High-Activity Mutants of Butyrylcholinesterase for Cocaine Hydrolysis and Method of Generating the Same

Chang-Guo Zhan
University of Kentucky, chang-guo.zhan@uky.edu

Hoon Cho
University of Kentucky

Hsin-Hsiung Tai
University of Kentucky, htai1@uky.edu

Follow this and additional works at: https://uknowledge.uky.edu/ps_patents

Part of the Pharmacy and Pharmaceutical Sciences Commons

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation
Zhan, Chang-Guo; Cho, Hoon; and Tai, Hsin-Hsiung, "High-Activity Mutants of Butyrylcholinesterase for Cocaine Hydrolysis and Method of Generating the Same" (2008). Pharmaceutical Sciences Faculty Patents. 44.
https://uknowledge.uky.edu/ps_patents/44

This Patent is brought to you for free and open access by the Pharmaceutical Sciences at UKnowledge. It has been accepted for inclusion in Pharmaceutical Sciences Faculty Patents by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
HIGH-ACTIVITY MUTANTS OF BUTYRYLCHOLINESTERASE FOR COCAINE HYDROLYSIS AND METHOD OF GENERATING THE SAME

Inventors: Chang-Guo Zhan, Lexington, KY (US); Hoon Cho, Lexington, KY (US); Hsin-Hsiung Tai, Lexington, KY (US)

Assignee: University of Kentucky Research Foundation, Lexington, KY (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 396 days.

Filed: Oct. 4, 2005

References Cited

U.S. PATENT DOCUMENTS

* cited by examiner

Primary Examiner—Tekchang Saidha
Attorney, Agent, or Firm—Stites & Harbison PLLC; Stephen Weyer; James Daly, IV

ABSTRACT

A novel computational method and generation of mutant butyrylcholinesterase for cocaine hydrolysis is provided. The method includes molecular modeling a possible BChE mutant and conducting molecular dynamics simulations and hybrid quantum mechanical/molecular mechanical calculations thereby providing a screening method of possible BChE mutants by predicting which mutant will lead to a more stable transition state for a rate determining step. Site-directed mutagenesis, protein expression, and protein activity is conducted for mutants determined computationally as being good candidates for possible BChE mutants, i.e., ones predicted to have higher catalytic efficiency as compared with wild-type BChE. In addition, mutants A199S/A328W/Y332G, A199S/F227A/A328W/Y332G, A199S/S287G/A328W/Y332G, A199S/F227A/S287G/A328W/Y332G, and A199S/F227A/S287G/A328W/E441D all have enhanced catalytic efficiency for (−)-cocaine compared with wild-type BChE.

4 Claims, 6 Drawing Sheets
FIGURE 1
FIGURE 2

(A) BChE-(−)-cocaine
non-prereactive complex

(B) BChE-(−)-cocaine
prereactive complex

(C) BChE-(+)-cocaine
non-prereactive complex

(D) BChE-(+)-cocaine
prereactive complex
FIGURE 3
FIGURE 5
FIGURE 6
HIGH-ACTIVITY MUTANTS OF BUTYRYLCHOLINESTERASE FOR COCAINE HYDROLYSIS AND METHOD OF GENERATING THE SAME

FIELD OF THE INVENTION

The present invention relates to butyrylcholinesterase variant polypeptides, and in particular, butyrylcholinesterase mutants having amino acid substitutions.

BACKGROUND OF THE INVENTION

Cocaine abuse is a major medical and public health problem that continues to defy treatment. The disastrous medical and social consequences of cocaine addiction, such as violent crime, loss in individual productivity, illness and death, have made the development of an effective pharmacological treatment a high priority. However, cocaine mediates its reinforcing and toxic effects by blocking neurotransmitter reuptake and the classical pharmacodynamic approach has failed to yield small-molecule receptor antagonists due to the difficulties inherent in blocking a blocker. An alternative to receptor-based approaches is to interfere with the delivery of cocaine to its receptors and accelerate its metabolism in the body.

The dominant pathway for cocaine metabolism in primates is butyrylcholinesterase (BChE)-catalyzed hydrolysis at the benzyloxy ester group (Scheme 1).

Scheme 1. Schematic representation of BChE-catalyzed hydrolysis at the benzyloxy ester group.

Only 5% of the cocaine is deactivated through oxidation by the liver microsomal cytochrome P450 system. Cocaine hydrolysis at benzyloxy ester group yields ecgonine methyl ester, whereas the oxidation produces norcocaine. The metabolite ecgonine methyl ester is a biologically inactive metabolite, whereas the metabolite norcocaine is hepatotoxic and a local anesthetic. BChE is synthesized in the liver and widely distributed in the body, including plasma, brain, and lung. Extensive experimental studies in animals and humans demonstrate that enhancement of BChE activity by administration of exogenous enzyme substantially decreases cocaine half-life.

Enhancement of cocaine metabolism by administration of BChE has been recognized to be a promising pharmacokinetic approach for treatment of cocaine abuse and dependence. However, the catalytic activity of this plasma enzyme is three orders-of-magnitude lower against the naturally occurring (-)-cocaine than that against the biologically inactive (+)-cocaine enantiomer. (+)-cocaine can be cleared from plasma in seconds and prior to partitioning into the central nervous system (CNS), whereas (-)-cocaine has a plasma half-life of approximately 45-90 minutes, long enough for manifestation of the CNS effects which peak in minutes. Hence, BChE mutants with high activity against (-)-cocaine are highly desired for use in humans. Although some BChE mutants with increased catalytic activity over wild-type
BChE have previously been generated, there exists a need for mutant BChE with even higher catalytic activity. Thus, prior mutants provide limited enhancement in catalytic activity over wild-type BChE.

