreira 2009). Dybbs et al. (A. Dybbs, 1984) used laser anemometry and flow visualization technology to investigate liquid flow regimes in hexagonal packing of spheres and rods, and classified four flow regimes for different ranges of Reynolds number. For \(1 < \text{Re} \), the flow was dominated by viscous force; for \(1 < \text{Re} < 150 \), the flow was a steady laminar inertial flow; for \(150 \leq \text{Re} \leq 300 \), the laminar inertial flow was unsteady; and, for \(\text{Re} > 300 \), the flow was highly unsteady, chaotic and qualitatively resembled turbulent flow.
The Reynolds number has been calculated as:

$$Re = \frac{\rho v d}{\mu}$$ (3.8)

Where the characteristic length d is the thickness of the phase inlet, ρ is the density of the fluid (kg/m3), v is its velocity (m/s) and μ is the viscosity (kg/m/s).

Therefore, since the Reynolds numbers for both liquid and gas phases are within the range of turbulent flow (min: 180, max: 1100), a turbulence model was applied. For turbulent flow, several different models have been developed, such as large eddy simulation (LES), k-ε model and k-omega (CABLE 2009). The k-ε model is only valid for fully turbulent and non-separated flows. The k-omega model is a two-transport-equation model solving for kinetic energy, k, and turbulent frequency, ω; it allows for more accuracy near walls and for a low Reynolds numbers (ANSYS help). The LES model is also popular for turbulent flow simulation, and it emphasizes the interactions between phases. Labourasse (Labourasse, Lacanette et al. 2007) successfully applied LES model to resolve two-phase flow problems and accounted for the complex interactions between turbulence and interfaces. Vincent (Vincent, Larocque et al. 2008) also applied the LES model for phase separation, and Christensen (Christensen and Deigaard 2001) adopted a standard LES model coupled with a VOF free surface approach in a wave break simulation study. Therefore, the LES turbulent model will be used in the simulation of the plastic sphere, packed bed; its solution method setup is described in the following.

The Geo-Reconstruct algorithm method (Sebastia-Saez, Gu et al. 2013) was used for interface reconstruction of the volume fraction, a simple scheme for which was the pressure-velocity coupling. For spatial discretization, the Least Squares Cell Based was
used for the gradient in the spatial discretization set up, the Presto method was used for pressure, the Second Order Upwind method was used for the momentum equation, and the First Order Implicit method was used for the transient formulation.

The simulation used a transient state to observe the growth of the liquid film and the development of gas-liquid interactions. The time step size for this model was 0.00005 second while solving a maximum 30 iterations per time step. The total computation time was close to 96 hrs for one case.

3.3. Results and Discussion

3.3.1 Stationary State Determination

The criteria used to determine attainment of a pseudo-stationary state was the variation in wetted area with time. For example, Figure 3.4 shows the evolution of wetted area with time at various liquid loads (represented by liquid Reynolds number) when the gas flow rate was fixed at $Re_g = 199$; the wetted areas no longer changed at times between 0.30-0.50 s, depending on the liquid load. For example, at a liquid load of $Re_L = 180$, the wetted areas no longer changed at 0.48s, and at a liquid load of $Re_L = 1056$, wetted areas no longer changed at 0.35s. In other words, increased liquid loads at constant gas flow rate caused a decrease in total time for wetted area constancy. By comparing the data in Figure 3.4 with data in Figure 3.5, an increase in the gas load, i.e. gas-side Reynolds number, to $Re_g = 298$ (Figure 3.5) caused an increase in the time for establishing steady state wetted areas relative to those times found when the gas load was $Re_g = 199$ (Figure 3.4).
Figure 3.4 The evolution of wetted area as a function of time at various liquid flow rates under fixed gas flow rate of $Re_g = 199$.

Figure 3.5 The evolution of wetted area as a function of time at various liquid flow rates under a fixed gas flow rate of $Re_g = 298$.
Figure 3.6 Pressure drops obtained from experiments and simulation using six different conditions. (a) Pressure drop as a function of gas flow rate at a fixed liquid flow rate of $V_{water} = 200$ (mL/min); (b) Pressure drop as a function of liquid flow rate at a fixed gas flow rate of $V_{gas} = 10$ (L/min).
3.3.2 CFD Model Validation

The results of CFD assessments of gas-liquid flows are generally validated by comparing pressure drops from the modeling and experimentation (Stikkelman, de Graauw et al. 1989).

Hence, the CFD model for the plastic sphere, packed bed reactor displayed in Figure 3.6 was first applied to obtain six pressure drops using the experimental conditions listed in Table 3.2. A comparison of these CFD pressure drops with experimental pressure drops is shown in Figure 3.6 (a) with a constant liquid flow rate of 200 mL/min and gas flow rates between 5-15 L/min, and in Figure 3.6 (b) at a constant gas flow rate of 10 L/min and liquid flow rates between 100-300 mL/min. The data in these figures show excellent reproduction of the experimental pressure drops by using the CFD model. Therefore, the established 3D CFD model for gas-liquid counter current flow was considered validated.

3.3.3 Liquid Distribution and Flow Regime Characterization

In this section, the flow distribution and flow regimes are characterized at different liquid flow rates. The liquid flow rate, as a Weber number (We) (Sebastia-Saez, Gu et al. 2013) is often used for analyzing fluid flow when an interface exists between two different fluids and especially for multiphase flows with strongly curved surfaces (Frohn and Roth 2000). The value of We is a measure of the relative importance of a fluid’s inertia compared to its surface tension. The We is written as:

$$We = \frac{\rho v^2 l}{\sigma}$$

(3.9)
where ρ is the density of the fluid (kg/m3), v is its velocity (m/s), l is its characteristic length - typically the droplet diameter (m), and σ is the surface tension (N/m) of water (0.07 N/m).

With a fixed gas flow rate having $Re_g = 199$, the effects of liquid different liquid flow rates, as represented by the We, on the flow distribution and flow regime on gas side Re number are shown in Figure 3.7 and Figure 3.8. Figure 3.7 is a visualization of the flow distribution on an iso-surface with a liquid volume fraction of zero with different liquid We: the liquid distribution was affected by the We. Because at higher We the liquid distribution became more uniform. For example, with $We = 0.014$, only a quarter of the domain was filled with liquid whereas with $We=2.16$ the whole domain was filled with liquid.

The color scale in Figure 3.7 refers to the phasic volume fraction of fluid in which a red color represents 100 vol. % of liquid and blue color is 100 vol.% of gas. Different flow regimes such as droplets and film flow were observed and assessed using We. At $We = 0.014$, surface tension dominated the flow and the liquid flow was not continuous leading to the formation of droplets. After We increased to a value of 0.547, droplet flow disappeared and film flow began. In this latter regime, although surface tension still dominates but the main effect was to reduce the interfacial wetted area. With further increases of We to 1.51, the trickle flow gradually engulfed the whole domain and the wetted area also increased.
\(We = 0.014 \)

\(We = 0.062 \)
\(We = 0.547 \)

\(We = 0.958 \)
Figure 3.7 Flow distribution of iso-surface 0 at different liquid We from 0.014 to 2.16 at fixed $Re_g = 199$.
We = 0.137

We = 0.240
$We = 0.547$

$We = 0.958$
Figure 3.8 Liquid flow regime and wetted area at different liquid We numbers from 0.014 to 2.16 at fixed $Re_g = 199$.

We=1.51

We=2.16
Figure 3.9 Influence of gas velocity with fixed liquid velocities on (a) wetted area, (b) liquid hold up.
3.3.4 Liquid Holdup, Pressure Drop, Wetted Area, Gas-Liquid Interactions

Figures 3.9 (a) and (b) are plotted to examine dependencies of gas and liquid flow rates on wetted areas and liquid holdups. At a fixed gas flow rate, the wetted area and liquid holdup increased with increased liquid flow rates. However, an increase of gas flow rate had no significant effect on the wetted areas and liquid holdup. These outcomes are distinct from the results of co-current flow modeling analyses (Gunjal, Kashid et al. 2005) in which both wetted areas and liquid holdups decreased with increased gas flow rates.

![Figure 3.10 Influence of gas flow rate with fixed liquid velocities on pressure drop.](image)

Gas side pressure drops were modeled as a function of liquid flow rates under constant liquid flow rate, as shown in Figure 3.10. The results show that the gas phase pressure drop per unit length of packing increased with both gas and liquid flow rates. At a $Re_L = 0$, the gas side pressure drop was minimal, and then increased rapidly as the liquid flow
rates were increased such that with a $Re_g = 500$ and $Re_L = 1056$ the gas side pressure drop was close to 1200 Pa per meter.

Another representation of use that demonstrates gas-liquid interactions are gas and liquid velocity vectors. Figure 3.11, 3.12 and 3.13 show the gas and liquid velocity vectors when the gas Reynolds number, Re_g, was varied between $Re_g = 199$ to 497 and the liquid Reynolds number, Re_L, was varied between $Re_L = 180$ to 1056. In these three figures the upward vectors depicts gas velocities and the downward vectors depict liquid velocities. At the lowest Reynolds numbers in Figure 3.11, the interaction between the two phases is weak with gas phase flow dominating the middle region of the domain. Increasing the liquid flow rate to $Re_L = 884$, as shown in Figure 3.12, increased interactions between gas and liquids were observed, and these interactions further intensified when increasing flows rate to $Re_g = 497$ and $Re_L = 1056$, as shown in Figure 3.13. In this latter figure, the liquid phase dominates the middle region and the gas phase is entrained into the liquid region. As the liquid fills the domain less space was available for the gas to flow through, hence the velocity of gas phase will be forced to increase and lead to an increase in shear rates at the gas-liquid interfaces.
Figure 3.11 Gas and liquid velocity vectors at $Re_g = 199$ and $Re_L = 180$.

Figure 3.12 Gas and liquid velocity vectors at $Re_g = 199$ and $Re_L = 884$.

Figure 3.13 Gas and liquid velocity vectors at $Re_g = 497$ and $Re_L = 1056$.
3.3.5 Effect of the Number of Liquid Inlets

The entrance of the reactor is an important region in which flows are initially developed and it can be expected that different flow injection geometry and distribution will affect flow hydrodynamics (Johnston, Zhu et al. 1999) (Maharaj, Pocock et al. 2007). Hence, three different inlet models were constructed to study the effect of the number of inlets. Figure 3.14 shows the three models, with the number of inlets varied between 1-to-4-to13 and their respective diameters varied between 0.0072m, 0.0036m and 0.002m; the diameters were decreased as the number of inlets was increased to maintain a constant liquid inlet area and, hence, a constant inlet velocity. All three models were simulated using identical operation conditions.

Figure 3.15 demonstrates the influence of the number of inlets on wetted area, liquid hold up, pressure drop in which the inlet configurations with four inlets had the highest wetted area and liquid hold up. When the number of inlets was increased from 1-to-13, both the wetted area and liquid hold up was smaller than for four inlets. This result may be a consequence of the ease with which liquid was distributed as small droplets when 13 inlets was used as compared to when four inlets was used. An increased ease of forming small droplets would not be beneficial to liquid film development. The pressure drops were the highest for the case of 13 inlets. Among these three inlet configurations, the best choice from a point of view of mass transfer efficiency because of having the highest liquid hold up and wetted area and lower pressure drop is for four inlets.
Figure 3.14 CFD model with different numbers of liquid inlet.

Figure 3.15 Influence of liquid inlet numbers on wetted area, liquid hold up, pressure drop.
3.3.6 Effect of Liquid Surface Tension

During a commercial CO₂ absorption process in a fixed bed, the temperature of the MEA solvent and the carbon loading in the solvent will change with locations in the absorber column which in turn will lead to changes in solvent surface tension. Accordingly, the effects of surface tension on the hydrodynamics in the packed bed were also examined. In this modeling, water was still used as the liquid but its surface tension was changed to mimic expected changes that would occur in a large-scale reactor. Because the surface tension of water is larger than MEA or MDEA solvents used for absorbing CO₂ (Fu, Wei et al. 2013), the surface tension values selected were between 0.005 to 0.07 N/m.

The effects of surface tension on pressure drop, liquid holdup, wetted area and film thickness are shown in Figures 3.16, 3.17, 3.18 and 3.19 in which it can be concluded that the surface tension had an insignificant influence on pressure drop and liquid holdup. However, a lower surface tension did provide a larger wetted area and a thinner film. It is expected that a thick film will not form when the surface tension is small because the liquid would be influenced more by gas flow than if its surface tension was higher. Larger wetted areas and thinner films are preferred in a chemical reaction; hence, a solvent with lower surface tension would be preferred.
Figure 3.16 Influence of surface tension on pressure drop under liquid flow rate of $Re_L = 180$ and 704.

Figure 3.17 Influence of surface tension on liquid holdup under liquid flow rate of $Re_L = 180$ and 704.
Figure 3.18 Influence of surface tension on wetted area under liquid flow rate of $Re_L = 180$ and 704.

Figure 3.19 Influence of surface tension on film thickness under liquid flow rate of $Re_L = 180$ and 704.
3.4. Conclusions

The hydrodynamics of packed beds with spherical balls was investigated experimentally and computationally. The pressure drops under six different test conditions were obtained during the experimental study. A comprehensive 3D CFD model for counter-current multiphase flow was then developed and validated by comparing its pressure drop results with those from the experiments. Because of model validation, the hydrodynamics of a packed bed reactor with plastic spheres of a specific size and geometry were investigated under various operation conditions. The key findings of this research are as follows:

(1) The 3D CFD model was useful for understanding counter-current flow in a packed bed reactor.