Previous molecular dynamics (MD) simulations of prereactive BChE-cocaine binding were limited to wild-type BChE. Even for the non-prereactive BChE-cocaine complex, only one mutant (A328W/Y332A) BChE binding with (R)-cocaine was simulated and its catalytic activity for (-)-cocaine was reported by Sun et al. No MD simulation was performed on any prereactive enzyme-substrate complex for (R)- or (S)-cocaine binding with a mutant BChE. In addition, all previous computational studies of Sun et al and Zhan et al of BChE: interacting with cocaine were performed based on a homology model of BChE when three-dimensional (3D) X-ray crystal structure was not available for BChE, as taught by Nicolet, Y.; Lockridge, O.; Masson, P.; Fontecilla-Camps, J. C.; Nachon, E. *J. Biol. Chem.* 2003, 278, 41141 (hereinafter “Nicolet et al”), recently reported 3D X-ray crystal structures of BChE. As expected, the structure of BChE is similar to a previously published theoretical model of this enzyme and to the structure of acetylcholinesterase.

The main difference between the experimentally determined BChE structure and its model was found at the acyl binding pocket (acyl loop) that is significantly bigger than expected. It is unclear whether the structural difference at the acyl binding pocket significantly affect BChE binding with (R)-cocaine and (S)-cocaine. Although previous MD simulations of cocaine binding with wild-type BChE and the reaction coordinate calculations point to some amino acid residues that might need to be mutated for the purpose of improving the catalytic activity for (R)-cocaine hydrolysis, it remained unknown which exact amino acid mutations will result in a BChE with a higher catalytic activity for (R)-cocaine.

Computational studies of wild-type BChE and cocaine from Sun et al, based on a “homology model,” suggest that the rate-determining step for BChE-catalyzed hydrolysis of cocaine is the rotation of the cocaine in the active site of BChE. By decreasing the hindrance of rotation, the rate of the hydrolysis may be enhanced. Sun, et al describes creating an A328W/Y332A BChE mutant by: (1) replacing Tyr332 with Ala, “to reduce the steric hindrance and the p-p interaction that impede rotation,” and (2) replacing Ala328 with Trp to provide a cation-p interaction to restore substrate affinity lost in disabling the p-p interaction.”

Sun et al studied the A328W/Y332A BChE mutant using enzyme assays and kinetics. In vitro studies were conducted using human plasma and in vivo studies were conducted using male Sprague-Dawley rats. The mutant was found to have enhanced catalytic properties. The mutant was further studied using molecular modeling. The three dimensional (3D) structure of A328W/Y332A was generated from the computationally generated 3D model of wild-type BChE and changing the relevant residues using commercially available software. Cocaine was docked to the catalytic gorge of the mutant BChE using other commercially available software. The cocaine-enzyme complex was refined by molecular dynamic simulation. The data generated by the molecular modeling studies were consistent with enzyme assays and kinetic data.

It should be noted that all prior computational techniques (molecular docking and molecular dynamic simulation) used by other researchers are based on an empirical force field which cannot be used to perform any necessary reaction coordinate calculation for the detailed understanding of the complicated catalytic reaction process. As it is well-known, it is particularly challenging to model and simulate the detailed reaction pathway and predict the kinetics of such an enzymatic reaction.

U.S. Patent Application Publication Nos. 2004/0121970; 2004/0120939; and 2003/0153062, describe 20+ BChE mutants, or “variants,” from human and other animals, each having from one to six amino acid alterations and increased cocaine hydrolysis activity. For example, mutants include F227A/A328W; F227A/S287G/A328W; A119S/S287G/A328W; A328W; A328W/Y332M/S287G/F227A; A199S/F227A/S287G/A328W and A119S/F227A/S287G/A328W/Y332M. The mutants have varying increases in catalytic activity, up to 100-fold increase relative to wild-type BChE.

There exists a need in the art for determining which proposed mutant BChEs should have ever increasing catalytic activity and for generating those mutants which should have enhanced catalytic activity.
SUMMARY OF THE INVENTION

The present invention includes five novel human BChE mutants that have unexpected increased catalytic efficiency for cocaine hydrolysis. The mutants have various unique amino acid residue substitutions which provide the surprising enhanced catalytic activity. These mutants are (1) A199S/A328W/Y332G mutant (SEQ ID NO: 2), which has an approximately 65-fold improved catalytic efficiency against (-)-cocaine; (2) A199S/F227A/A328W/Y332G mutant (SEQ ID NO: 8), which has an approximately 148-fold improved catalytic efficiency against (-)-cocaine; (3) A199S/S287G/A328W/Y332G mutant (SEQ ID NO: 14), which has an approximately 456-fold improved catalytic efficiency against (-)-cocaine; (4) A199S/F227A/S287G/A328W/Y332G mutant (SEQ ID NO: 20), which has an approximately 1,003-fold improved catalytic efficiency against (-)-cocaine; and (5) A199S/F227A/S287G/A328W/F441D mutant (SEQ ID NO: 26), which has an approximately 445-fold improved catalytic efficiency against (-)-cocaine.

In addition, the aforementioned mutant amino acid sequences can be truncated without substantially affecting the catalytic activity of the enzyme. SEQ ID NOS: 4, 10, 16, 22 and 28 are the amino acid sequences for residue 68-142 corresponding to mutants 1-5, respectively. In addition, with regard to mutants 1-4, it was found that amino acid residues before 117 and after 438 could be removed without substantially changing the activity of the mutant enzymes, resulting in truncated amino acid sequences having SEQ ID NOS: 6, 12, 18, and 24, respectively. Finally, with regard to mutant 5, amino acid residues before 117 and after 441 could be removed without substantially changing its activity resulting in SEQ ID NO: 30.

These aforementioned truncated sequences all of which have similar catalytic activity is based on protein structures.

Further, the present invention is directed to a novel and unique pharmaceutical composition which comprises a butyrylcholinesterase variant, namely mutants 1-5, along with a suitable pharmaceutical carrier. The pharmaceutical composition can be administered to an individual in an effective amount to lower the patient's cocaine blood concentration and in particular, the cocaine blood concentration.

In addition, the present invention is directed to a novel and unique method for developing mutants which have enhanced catalytic efficiency. The generation method includes both a computational portion and an experimental portion. With regard to the computational portion, a variety of the art computational techniques including molecular modeling, molecular dynamics (MD) simulations and hybrid quantum mechanical/molecular mechanical (QM/MM) calculations, provide a virtual screening of possible BChE mutants. This virtual screening predicts which mutation will lead to a more stable transition state for a rate-determining step compared to the corresponding separated reactants, i.e., free cocaine and free enzyme. The more stable the transition state, the lower the energy barrier, and the higher the catalytic efficiency. Following the computational portion, an experimental test is then conducted on the possible mutants of the computation portion. The experimental test includes site-directed mutagenesis, protein expression, and enzyme activity assay. The experimental tests are conducted on mutants which are predicted to have a high catalytic efficiency against (-)-cocaine than the wild-type BChE, and/or other known BChE mutants against (-)-cocaine. Thus, the present method identifies or predicts mutants having high catalytic activity for cocaine hydrolysis by performing molecular modeling and MD simulations on the transition state structures of possible mutants of BChE. This method is an improvement over traditional random-search approaches, which, given the complex catalytic mechanism of cocaine hydrolysis, makes it difficult to improve the catalytic activity of BChE for cocaine hydrolysis.

The present invention in one form, concerns a butyrylcholinesterase variant peptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, and 30.

The present invention in another form thereof concerns a nucleic acid molecule comprising a nucleic acid sequence which encodes a butyrylcholinesterase variant peptide, the nucleic acid sequence selected from the group consisting of SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, and 29.

The present invention in another form thereof concerns a pharmaceutical composition comprising a butyrylcholinesterase variant polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, and 30; and a suitable pharmaceutical carrier.

The present invention in another form thereof concerns a method for treating a cocaine-induced condition comprising administering to an individual an effective amount of butyrylcholinesterase variant peptide having an amino acid sequence selected from the group consisting of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, and 30, to lower blood cocaine concentration.

The present invention is another form thereof concerns a method for treating a cocaine induced condition comprising administering to an individual an effective amount of a pharmaceutical composition comprising a butyrylcholinesterase variant having an amino acid sequence selected from the group consisting of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, and 30, and suitable pharmaceutical carrier of claim 3 to an individual in an effective amount to lower blood cocaine concentration.

The present invention in yet another form thereof concerns a method for generating butyrylcholinesterase mutants. The method includes generating an initial structure of the transition state structure for the rate-determining step of the cocaine hydrolysis catalyzed by a possible butyrylcholinesterase mutant. A sufficiently long time molecular dynamics simulation is performed on the transition state structure in water to have a stable molecular dynamics trajectory. The molecular dynamics trajectory is analyzed and the hydrogen bonding energies are estimated between the carboxyl oxygen of the (-)-cocaine benzyl ester and the oxonium hole of the possible butyrylcholinesterase mutant. If the overall hydrogen binding energy between the carboxyl oxygen of the (-)-cocaine benzyl ester and the possible butyrylcholinesterase mutant, in the transition state, is stronger than the overall hydrogen binding energy between the carboxyl oxygen of the (-)-cocaine benzyl ester and the wild-type butyrylcholinesterase, optionally, hybrid quantum mechanical/molecular mechanical (QM/MM) geometry optimization is performed to refine the molecular dynamics-simulated structure, the hydrogen binding energies are calculated and the energy barrier is evaluated. Finally, the butyrylcholinesterase mutant is generated.

In various alternative embodiments, the generating an initial structure of the transition state structure is based on reaction coordinate calculations for the wild-type butyrylcholinesterase. The generating butyrylcholinesterase mutant includes performing site-directed mutagenesis on a nucleic
acid sequence which includes wild-type butyrylcholinesterase to generate the mutant butyrylcholinesterase nucleic acid sequence. Using the mutant butyrylcholinesterase nucleic acid sequence, the protein encoded by the mutant nucleic acid sequences is expressed to produce mutant butyrylcholinesterase and catalytic activity assay is performed on the mutant butyrylcholinesterase.

The hybrid quantum mechanical/molecular mechanical geometry optimization may include calculating the hydrogen binding energies and evaluating the energy barriers only if the overall hydrogen binding energy between the carboxyl oxygen of the (−)-cocaine benzyloxyl and the possible butyrylcholinesterase mutant, in the transition state, is stronger than known butyrylcholinesterase mutants against (−)-cocaine.

In yet another alternative further embodiment, the method for generating butyrylcholinesterase mutants further includes determining the rate-limiting step in the hydrolysis of (−)-cocaine by the possible butyrylcholinesterase mutant by conducting molecular dynamics simulations and quantum mechanical/molecular mechanical calculations relating to the transition states for other reaction steps between (−)-cocaine by the possible butyrylcholinesterase mutant and calculating respective energy barriers, thereby establishing which of the reaction steps is the rate-determining one.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 are plots of distances in the MD simulation (−)-cocaine binding with A328W/Y332G BChE versus the simulation time, along with root-mean-square deviation (RMSD) in the enzyme-substrate complexes where FIG. 1A represents the non-prereactive enzyme-substrate complexes; and FIG. 1B represents the prereactive enzyme-substrate complexes in accordance with the present invention.