(2) An increase of We values led to a more uniform liquid distribution. The flow regime in the bed with spherical ball packing was film flow when We was greater than 0.547; the larger the values of We to 1.57, the more trickle flow areas were observed.

(3) Liquid holdup and wetted area were increased linearly with increasing liquid flow rates, while gas flow rates had no significant effect on either liquid holdup or wetted area.

(4) Gas side pressure drops increased with increased gas flow rates and liquid flow rates.

(5) Gas-liquid interactions were illustrated using gas and liquid velocity vectors, with these interactions becoming stronger with increasing Re values.

(6) The number of liquid inlets affected flow behavior. Increasing the number of inlets did not always enhance wetted areas or liquid holdups. A liquid inlet number of four provided the most wetted area and liquid holdup.

(7) Surface tension had an insignificant influence on pressure drop and liquid holdup; however, lower surface tension provided a larger wetted area and a thinner film.
CHAPTER 4. NUMERICAL SIMULATIONS OF A STRUCTURED PACKED BED

In this chapter the hydrodynamics associated with structured packing in a reactor, based on the CFD model developed in Chapter 3, will be examined. The simulation geometry will be identical to that of the laboratory scale packed bed that was used for CO₂ capture testing. Pressure drop, liquid distribution, liquid hold-up, wetted area and film thickness, as well as liquid-gas interfacial areas, will be analyzed.

4.1 CFD Model Development.

A structured packing in packed beds, as opposed to random packing, is preferred in industrial applications because it can be precisely assembled to control parameters such as packing surface area and void fraction; thereby it is possible to estimate, a priori, the degree to which pressure drops and intimate mixing of phases could be expected. The prevailing structured packing types are listed in Table 4.1. Their primary differences include specific surface areas of the packing, \(a_p (m^2m^{-3}) \), void fraction, \(e(\%) \), inclined angle, \(a(\text{deg}) \) and the channel dimensions. Among these, the Sulzer’s Mellapak 250 Y is one the most popular packing type that has been quoted within literature on CO₂ absorber processes (Owens, Perkins et al. 2013); the number 250 in its designation indicates a specific surface area of 250 \(m^2m^{-3} \) and the symbol of Y means a surface inclined angle of 45° relative to the flow direction. It may be expected that the hydrodynamics for this packing would be different than that for spherical ball packing discussed in Chapter 3. In this Chapter 4 research, a 3D meso-scale CFD model will be developed to investigate the hydrodynamic characteristics of this complex structured packing with gas-liquid counter-current flows.
Table 4.1 Packing and column characteristics (Petre, Larachi et al. 2003).

<table>
<thead>
<tr>
<th>Packing type</th>
<th>a_p ($m^2 m^{-3}$)</th>
<th>ϵ (%)</th>
<th>α (deg)</th>
<th>Channel dimensions (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Base</td>
</tr>
<tr>
<td>Flexipac 1Y (Koch-Glitsch)</td>
<td>453</td>
<td>91</td>
<td>45</td>
<td>0.0127</td>
</tr>
<tr>
<td>Flexipac 2Y (Koch-Glitsch)</td>
<td>223</td>
<td>95</td>
<td>45</td>
<td>0.0255</td>
</tr>
<tr>
<td>Flexipac 3Y (Koch-Glitsch)</td>
<td>115</td>
<td>96</td>
<td>45</td>
<td>0.0509</td>
</tr>
<tr>
<td>Gempak 1A (Koch-Glitsch)</td>
<td>115</td>
<td>96</td>
<td>45</td>
<td>0.0509</td>
</tr>
<tr>
<td>Gempak 2A (Koch-Glitsch)</td>
<td>223</td>
<td>95</td>
<td>45</td>
<td>0.0255</td>
</tr>
<tr>
<td>Gempak 3A (Koch-Glitsch)</td>
<td>453</td>
<td>91</td>
<td>45</td>
<td>0.0127</td>
</tr>
<tr>
<td>Mellapak 250Y (Sulzer)</td>
<td>250</td>
<td>96</td>
<td>45</td>
<td>0.0267</td>
</tr>
<tr>
<td>Mellapak 250X (Sulzer)</td>
<td>250</td>
<td>96</td>
<td>60</td>
<td>0.0267</td>
</tr>
</tbody>
</table>

Sulzer’s Mellapak 250 Y is made of corrugated metal sheets arranged side-by-side with opposing channel orientations, as illustrated in Figure 4.1 (a) and (b). The structure is mathematically represented by stacked slices; to save on computational time, the modeling of each slice was simplified by assessing only one, averaged channel with a simulation geometry as shown in Fig. 4.1 (c). A single “sandwiches-like” packing was generated and had a 12mm height, 26.7 mm width and 2mm air gap between the slices with an inclined angle of 45° with respect to the inlet flow direction. The liquid inlet was at the top of the domain with a depth of 1mm between the inlet and the top of the packing; the total height of the packing was 80mm.
Water and air were used as the flow agents, and they flowed in counter-current directions, as shown in Figure 4.3. Because the “sandwich-like” domains were only part of the packed bed from a packed column, the side wall boundaries were set as symmetric boundaries with boundary conditions given in Table 4.2. As described in Chapter 3, the VOF model was used during the simulations.

Figure 4.1 Images of the structured packing within a bed: (a) Overview; (b) Top View; and (c) the geometric model used during CFD analyses.

Mesh generation followed the procedures described in Chapter 3. The CutCell meshing method used a mesh spacing from 2×10^{-4} m to 8×10^{-4} m; in total, the mesh included 3.7×10^5 elements. Close to solid surfaces the mesh was refined for a more accurate
determination of the liquid-film thickness, and it became coarser away from these surfaces. Details of the mesh structure are provided in Figure 4.2.

The meshed file was imported into and checked by the ANSYS Fluent solver which assessed issues that would create warning messages. The simulation also used a transient state model to observe the growth of liquid film and the development of gas-liquid interactions. The time step size for this model was 5.0×10^{-4} s while solving a maximum of 30 iterations per time step. When the time step size was then changed to 5.0×10^{-5} s for a better convergence, the total computation time was close to 120 hours for each case. Table 4.2 show the details of boundary conditions of all simulations.

![Figure 4.2 Mesh model and the details of the mesh.](image)
Table 4.2 Details of boundary conditions of all simulations.