FIG. 2 shows the binding of structures of the simulated non-prereactive and prereactive complexes of wild-type BChE binding with two enantiomers of cocaine in which: FIG. 2A depicts BChE (−)-cocaine non-prereactive complex; FIG. 2B depicts BChE (−)-cocaine prereactive complex; FIG. 2C depicts BChE (−)-cocaine non-prereactive complex; and FIG. 2D depicts BChE (−)-cocaine prereactive complex.

FIG. 3A shows the (−)-cocaine rotation in the BChE active site for the non-prereactive complex to the prereactive complex hindered by some residues at positions Y332, A328, and F329 residues in the non-prereactive complexes which are significantly different from the corresponding positions in the prereactive complex; and FIG. 3B shows the (−)-cocaine rotation in the BChE active site where none of the aforementioned residues hinders the (−)-cocaine rotation in the BChE active site from the non-prereactive complex to the prereactive complex in accordance with the present invention.

FIG. 4A depicts the (−)-cocaine rotation in the active site of A328W/Y332A; FIG. 4B depicts the (−)-cocaine rotation in the active site of A328W/Y332G BChE from the non-prereactive complex to the prereactive complex; and FIG. 4C depicts the (−)-cocaine rotation in the active site of wild-type BChE.

FIG. 5A is a plot of the key intermolecular distances (in Å) versus the time in the simulated TS1 structure for (−)-cocaine hydrolysis catalyzed by A328W/Y332A; and FIG. 5B for A199S/A328W/Y332G BChE.

FIG. 6 is a plot of key intermolecular distances (in Å) versus the time in the simulated TS1 structure for (−)-cocaine hydrolysis catalyzed by A199S/S287G/A328W/Y332G BChE.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention has two major improvements over the prior art. The first is the presently discovered BChE mutants, mutant 1, A199S/A328W/Y332G; mutant 2, A199S/F227A/A328W/Y332G; mutant 3, A199S/S287G/A328W/Y332G; mutant 4, A199S/F227A/S287G/A328W/Y332G; and mutant 5, A199S/F227A/S287G/A328W/E441D each have a significantly higher catalytic efficiency. The second improvement is concerning the mutant designing or discovering process.

The BChE mutants 1-5 have full length amino acid sequences, SEQ ID NOS: 2, 8, 14, 20, and 26, respectively, which are encoded by nucleic acid sequences having SEQ ID NOS: 1, 7, 13, 19, and 25, respectively. Table 1 summarizes the catalytic efficiency against (−)-cocaine for the five mutants.

In addition to the full length BChE mutants, the respective amino acid sequence can be truncated without substantially affecting the respective catalytic activity. With all mutants, residues 1-67 and 443-574 can be removed without substantially affecting the catalytic activity of the respective mutant BChE. Further, with regard to mutant 1-4, amino acids 1-116 and 439-574 can be omitted without substantially affecting its respective catalytic activity. With regard to mutant 5, amino acid residues 1-116 and 442-574 can be omitted without substantially affecting its catalytic activity. Table 1 also provides a summary of amino acid SEQ ID NOS and corresponding nucleic acid SEQ ID NOS for the aforementioned truncated mutant BChE sequences.

<table>
<thead>
<tr>
<th>Mutant Number</th>
<th>Amino Acid Substituting</th>
<th>Partially-Truncated Amino Acid Sequence Corresponding To Amino Acid Residues 68-442</th>
<th>SEQ ID NO. for Amino Acid Residues 68-442</th>
<th>SEQ ID NO. Corresponding To Amino Acid Residues 117-438/441*</th>
<th>SEQ ID NO. for Amino Acid Residues 117-438/441*</th>
<th>Catalytic Efficiency Against (−)-cocaine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A199S/A328W/Y332G</td>
<td>1 2 3</td>
<td>4 5 6</td>
<td>65-fold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A199S/F227A/A328W/Y332G</td>
<td>7 8 9</td>
<td>10 11 12</td>
<td>148-fold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A199S/S287G/A328W/Y332G</td>
<td>13 14 15</td>
<td>16 17 18</td>
<td>456-fold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>A199S/F227A/S287G/A328W/Y332G</td>
<td>19 20 21</td>
<td>22 22 24</td>
<td>1,003-fold</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The BChE variant polypeptide, e.g., SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, and 30 can be formulated in a pharmaceutical composition along with a suitable pharmaceutical carrier known to one skilled in the art.

The present BChE variant polypeptides can be used in treating a cocaine-induced condition by administering to an individual, an effective amount of one of the BChE variant polypeptides, i.e., SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, and 30, to lower blood cocaine concentration. The BChE variant polypeptide may be administered in the form of a pharmaceutical composition in which the BChE variant is included with a suitable pharmaceutical carrier. Treatment of a cocaine induced condition using one of the aforementioned BChE variant polypeptides can be done in accordance with Zhan et al., page 2463.

The preferred dose for administration of a butyrylcholinesterase or peptide composition in accordance with the present invention is that amount which will be effective in lowering (→)-cocaine concentration in a patient's bloodstream, and one would readily recognize that this amount will vary greatly depending on the nature of cocaine consumed, e.g., injected or inhaled, and the condition of a patient. An "effective amount" of butyrylcholinesterase mutant or pharmaceutical agent to be used in accordance with the invention is intended to mean a nontoxic but sufficient amount of the agent, such that the desired prophylactic or therapeutic effect is produced. Thus, the exact amount of the enzyme or a particular agent that is required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the condition being treated, the particular carrier or adjuvant being used and its mode of administration, and the like. Similarly, the dosing regimen should also be adjusted to suit the individual to whom the composition is administered and will once again vary with age, weight, metabolism, etc. of the individual. Accordingly, the "effective amount" of any particular butyrylcholinesterase composition will vary based on the particular circumstances, and an appropriate effective amount may be determined in each case of application by one of ordinary skill in the art using only routine experimentation.