<table>
<thead>
<tr>
<th>Boundary</th>
<th>Materials</th>
<th>Type</th>
<th>Value</th>
<th>Velocity</th>
<th>Reynolds Number</th>
<th>Weber Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid inlet</td>
<td>Water</td>
<td>Mass Flow Rate</td>
<td>12.2-48.8(m^3/m^2/h)</td>
<td>0.015-0.488(m/s)</td>
<td>15-488</td>
<td>0.02-3.4</td>
</tr>
<tr>
<td>Gas inlet</td>
<td>Air</td>
<td>Velocity(m/s)</td>
<td>0.5-1.1(m/s)</td>
<td>0.5-1.1(m/s)</td>
<td>325-1226</td>
<td></td>
</tr>
<tr>
<td>Liquid outlet</td>
<td></td>
<td>Pressure-outlet</td>
<td>0 Pa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas outlet</td>
<td></td>
<td>Pressure-outlet</td>
<td>0 Pa</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4.3 Schematic overview of flow directions.
4.2 Results and Discussion

4.2.1 Steady State Determination

Figure 4.4 shows the evolution of wetted area as a function of time at various liquid flow rates (represented by the liquid Reynolds numbers) with the gas flow rate fixed at $Re_g = 911$. The time to achieve a steady state flow area was near 0.35 s when the liquid flow rate was $Re_L = 15$ and this time dropped to 0.23 s for liquid flow rate of $Re_L = 488$. Increasing the gas flow rate (as represented by the gas side Reynolds number) increased the time needed to attain steady state wetted area; this trend was more obvious at the lower liquid flow rates.

The data in Figure 4.5 show that when the gas flow rate was $Re_g = 1106$ and the liquid flow rate was $Re_L = 15$ the time to attain steady state in wetted area was 0.45 s; steady state was attained within 0.25 s at $Re_L = 488$ and $Re_g = 1106$. Hence, increased liquid flow rates at constant gas flow rates decreased the time to achieve steady state, as was also observed in Figure 4.4. However, a higher gas flow rate increased the time to achieve steady state for each liquid flow rate. The flow in the packed bed was considered steady or pseudo-steady at times beyond that needed to achieve steady state wetted area.

4.2.2 Liquid Holdup and Pressure Drop

Empirical models to predict the liquid holdup and pressure drop have been developed for a structured packing (Billet R., 1984) using for eight different packing types; empirical relationship for liquid holdup prediction was:

$$h_0 = 0.555(U_L^2 \frac{a}{g e^{4.65}})^{1/3}$$ \hspace{1cm} (4.1)
Figure 4.4 The evolution of wetted area with time while varying liquid flow rates at a fixed gas flow rate of $Re_g = 911$.

Figure 4.5 The evolution of wetted area with time with varying liquid flow rates and a fixed gas rate of $Re_g = 1106$.

where U_L is the liquid velocity in m/s, a is the specific surface area in m2 m$^{-3}$, g is the gravity in m/s$^{-2}$, and ε is the void fraction. This result predicted that liquid hold-up was
affected by the liquid velocity, specific area of the packing and the void fraction, and then was validated for an air/water system at low flow rates. Hence, the simulation of liquid holdup using the CFD model developed firstly, also at low liquid flow rates and three different gas flow rates, were compared to this empirical equation to assess whether agreement between the two results of the two approaches; this comparison is presented in Figure 4.6 for liquid holdup. Good agreement for the liquid holdup is found for the results of this comparison. The simulation results indicated that different gas flow rate had only a very weak effect on liquid holdup which is consistent with data from the empirical model study. Such weak dependency to the gas flow rates may be a result of the liquid film becoming thinner with increasing gas flow rates (Iliuta and Larachi 2001).

Figure 4.7 (a)-to-(c) show a comparison of gas phase pressure drops as calculated from an empirical model (Stikkelman, de Graauw et al. 1989) displayed in Equation 4.2 and from CFD calculations during this dissertation research. The foundation of this empirical relationship was the Ergun equation (Ergun, S. 1952) after modification to account for the presence of a liquid; it predicts that changes in the pressure drop are caused by the liquid and independent of liquid drag on the gas flow. From Figure 4.7 (a), (b) and (c), pressure drops from both the empirical model and the CFD simulation increased monotonically with increased liquid flow rates and gas flow rates, and simulation results agreed quite very well with Stichlmair model, except that for the case when \(Re_g = 1431 \). Because, perhaps, the Stichlmair model was validated for gas side \(Re_g \) is only between 1 and 1000. Because the pressure drops and liquid holdups obtained from the current simulation were consistent with two different empirical models, the CFD model was considered validated for structured packing.
\[
\frac{\Delta P}{l} = \frac{3}{4f_0' \left(\frac{1-\varepsilon'}{\varepsilon} \right)} \frac{\rho_g u_g^2}{d_p'}
\] (4.2)

Where \(f_0' = f_0 \left\{ \left[1 - \varepsilon \left(1 - \frac{h_o}{\varepsilon} \right) \right] / (1 - \varepsilon) \right\}^{c/3}\), \(\rho_g\) is gas density, \(u_g\) is gas velocity.

\[f_0 = \frac{C_1}{Re_g} + \frac{C_2}{Re_g^{1/2}} + C_3\], in this type packing, \(C_1 = 5\), \(C_2 = 3\), \(C_3 = 0.45\)

\[\varepsilon' = \varepsilon \left(1 - \frac{h}{\varepsilon} \right)\]

\[c = \frac{-\frac{C_1}{Re_g} - \frac{C_2}{2Re_g^{1/2}}}{f_0}\]

\[d_p' = d_p \left\{ \left[1 - \varepsilon \left(1 - \frac{h}{\varepsilon} \right) \right] / (1 - \varepsilon) \right\}^{1/3}\]

\[d_p = 6(1 - \varepsilon)/a\]

Figure 4.6 Comparison of liquid hold up when using Billet’s (Billet, R. and Mackowiak, 1984) empirical model and CFD simulation results at different gas flow rates.
Figure 4.7 A comparison of pressure drops from J.Stichlmair’s (Stikkelman, de Graauw et al. 1989) empirical model and the CFD simulation results for three different gas flow rates: (a) $Re_g = 911$, (b) $Re_g = 1106$, (c) $Re_g = 1431$.
Since the validity of the empirical models was limited to low liquid flow rate, it was considered of possible interest to study pressure drop and liquid hold up at high liquid and gas flow rates. Figure 4.8 shows liquid holdups and Figure 4.9 shows pressure drops when using high liquid flow rates, with the Re_L between 205-to-488, and varying gas flow rates. In agreement with the previous results when using low liquid flow rates, the gas flow rate had no significant effect on liquid holdup although liquid holdup did increase as the liquid flow rate was increased. Pressure drops, in general, showed monotonic increases with both increased gas and liquid flow rates, with the dependency on gas flow rates more pronounced when the gas flow rate Re_g was greater than 911 and when higher liquid flow rates were used. For example, at a high liquid flow rate of $Re_L = 488$ and increasing of the gas flow rates resulted in sharp increases of the pressure drop, whereas at liquid flow rate of $Re_L = 205$ the increases in gas flow rates did not appreciably affect pressure drop. These differences may be explained by enhanced gas-liquid interactions at the higher gas and liquid flow rates. For example, by viewing the results in Figure 4.10 it is evident that the extent to which the liquid was in contact with the solid surface was less for $Re_g = 650$ than for $Re_g = 911$. In other words, more of the liquid is blown away from the surface at the higher gas flow rates and, when this occurs, some of the liquid film would have transitioned into droplets. If so, the flow regime would have changed from film flow to trickle flow and more energy, as evidenced by a rapid increase in pressure, is consumed to support droplets formation.
Figure 4.8 Influence of gas flow rate with fixed liquid flow rate on liquid holdup.

Figure 4.9 Influence of gas flow rates with fixed liquid velocities on pressure drop.
(a) Gas Re=650, \hspace{1cm} (b) Gas Re=911

Figure 4.10 Liquid distribution at (a)$Re_g = 650$; (b) $Re_g = 911$ under $Re_L = 488$.

4.2.3 Liquid Distribution, Flow Regime, Film Thickness and Gas-Liquid Interactions

The development of various flow regimes and liquid distributions as We was increased from 0.57 to 5.13 are depicted in Figure 4.11 as iso-surfaces for a liquid volume fraction of 0.005; the gas flow was fixed with $Re_g = 1431$. Because the side walls were set as symmetrized segments, the flow is shown in a rotated orientation and the liquid is shown to continuously flow down the packing surface following a “Z” shape. When $We = 0.57$, the flow regime was film flow and the surface of the packing was partially wetted. When $We = 2.21$, the flow regime was close to trickle flow and some of the liquid was broken into droplets which are supported by the gas phase flow; at this condition, the surface of
the packing was almost fully wetted with some areas not fully wetted which we called is dead zone. In general, as We was increased, the dead zone of the packing surface were decreased but not fully eliminated.

$We=0.57$
Figure 4.11 Flow regime and liquid distribution at different liquid Weber numbers from 0.57 to 5.13 at fixed $Re_g = 1431$.

Figure 4.12 shows a time series of liquid distribution for the dynamic flow field with $Re_g = 1431$ and $Re_L = 488$. At $t = 0.011$ s, the liquid begins to contact and wet the packing surface as it followed the packing surface along its 45 degree trajectory. At $t = 0.058$ s, the liquid fully wetted the first element, and begins to flow into the second elements. At $t = 0.134$ s, the second element was fully wetted and at $t = 0.232$ s, liquid flow was completed throughout the whole domain. Under these gas and liquid flow rates, the liquid flow not only followed the 45 degree trajectories of the packing surfaces but also flowed vertically to wet more area than otherwise would have occurred.
Figure 4.12 Flow development with time at $Re_g = 1431$ and $Re_L = 488$ (in which a red color represents 100 vol. % of liquid and blue color is 100 vol.% of gas.).

Figure 4.13 shows the film thickness with different liquid flow rate with $Re_g = 1431$ and varying liquid flow rates as expressed in We values. For We below 2.21, surface tension was assumed to dominate the flow because not all of the packing surface was fully wetted and the film thickness was not uniform. When $We = 2.21$, the film thickness became more uniform. And it continued to increase in thickness when $We = 5.13$. However, at $We=5.13$, a strong interaction between the gas and liquid phases could also be observed because the liquid film was not stable. Such instabilities will increase the mass transfer area between the two phases.
Figure 4.13 The film thickness as a function of liquid flow rate at constant $Re_g = 1431$ (in which a red color represents 100 vol. % of liquid and blue color is 100 vol.% of gas.).
Figure 4.14 depicts gas and liquid velocity vectors when $Re_g = 1431$ and $Re_L = 488$; downward pointing arrows in (b) represent liquid flow directions and upward pointing arrows represent gas flow directions. The gas phase has higher velocity than liquid phase. In general, liquid flowed along the surface of the packing. Within the interfaces between liquid and gas the gas and liquid velocity vectors were not parallel to the packing channels. The gas velocities were shifted more away from being parallel to the channels than the liquid velocities, indicating gas-liquid interactions which would enhance mass transfer area between the two phases.

![Image of gas and liquid flow vectors](image)

Figure 4.14 Gas and liquid flow vectors at $Re_g = 1431$ and $Re_L = 488$. (a) The velocity vector in the whole domain. (b) Velocity vector in an element channel.
4.2.4 Wetted Area and Film Thickness

The influence of gas flow rate with different liquid flow rates on the wetted area and film thickness are shown in Figure 4.15 and Figure 4.16, respectively. Whenever the liquid flow rate was increased the amount of wetted area increased incrementally and, although increasing gas flow rates caused small declines in wetted area at any particular liquid flow rate, the effects of changing gas flow rates were much smaller in magnitude than were the effects of liquid flow rates. These results are distinct from those with the spherical ball packing that were discussed in the Chapter 3. It can be anticipated that stronger gas-liquid interactions occur in this structured packing because the curved edges and flow channels would create conditions more conducive for gas-liquid interactions, which also generates more liquid droplets. However, the formation of droplets will also slightly decrease the wetted area.

Figure 4.16 shows the influence of gas flow rates on average film thickness under different liquid flow rates. Larger liquid flow rate created thicker liquid films; for example, the film thickness was 0.62 mm at $Re_L = 205$ and 0.7 mm when $Re_L = 488$. However, changing the gas flow rates had no apparent effect on film thickness.
The hydrodynamics of structured packing in a packed bed reactor was investigated computationally using a three dimensional, comprehensive CFD model with counter-
current gas-liquid flows. The CFD model was validated, first, by comparing its results to those of published results based on empirical models. Then, the hydrodynamics in a structured packing was investigated under various conditions of liquid and gas flow rates. The key findings of this research were:

(1) The three dimensional CFD model was useful to study and understand flow hydrodynamics in a structured packing that had been previously described for application to a CO₂ absorption system.

(2) Liquid holdup was more affected by liquid flow rates than gas flow rates.

(3) Pressure drop was dependent on both liquid and gas flow rates, but more dependent on liquid flow rates than gas flow rates.

(4) The wetted area increased with increased liquid flow rates, and decreased slowly with increasing gas flow rates due to the formation of droplets.

(5) The film thickness increased with increased liquid flow rates, the gas flow rates had no significant effect on film thickness, but it makes the liquid film not stable. Such instabilities will increase the mass transfer area between the two phases.

(6) An increase of We values led to a more uniform liquid distribution within the packing channels.

(7) The flow regime changed from film flow to trickle flow when We was greater than 2.21.