A unique method was used to determine potential BChE mutants with projected increased catalytic activity for the hydrolysis of cocaine. The method provides a unique approach which first models the potential BChE mutant interaction with cocaine followed by generating the BChE mutant if the predicted model indicates that the BChE variant should have enhanced catalytic activity. The method includes generating an initial structure of the transition state structure for the rate-determining step for the cocaine hydrolysis catalyzed by a possible BChE mutant. A sufficiently long time molecular dynamics simulation is performed on the transition state structure in water to have a stable molecular dynamics trajectory. The molecular dynamics trajectory is analyzed and the hydrogen binding energies are estimated between the carboxyl oxygen of the (→)-cocaine benzoyl ester and the oxynion hole of the possible BChE mutant. If the overall hydrogen binding energy between the carboxyl oxygen of the (→)-cocaine benzoyl ester and the wild-type BChE, hybrid quantum mechanical/molecular mechanical (QM/MM) geometry optimization is performed to refine the molecular dynamics-simulated structure, the hydrogen binding energies are calculated and the energy barrier is evaluated. The QM/MM calculations make the computational predictions more reliable. Finally, the BChE mutant is generated.

With regard to the molecular dynamics (MD) simulations and quantum mechanical/molecular mechanical (QM/MM) calculations, the first chemical reaction step of (→)-cocaine hydrolysis catalyzed by butyrylcholinesterase (BChE) mutants and, when needed, other reaction steps are modeled and calculated using molecular dynamics simulations and QM/MM calculations. Following this modeling, mutant BChE's are created using site-directed mutagenesis followed by protein expression. The aforementioned five mutants were identified by computational analysis and generated by site-directed mutagenesis which have significantly enhanced (→)-cocaine hydrolysis catalytic efficiency compared with wild-type BChE.

In the present method computational analysis in the form of molecular modeling of a potential BChE mutant and MD simulations and QM/MM calculations provide virtual screening of possible BChE mutants which have predicted enhanced catalytic activity for (→)-cocaine. For example, the MD simulations and QM/MM calculations predict which mutation will lead to a more stable transition state for the rate determining step compared to the corresponding separated reagents, i.e., free cocaine and free possible mutant BChE, where the more stable transition state leads to a lower energy barrier and higher predicted catalytic efficiency. Only after the computational analysis predicts enhanced catalytic efficiency, is site-directed mutagenesis conducted on wild-type BChE nucleic acid sequence to generate a mutant nucleic acid sequence which is then used to express a mutant BChE protein. The mutant BChE protein is then used in catalytic assays to determine the catalytic efficiency against (→)-cocaine.

The use of predictive, computational modeling of the present method for identifying mutant BChE candidates and the resulting mutant BChE are novel and unexpected over prior conventional methods which will now be readily apparent to one of ordinary skill in the art.

Using the present method, most discovered new mutants include a specific mutation (Y332G) on residue #332. No prior BChE mutant having the Y332G mutation had ever been

<table>
<thead>
<tr>
<th>Mutant Number</th>
<th>Amino Acid Substituting</th>
<th>Partially Truncated Nucleic Acid Sequence Corresponding To Amino Acid Residues 68-442</th>
<th>SEQUENCE NO. Corresponding To Amino Acid Residues 68-442</th>
<th>SEQUENCE NO. for Amino Acid Residues 117-438</th>
<th>Catalytic Efficiency Against (→)-cocaine</th>
</tr>
</thead>
</table>
reported previously; only mutations Y332A and Y332M on residue #332 had been tested previously by other researchers. Prior to the present invention, there was no reason to expect that a mutant including Y332G mutation should be better than the corresponding mutant including Y332A mutation or Y332M. Thus, the present mutants with a Y332G mutation which have enhanced catalytic activity represent a surprising and unexpected result over prior BChE mutants.

A Y332G mutant (single mutation) was first tested and found that the Y332G mutant had a slightly low (or approximately equal) catalytic efficiency than the wild-type. So, only an appropriate combination of different mutations on different residues could make the enzyme more active. As seen below, the prior art did not reveal that any of the particular combinations tested was expected to have an improved catalytic efficiency. The present method is based on the present unique, extensive computational modeling and simulations of the detailed catalytic mechanism for both the wild-type BChE and the mutants.

The primary improvement of the present method over the prior art is that high-performance computational modeling and simulations of the detailed catalytic mechanism are performed, which includes modeling how cocaine binds with BChE and the subsequent structural transformation and chemical reaction process. The prior art only considered the cocaine binding with the enzyme (BChE) and was unable to examine the detailed catalytic reaction process after the BChE-cocaine binding. When molecular modeling was limited to studying the BChE-cocaine binding, one could only design a mutation to improve the BChE-cocaine binding without knowing whether the mutation will also speed up the subsequent chemical reaction process or not.

To overcome the obstacles of prior challenges to using computational techniques such as molecular docking and molecular dynamics simulation previously used by others which were based on an empirical force field which cannot be used to perform necessary reaction coordinate calculations for the catalytic reaction process, a variety of state-of-the-art computational techniques of homology modeling, molecular docking, molecular dynamics, quantum mechanics (QM), and hybrid quantum mechanics/molecular mechanics (QM/MM) were used for the rational design of the BChE mutants. The combined use of these computational techniques, including QM and QM/MM, led to the study of the detailed reaction coordinate of the BChE-catalyzed hydrolysis of cocaine which, for the first time, provided the detailed structures of all transition states and intermediates existing in the reaction process and the corresponding energetics. These extensive computational modeling and simulation studies provided for the rational design of possible BChE mutants that not only can improve the BChE-cocaine binding, but also can speed up the subsequent chemical reaction process. As a result, one can now quickly discover the BChE mutants with the significantly improved catalytic efficiency.

In addition, to the differences mentioned above, the present molecular modeling of the BChE-cocaine binding also differs from the prior modeling. The molecular modeling in the prior art considered only one binding mode for each BChE-cocaine system, without modeling the possible cocaine rotation in the BChE active site after the binding. The present method considers two different binding modes for each BChE-cocaine system and the structural transformation between them: non-prerequisite and prerequisite BChE-cocaine complexes. The present modeling provides more detailed information about the BChE-cocaine binding and the subsequent structural transformation.

The present method includes molecular dynamics simulations performed on the cocaine binding with both the wild-type BChE and the mutants whereas prior molecular dynamics simulations were only performed on the cocaine binding with the wild-type BChE. As is shown below in the following experiments, the computational prediction could be completely wrong without directly modeling and simulating cocaine binding with the proposed mutants.

The present invention will now be discussed with regard to the following non-limiting examples in the form of experiments which are provided to enhance understanding of the present invention but in no way limit its scope or applicability.

Experiment 1

Computational Study of Cocaine Binding with Wild-Type and Mutant BChE's for A328W/Y332G, A328W/Y332A, and A328W/Y332A/Y419S

A detailed computational study of cocaine binding with wild-type and mutant BChEs starting from the available X-ray crystal structure of wild-type BChE was performed. The simulated mutants include A328W/Y332G, A328W/Y332A, and A328W/Y332A/Y419S, as simple geometric consideration of the binding site suggests that these mutations could be important for changing the (+)-cocaine rotation from the non-prerequisite complex to the prerequisite complex. Wet experimental tests were conducted on the catalytic activity of these mutants for (+)-cocaine in order to verify the computational predictions. All of the obtained results clearly demonstrate that molecular modeling and MD simulations of cocaine binding with BChE mutants provide a reliable computational approach to the rational design of high-activity mutants of BChE for the (+)-cocaine hydrolysis.

3D model of BChE. The initial coordinates of human BChE used in the computational studies came from the X-ray crystal structure deposited in the Protein Data Bank (pdb code: 1 POP). The missing residues (D2, D3, E255, D378, D379, N455, L530, E531, and M532) in the X-ray crystal structure were built using the automated homology modeling tool Modeller disclosed by Sali, A.; Blundell, T. L. J. Mol. Biol. 1990, 212 403, and Sali, A.; Blundell, T. L. J. Mol. Biol. 1993, 234, 779, herein incorporated by reference, and InsightII software (Accelrys, Inc.) with the default parameters.

Molecular docking. Molecular docking was performed for each non-prerequisite protein-ligand binding complex. The binding site was defined as a sphere with an approximately 15 Å radius around the active site residue S198. The amino acid residues included in the binding site model are not contiguous in the protein. Cocaine, considered as a ligand, was initially positioned at 17 Å in front of S198 of the binding site. Each BChE-cocaine binding complex was energy-minimized by using the steepest descent algorithm first until the maximum energy derivative is smaller than 4 kcal/mol/Å and then the conjugated gradient algorithm until the maximum energy derivative is smaller than 0.001 kcal/mol/Å. The energy minimization was followed by a 300 ps molecular dynamics (MD) simulation at T=298 K with a time step of 1 fs. During the energy minimization and MD simulation, only cocaine and the residues of BChE included in the binding site were allowed to move, while the remaining part of the protein was fixed. The energy-minimization and MD simulation for these processes were performed by using the Amber force field implemented in the Discover_3/InsightII calculation engine, disclosed by Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, Jr., K. M.; Ferguson, D. M.; Spellmeyer, D. C.;
Fox, T.; Caldwell, J. W.; Kollman, P. A. J. Am. Chem. Soc. 1995, 117, 5179. The non-bonded cut-off method and the dielectric constant were set up to group based (12 Å cut-off distance) and distance dependent, respectively (ε=4r) in accordance with Harvey, S. C. Proteins 1989, 5, 78-92, herein incorporated by reference.