(8) With increasing We values the wetted areas increased, but at all We values studied a small dead zone was always found.
CHAPTER 5. DEVELOPMENT OF MACRO-SCALE MODEL

In this chapter, a CFD model based on the porous media concept is developed and discussed for modelling the hydrodynamics of two-phase flow in spherical ball packed bed. The aim of this research is to assess a closure model using the porous model in multi-phase, counter-counter flow system and to determine what type of alterations may be required to success the multiphase counter-current flows.

5.1 Macro-scale Model Description

As described in Chapter 2, the macro-scale modelling using the porous media concept entails the entire packed bed considered as a porous medium. The phases are treated as inter-penetrating continua and the modelling has a very attractive form which does not require detailed geometric input considerations for the system. As a consequence, the modelling will not provide accurate information about local flow phenomena. Neglecting the physical geometry also dramatically decreases the total number of elements per volume within the domain and, therefore, the modelling is less intensive computationally. Modelling via the porous media concept has been the primary approach that has been used to incorporate complexities like chemical reactions and to simulate very large scale systems.

5.1.1 Closure Model

The porous model uses the same control equations as the other models in Chapter 3 and 4, but needs extra input called a closure model. Also called a permeability model, it is commonly used to evaluated various issues of multiphase flow through porous media (Atta, Roy et al. 2007) and is based on averaged parameters for modeling pressure drops.
throughout the porous media. The most famous closure model is the Ergun equation, a
detail expression for which was presented in Chapter 2, Section 2.8.

5.1.2 Geometry Model and Boundary Conditions

A porous model is applied to simulate the flow in the spherical packed bed. A 3D
geometry model was built for a porous model, as shown in Figure 5.1. The diameter of
the column was same as that used in the experiments, with a 38.1 mm (1.5”) ID with the
length of 135 mm long to save computational time.

The middle 100 mm length was is treated as a porous zone with porosity of 0.4. Above
and under the porous zone, there were two empty zones with a length of 17.5mm, also
identical to the experiments. The empty zone was to enable more homogeneous
distribution of the liquid before entering the porous zone. The mesh is shown in Figure
5.2 and had a total of 3.1×10⁵ elements.

Several simulation cases were performed, and the simulation conditions followed the
experimental conditions described in Chapter 3. Boundary conditions in porous zone of
the simulations are presented in Table 5.1; the viscous resistance and inertial resistance
coefficients were calculated using the Equations 2.9 and 2.10.
Figure 5.1 Geometry of the simulations.

Table 5.1 Boundary conditions of the simulations.

<table>
<thead>
<tr>
<th>Simulation parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porosity</td>
</tr>
<tr>
<td>Viscous resistance coefficient</td>
</tr>
<tr>
<td>Inertial resistance coefficient</td>
</tr>
</tbody>
</table>
5.1.3 Results based on the Ergun Equation

Figure 5.3 compares the pressure drops from experimental results and simulation results based on the Ergun model as the closure model. Although they are in reasonable agreement, a relatively large difference exists between the experimental data and simulation results, with Ergun model results always smaller than the experimental results. The reason for this difference may be a result of the fact that that the Ergun model is for
single phase flow; it does not account for the effects of the two-phase flow and counter-current gas-liquid flows.

5.2 Modified Closure Model

The results in Chapter 3 showed that the pressure drops with spherical packing was influenced by both gas and liquid flows. Hence, a closure model other than that based on the Ergun model may be needed to be assessed if better agreement between experimental and model pressure drops are to be developed. In fact, published research has assessed modifications to the Ergun equation to generate better correspondence between experimental and simulation data (Specchia and Baldi 1977, Szady and Sundaresan 1991), this model by changing the values of Ergun’s constants. However, this arbitrary approach has no sound scientific basis for counter-current, multi-phase flow. Hence, an alternative to simply changing these constants was investigated.

In the Ergun model pressure drops are a function of particle diameter, void fraction of the bed (porosity), gas phase velocity, density and viscosity, but no factors or dependencies are associated with the liquid phase. Previous research has broached this issue (Ellenberger and Krishna 1999) in which it was reasoned that, if the flow also contains a liquid, the void fraction should be changed because the amount of liquid in the flow is actually related to liquid holdup. To account for liquid holdup, the void fraction can be expressed as:

\[\varepsilon' = \varepsilon - h_o \]

where \(\varepsilon' \) is modified void fraction, \(\varepsilon \) is initial void fraction and \(h \) is associated with operating liquid holdup.
Figure 5.3 Comparison of experimental and simulated pressure drops at (a) $V_{\text{water}} = 200$ (mL/min) (b) $V_{\text{gas}} = 10$ (L/min).
With the modification, the Ergun equation would become:

\[
\frac{|\Delta p|}{L} = \frac{150 \mu (1-\varepsilon')^2}{D_p^2 \varepsilon'^4} v_{\infty} + \frac{1.75 \rho (1-\varepsilon')}{D_p \varepsilon'^3} v_{\infty}^2
\] \hspace{1cm} (5.1)

However, the value of \(h \) has to be either measured or calculated for the closure model.

Fortunately, research has been performed (Saez and Carbonell 1985) in which datasets for liquid holdup and pressure drop were analyzed over a wide range of flow rates to determine the dependency of relative permeability on the saturation for each phase in co-current, multi-phase flow. The hypothesis was that liquid relative permeability is a function of reduced saturation (\(\delta_l \)) and can be represented by a ratio of effective volume of flow of the liquid phase-to-the available volume of flow, as in:

\[
\delta_l = \frac{\varepsilon_l - \varepsilon_l^0}{\varepsilon - \varepsilon_l^0}
\] \hspace{1cm} (5.2)

where \(\varepsilon_l^0 \) is the static liquid holdup and more details see (Atta, Roy et al. 2007).

Additionally, gas phase relative permeability was correlated to be a function of the gas phase saturation, giving the empirical relations:

\[
k_l = \delta_l^{2.43}
\] \hspace{1cm} (5.3)

\[
k_g = s_g^{4.80}
\] \hspace{1cm} (5.4)

where \(s_g = 1 - \frac{\varepsilon_l^0}{\varepsilon} \)

Then, the static liquid holdup (\(\varepsilon_l^0 \)) can be calculated by:

\[
\varepsilon_l^0 = \frac{1}{(20 + 0.9E'_o)}
\] \hspace{1cm} (5.5)

where \(E'_o = \frac{\rho_l g d_p^2 \varepsilon^2}{\sigma_l (1-\varepsilon)^2} \)
Hence, equation 5.5 shows the liquid holdup is a function of particle diameter, bed porosity, liquid density and liquid surface tension. In addition, the results in Chapter 3 related to the use of Billet’s empirical model (Billet, 1984) shows that liquid holdup should be dependent on liquid velocities.

Hence, based on the data for the spherical ball packing in Chapter 3, and in agreement with use of Billets empirical model, the following dependency of liquid holdup is proposed: :

\[
h_p = 0.3 F_r L^{0.25} \quad (5.6)
\]

where \(F_r \) = \(\frac{150 U_L^2}{\rho g \varepsilon^{4.65}} \). \(U_L \) is the liquid inlet velocity m/s, \(g \) is the gravity m/s\(^2\), \(\varepsilon \) is the void fraction of the bed. Therefore, the modified Ergun model for our studies can be written as:

\[
\frac{|\Delta p|}{L} = \frac{150 \mu (1-\varepsilon+0.3 F_r L^{0.25})^2}{D_p^2 (\varepsilon-0.3 F_r L^{0.25})^3} v_\infty + \frac{1.75 \rho (1-\varepsilon+0.3 F_r L^{0.25})}{D_p (\varepsilon-0.3 F_r L^{0.25})^3} v_\infty^2 \quad (5.7)
\]

Figure 5.4 compares liquid holdups calculated using the modified Ergun model and the results of the simulations discussed in Chapter 3 for the spherical ball packing. Very good agreement between these models for liquid holdup is noted.

Table 5.2 New resistance coefficient of the simulation.

<table>
<thead>
<tr>
<th>Liquid mass flow rate (mL/min)</th>
<th>Viscous resistance coefficient</th>
<th>Inertial resistance Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>(3.23 \times 10^7)</td>
<td>(1.04 \times 10^4)</td>
</tr>
<tr>
<td>200</td>
<td>(5.87 \times 10^7)</td>
<td>(1.78 \times 10^4)</td>
</tr>
<tr>
<td>300</td>
<td>(1.61 \times 10^8)</td>
<td>(4.52 \times 10^4)</td>
</tr>
</tbody>
</table>
Figure 5.4 Comparison of modified Ergun model that considered liquid holdup model and the simulation results of Chapter 3 for spherical ball packing with changes in the liquid Reynolds numbers.

5.3 Results of a New Closure Model

The change of the void fraction will change the coefficient of equation 5.7. By using the modified viscous and inertial resistance coefficients shown in Table 5.2, in conjunction with the modified Ergun model, it was then possible to compare the pressure drop results calculated from a closure model with those from the experiments, as shown in Figure 48. Now, differences between results from experimental tests and the modified Ergun closure model have decreased to an overall 8% instead of the 40% that is displayed in Figure 5.5. Hence, the modified Ergun equation effectively eliminated the errors in calculation that were associated with not including two phase flow in the packed bed using spherical ball packing.
Figure 5.5 Comparison of experimental and simulated pressure drops under the new closure model using a modified Ergun equation: (a) $V_{\text{water}} = 200$ (mL/min) (b) $V_{\text{gas}} = 10$ (L/min).
5.4 Conclusions

Although macro-scale modelling cannot provide detailed characterization of the hydrodynamics in a packed bed reactor, it is less computationally intensive and provides insight in pressure drops associated with the liquid and gas phases. Hence, a porous model for spherical ball packing was assessed which included a closure model that required modification of the Ergun equation to account for the presence of gas and liquid phases in the reactor. This modified Ergun equation included replacing the porosity by the actual pore volume within the packing, which included liquid holdup as an important influence on pressure drops. Additionally, an equation was developed which enabled the prediction of liquid holdup versus the liquid Reynolds number and the results of using this equation were in very good agreement with the results of 3D CFD simulation.
CHAPTER 6. CONCLUSIONS AND FUTURE WORK

There is a scientific consensus on the climate change and global warming, and there is an increasing concern on CO₂ capture and sequestration to mitigate climate change and global warming. Post-combustion CO₂ capture is one of the most promising potential technologies to be commercialized in the near future. One of the obstacles that hurdle the scale up of this process, however, is the large size of the CO₂ absorber due to the relatively low CO₂ absorption kinetics and the lack of knowledge on the hydrodynamics in the packed bed. The hydrodynamic characterizations such as wetted area, film thickness, liquid holdup, liquid distribution and gas-liquid interaction are essential parameters affecting the chemical reaction rate.

To that end, numerical simulation was performed in this dissertation to study the hydrodynamics in the packed bed. A comprehensive meso-scale 3D CFD model was built for gas-liquid under counter currently flow in a spherical ball packing bed and a structured packing bed, and the model was verified by comparing its predictions to laboratory scale experimental data and already existing empirical models. This newly developed 3D CFD was found useful to improve our current understanding of the mechanisms of hydrodynamics in a packed bed reactor. The following summarizes specific outcomes from this thesis.

(1) In the spherical ball packing bed and the structured packing bed, an increase in the We number values led to a more uniform liquid distribution. However, the flow regime in the bed with spherical ball packing was mainly film flow when We number was greater
than 0.547, with further increases of We to 1.51, the trickle flow was observed and the flow regime in the structured packing was trickle flow at We number greater than 2.21. Liquid is easier to spread in the structured packing bed.

(2) Liquid holdup was found to be more affected by liquid flow rate, and the gas flow rate had no significant influence for spherical ball packing and structured packing bed. For both spherical ball packing bed and structured packing bed, the pressure drop increased with an increase in both the gas flow and liquid flow rates. The gas flow rate affected the pressure drop in the structured packing bed only when the flow condition changed from film flow to trickle flow creating a sharp pressure drop.

(3) The transient 3-D liquid-gas counter flow system for both the spherical ball packing and the structured packing bed was numerically simulated and the transient behavior of important parameters (wetted area, liquid distribution, gas liquid interaction in the interface, and film thickness) were obtained. One of important new findings is: gas and liquid interaction occurred at their interface through entrainment; it became stronger with an increase in Re numbers. When this interaction becomes stronger, it will split the liquid and leading to formation of droplets (which will create a negative performance of the packing beds). The film thickness in structured packing bed was much thinner than that in the spherical ball packing bed, and it increased with an increase in the liquid flow rate. Gas flow rate had no significant effect on building the film layer thickness, but it makes the liquid film not stable. Such instabilities will increase the mass transfer area between the two phases.
(4) The liquid distributor affected behavior of flow in both beds, while increasing the number of inlets did not always enhance the wetted areas or liquid holdups. The effect of liquid inlet on the wetted area was numerically evaluated by changing the liquid inlet number from 1 to 13. As a result, the inlet number of four achieved the highest wetted area and the best liquid holdup. The effect of surface tension had an insignificant influence on pressure drop and liquid holdup; however, lower surface tension helped to increase the wetted area and creating a thinner film thickness, which is a favorable performance condition for the packed bed reactors.

(5) Ergun model used in the porous model was examined and found not to be suitable for counter-current multi-phase flow simulation. The Ergun equation, therefore, was modified by replacing the porosity by the actual pore volume to accurately include performance of the liquid holdup into account. As a result, the modified Ergun equation predicted liquid holdup more accurately.