Molecular dynamic simulation in water. The initial coordinates used in the MD simulation of the non-prereactive complexes were determined by using the molecular docking procedure described above, whereas the initial coordinates used in the MD simulation of the prereactive complexes were obtained from superimposing backbone of the X-ray crystal structure to that of the previously disclosed simulated prereactive complex of Zhan et al between cocaine and a homology model of wild-type BChE. Each BChE-cocaine binding complex was neutralized by adding two chloride counterions and was solvated in a rectangular box of TIP3P water molecules with a minimum solute-wall distance of 10 Å. The general procedure for carrying out the MD simulations in water is similar to that used in our previously reported other computational studies such as those in Zhan et al (a) Zhan, C.-G.; Norberto de Souza, O.; Rittenhouse, R.; Ornstein, R. L. J. Am. Chem. Soc. 1999, 121, 7279, (b) Koca, J.; Zhan, C.-G.; Rittenhouse, R.; Ornstein, R. L. J. Am. Chem. Soc. 2001, 123, 817, (c) Koca, J.; Zhan, C.-G.; Rittenhouse, R. C.; Ornstein, R. L. J. Comput. Chem. 2003, 24, 368, herein all incorporated by reference. These simulations were performed by using the Sander module of Amber7 program as taught by Case, D. A.; Pearlman, D. A.; Caldwell, J. W.; Cheatham III, T. E.; Wang, J.; Ross, W. S.; Simmerling, C. L.; Darden, T. A.; Merz, K. M.; Stanton, R. V.; Cheng, A. L.; Vincent, J. J.; Crowley, M.; Tsui, V.; Gohlke, H.; Radmer, R. J.; Duang, Y.; Pitera, J.; Massova, L.; Seibel, G. L.; Singh, U. C.; Weiner, P. K.; Kollman, P. A. (2002), AMBER 7, University of California, San Francisco, herein incorporated by reference. The solvated system was optimized prior to the MD simulation. First, the protein-ligand was frozen and the solvent molecules with counterions were allowed to move during a 5000-step minimization with the conjugate gradient algorithm and a 5 ps MD run at T=300 K. After full relaxation and the entire solvated system was energy-minimized, the system was slowly heated from T=10 K to T=300 K in 30 ps before the production MD simulation for 500 ps. The full minimization and equilibration procedure was repeated for each mutant. The MD simulations were performed with a periodic boundary condition in the NPT ensemble at T=300 K with Berendsen temperature coupling and constant pressure (P=1 atm) with isotropic molecule-based scaling disclosed in Berendsen, H. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. J. Comp. Phys. 1984, 81, 3684, herein incorporated by reference. The SHAKE algorithm of Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. C. J. Comp. Phys. 1977, 23, 327 (herein incorporated by reference) was applied to fix all covalent bonds containing a hydrogen atom, a time step of 2 fs was used, and the non-bond pair list was updated every 10 steps. The pressure was adjusted by isotropic position scaling. The particle mesh Ewald (PME) method of Ermann, U.; Perera, L.; Berkwitz, M.,; Darden, T. A.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 98, 10089, herein incorporated by reference, was used to treat long-range electrostatic interactions. A residue-based cutoff of 10 Å was applied to the noncovalent interactions.

During the 500 ps production MD simulation, the coordinates of the simulated complex were saved every 1 ps.

Molecular docking and MD simulation procedures described above were performed to study cocaine binding with wild-type BChE and three mutants, i.e., A328W/Y332A, A328W/Y332A/Y419S, and A328W/Y332G. For each protein system (wild-type or mutant BChE), the protein binding with cocaine was considered in both the non-prereactive and prereactive enzyme-substrate complexes.

Most of the MD simulations in water were performed on a supercomputer, Superdome (shared-memory, with 4 nodes and 256 processors), at the Center for Computational Sciences, University of Kentucky. The other computations were carried out on SGI Fuel workstations and a 34-processors IBM x335 Linux cluster.

Experimental procedure. Site-directed mutagenesis of human BChE cDNA was performed by the QuikChange method of Breamon, J.; Papworth, C.; Greener, A. Methods Mol. Biol. 1996, 57, 5731, herein incorporated by reference. Mutations were generated from wild-type human BChE in pIR/CMV expression plasmid in accordance with Xie, W.; Altamirano, C. V.; Bartels, C. F.; Speirs, R. J.; Cashman, J. R.; Lockridge, O. Mol. Pharmacol. 1999, 55, 83, all herein incorporated by reference, kindly provided by Dr. Lockridge at University of Nebraska Medical Center. Using plasmid DNA as template and primers with specific base-pair alterations, mutations were made by polymerase chain reaction with Pfu DNA polymerase, for replication fidelity. The PCR product was treated with Dpn I endonuclease to digest the parental DNA template. Modified plasmid DNA was transformed into Escherichia coli, amplified, and purified. The DNA sequences of the mutants were confirmed by DNA sequencing. BChE mutants were expressed in human embryonic kidney cell line 293T/17. Cells were grown to 80-90% confluence in 6-well dishes and then transfected by Lipofectamine 2000 complexes of 4 μg plasmid DNA per each well. Cells were incubated at 37° C in a CO2 incubator for 24 hours and cells were moved to 60-mm culture vessel and cultured for four more days. The culture medium [10% fetal bovine serum in Dulbecco’s modified Eagle’s medium (DMEM)] was harvested for a BChE activity assay. To measure cocaine and benzoic acid, the product of cocaine hydrolysis by BChE, we used sensitive radiometric assays based on toluene extraction of [3H]cocaïne labeled on its benzene ring were used in accordance with Masson, P.; Xie, W.; Froment, M-T.; Levitsky, V.; Fortier, P-L.; Albaret, C.; Lockridge, O. Biochim. Biophys. Acta 1999, 1433, 281, herein incorporated by reference. In brief, to initiate reactions, 100 nCi of [3H]cocaïne was mixed with 100 μl of culture medium. Reactions proceeded at 37° C for varying times. Reactions were stopped by adding 500 μl of 0.02 M HCl, which neutralized the liberated benzoic acid while ensuring a positive charge on the residual cocaine. [3H]benzoic acid was extracted by 1 ml of toluene and measured by scintillation counting. Finally, the measured time-dependent radiometric data were fitted to the kinetic equation so that the catalytic efficiency (kcat/Km) was determined.

Depicted in FIG. 1 are plots of some important distances in the MD-simulated (-)cocaine binding with A328W/Y332G BChE versus the simulation time, along with root-mean-square deviation (RMSD) of the coordinates of backbone atoms in the simulated structure from those in the X-ray crystal structure. MD trajectories for other complexes were similar to these two in FIG. 1, although the simulated average distances are different. Summarized in Table 2 are the average values of some important geometric parameters in the simulated complexes.
The MD simulations of the prereactive complexes reveal that wild-type BChE binding with (-)-cocaine is essentially the same as the binding with (+)-cocaine in the binding site, except for the different positions of methyl ester group of the substrates. The simulated average distances between the carbonyl carbon of the benzoyl ester and S198 O' are 3.27 and 3.69 Å for (-)-cocaine and (+)-cocaine, respectively. Moreover, the (+)-cocaine is stabilized more effectively by the formation of strong hydrogen bonds with the backbone NH of residues G116, G117, and A199 as summarized above in Table 2. The cocaine benzoyl ester moiety is positioned quasi-perpendicular to S198 C—O' with a dihedral angle T of −67° and −61° for (-)- and (+)-cocaine, respectively.

A comparison was made between the currently simulated structures of the BChE-cocaine binding with those simulated previously by using a homology model of BChE and it was noted that two major differences between the two sets of structures. By using the X-ray crystal structure in accordance with Nicolet et al., the acyl loop is positioned on the top of the cocaine benzoyl ester moiety of the cocaine, whereas the acyl loop is far from the cocaine benzoyl ester moiety in the structure simulated starting from the homology model of Zhan et al. The RMSD of the coordinates of backbone atoms in the previously simulated prereactive BChE(-)-cocaine complex from those in the X-ray crystal structure of BChE is ~2.0 Å for the entire protein and ~3.0 Å for the acyl loop. The RMSD value became ~2.4 Å for the entire protein and ~3.3 Å for the acyl loop, when the X-ray crystal structure was replaced by the MD-simulated prereactive BChE(-)-cocaine complex starting from the X-ray crystal structure. Despite these structural differences, the benzoyl ester group of the ligand is still close to the key residues (S197, G116, and G117) in the BChE binding site. Some significant differences are associated with the distances between the S198 O' atom and the carbonyl carbon of the cocaine benzoyl ester in non-prereactive complexes. The average values of this distance in the non-prereactive complexes were ~9.5 and ~8.5 Å for (-)- and (+)-cocaine, respectively, when a homology model was used. Using the X-ray crystal structure to conduct the analysis, corresponding average values became ~5.6 and ~5.2 Å, respectively. Therefore, both (-)- and (+)-cocaine became closer to the binding site when the homology model was replaced by the X-ray crystal structure. However, no significant changes of the binding in the prereactive complexes were
observed when the used homology model was replaced by the X-ray crystal structure. The average values of the simulated distance between the S198 O' atom and the carbonyl carbon of the cocaine benzoyl ester in the pre-receptive complexes are always close to 3.5 Å for both (—)- and (±)-cocaine no matter whether the X-ray crystal structure or homology model of BChE was used as the starting structure. The similar computational results obtained from the use of the X-ray crystal structure and homology model of BChE provides evidence that the fundamental structural and mechanistic insights obtained from the previous computational studies of Zhan et al are reliable, despite the previous simulations were performed by using the homology model when the X-ray crystal structure was not available.

Further, the simulated structures of the non-pre-receptive BChE-cocaine complexes were superimposed with the corresponding pre-receptive complexes. As shown in Fig. 3, the (—)-cocaine rotation in the BChE active site from the non-pre-receptive complex to the pre-receptive complex is hindered by some residues as the positions of Y332, A328, and F329 residues in the non-pre-receptive complex are significantly different from the corresponding positions in the pre-receptive complex, whereas none of these residues hinders the (+)-cocaine rotation in the BChE active site from the non-pre-receptive to the pre-receptive complex because these residues stay in nearly the same positions in the two BChE-(±)-cocaine complexes. (—)-cocaine binding with BChE mutants. Now that the (—)-cocaine rotation from the non-pre-receptive complex to the pre-receptive complex has been known to be the rate-determining step of the BChE-catalyzed hydrolysis of (—)-cocaine as shown by Zhan et al, useful BChE mutants should be designed to specifically accelerate the change from the non-pre-receptive BChE-(—)-cocaine complex to the pre-receptive complex. The question is whether MD simulation can be performed to help design BChE mutants that have higher catalytic activity for (—)-cocaine hydrolysis.

In the simulated non-pre-reactive complex, the average distance between the carbonyl carbon of cocaine benzoyl ester and S198 O' is 7.6 Å for A328W/Y332A BChE and 7.1 Å for A328W/Y332G BChE, as seen in Table 2 above. In the simulated pre-reactive complex, the average values of this important intermolecular distance become 3.87 and 3.96 Å for A328W/Y332A and A328W/Y332G BChE's, respectively. Compared to the simulated wild-type BChE-(—)-cocaine pre-reactive complex, the average distances between the carbonyl carbon of the cocaine benzoyl ester and S198 O' in the pre-reactive complex of (—)-cocaine with A328W/Y332A and A328W/Y332G BChE's are all slightly longer, whereas the average distances between the carbonyl oxygen of the cocaine benzoyl ester and the NH of G116, G117, and A199 residues are all shorter. This provides evidence that (—)-cocaine more strongly bind with A328W/Y332A and A328W/Y332G BChE's in the pre-reactive complexes. More importantly, the (—)-cocaine rotation in the active site of A328W/Y332A and A328W/Y332G BChE's from the non-pre-reactive complex to the pre-reactive complex did not cause considerable changes of the positions of A323 (or G332), W328, and F329 residues as seen in Fig. 4, compared to the (—)-cocaine rotation in the active site of wild-type BChE. These results provide evidence that A328W/Y332A and A328W/Y332G BChE's should be associated with lower energy barriers than the wild-type for the (—)-cocaine rotation from the non-pre-reactive complex to the pre-reactive complex. Further, (—)-cocaine binding with A328W/Y332G BChE is very similar to the binding with A328W/Y332A BChE, but the position change of Y329 residue caused by the (—)-cocaine rotation was significant only in A328W/Y332A BChE, thus suggesting that the energy barrier for the (—)-cocaine rotation in A328W/Y332G BChE should be slightly lower than that in A328W/Y332A BChE.

Concerning (—)-cocaine binding with A328W/Y332A/ Y419S BChE, Y419 stays