Future Work:

(1) To understand the relationship between the CO₂ absorption-rate with the hydrodynamic characterization parameters, the reaction mechanism of CO₂ absorption needs to be added to the current meso-scale CFD model. To that end, kinetic data of CO₂ absorption with popular amine solvent such as MEA has been well developed, so the user defined functions (UDF) can be used to add the reaction kinetics to the CFD model. Since the CO₂ is absorbed in this model, the gas (CO₂) flow rate will decrease along its flow path (upward), and the solvent carbon loading may increase along its flow path (downward), slightly affecting the physical properties (such as surface tension and viscosity of the solvent) which will influence the hydrodynamics in the structured
packing bed. This interaction between the chemical reaction and hydrodynamics need to be further investigated.

(2) The meso-scale model which is computationally intensive was proven to be capable of simulating details of the hydrodynamic behavior in the packing bed. On the other hand, porous model (which is less computationally intensive) can simulate the performance of a large scale setup system if a suitable closure model for structured packing bed is developed.

(3) If scaling relationships and/or scaling laws which can relate the performance of micro-scale, meso-scale and macro-scale models were developed, micro-scale (laboratory scale) model can be used to validate the numerical model which can optimize the performance of the macro-scale packed bed reactors. Combination of the scale and numerical modeling can help accelerate R&D effort to identify a highly efficient and effective packed bed reactor system and the optimized operational conditions.
Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Permeability</td>
</tr>
<tr>
<td>$1/a$</td>
<td>Viscous resistance coefficient</td>
</tr>
<tr>
<td>a_p</td>
<td>Specific surface area m^2m^{-3}</td>
</tr>
<tr>
<td>a_k</td>
<td>Volume fraction in k-th phase</td>
</tr>
<tr>
<td>A</td>
<td>Constant in the viscous term of the Ergun type equation</td>
</tr>
<tr>
<td>B</td>
<td>Constant in the inertial term of the Ergun type equation</td>
</tr>
<tr>
<td>C_2</td>
<td>Inertial resistance coefficient</td>
</tr>
<tr>
<td>Dp</td>
<td>Particle diameter, m</td>
</tr>
<tr>
<td>d_p'</td>
<td>Particle diameter including surface liquid, m</td>
</tr>
<tr>
<td>d</td>
<td>Thickness of the phase inlet, m</td>
</tr>
<tr>
<td>ε</td>
<td>Void fraction of bed</td>
</tr>
<tr>
<td>ε_k</td>
<td>Volum fraction of k phase</td>
</tr>
<tr>
<td>ε_g</td>
<td>Hold up of g phase</td>
</tr>
<tr>
<td>ε'</td>
<td>Modified void fraction with liquid phase</td>
</tr>
<tr>
<td>ε_l^o</td>
<td>Static liquid holdup</td>
</tr>
<tr>
<td>E_o^*</td>
<td>Modified Eötvos number, $E_o^* = \frac{\rho_l g d_p^2 \varepsilon^2}{\sigma_l (1-\varepsilon)^2}$</td>
</tr>
</tbody>
</table>
\[f_p \text{ friction factor of a single particle} \]

\[F \text{ Drag force} \]

\[F_g \text{ Drag force on the } g \text{ phase per unit volume, kgm}^{-2}s^{-2} \]

\[F_{k,R} \text{ Interphase between } K \text{ and } R \text{ phases} \]

\[Fr_L \text{ Froude number } Fr_L = \frac{15*U_L^2}{g e^{4.65}} \]

\[g \text{ Gravity, 9.8 m s}^{-2} \]

\[Ga_g \text{ Galileo number of the gas phase} \]

\[h_0 \text{ Liquid hold-up} \]

\[k \text{ Free surface curvature} \]

\[k_g \text{ Relative permeability of } g \text{ phase} \]

\[l \text{ Bed height, m} \]

\[\vec{n} \text{ Unit normal vector} \]

\[Re \text{ Reynolds number fluid} \]

\[Re_p \text{ Reynolds number based on the particle diameter} \]

\[Re_g \text{ Reynolds number of the gas phase} \]

\[\Delta p \text{ Pressure drop, pa/m} \]

\[\Delta p_{dry} \text{ Pressure drop through an unirrigated (dry)bed Pa/m} \]

\[\Delta p_{irr} \text{ Pressure drop through an irrigated bed Pa/m} \]
\(U_k \) Cell velocity of k-th phase

\(We \) Weber number

\(t \) Time, s

\(v \) Velocity, m s\(^{-1}\)

\(V_\infty \) Superficial velocity upstream of the bed entrance, m/s

\(V \) Liquid and gas flow rate

\(\rho_k \) Density of k-th phase, kg m\(^{-3}\)

\(\mu \) Dynamic viscosity, pa\(\cdot\)s

\(\sigma \) Surface tension

Subscripts

\(g \) Gas phase

\(L \) Liquid phase
References

Ed, D. P., T. from www.esrl.noaa.gov/gmd/ccgg/trends/.

Feron, P. H. (2010). "Exploring the potential for improvement of the energy performance of coal
fired power plants with post-combustion capture of carbon dioxide." *International Journal of

CO2 capture technology—The U.S. Department of Energy's Carbon Sequestration Program."

Fu, D., L. Wei and S. Liu (2013). "Experiment and model for the surface tension of carbonated

VOF, staggered finite volumes, and spline interpolants." *Journal of Computational Physics*
166(2): 302-335.

beds with NMR imaging: determination of the local porosity, velocity vector and local dispersion

tomography*, ProQuest.

Liu, F. (2013). *CERIUM OXIDE (CeO2) PROMOTED OXYGEN CARRIER DEVELOPMENT AND SCALE MODELING STUDY FOR CHEMICAL LOOPING COMBUSTION*. Doctor of Philosophy (PhD), University of Kentucky.

experimental study using electrochemical shear rate sensors." Chemical engineering science 49(9): 1383-1401.

Wilson, I. D. (2004). Gas-liquid contact area of random and structured packing. The University of Texas at Austin.

Vita

Li Yang

Born in Shaan Xi Province, China

Education:

September 2003-July 2007 B.S. Thermal Engineering and Power Generation

September 2007-July 2010 M.S. Fluid Machinery and Engineering

Certificate:

Lean Systems Student Certificate

Graduate Certificate: Computational Fluid Dynamics (CFD)

Publications

Journals:

Yang Li, Fang Liu, Tianxiang Li, Kunlei Liu, Kozo Saito*; “CFD Simulations on hydraulic characteristics of liquid film in A Counter-Current Multiphase Flow System” to be submitted.

Yang Li, Fang Liu, Zhengchang song, Kunlei Liu, Kozo Saito*; “CFD Simulations on hydraulic characteristics of liquid film in A Structured packing bed” to be submitted.

Presentations/Proceedings: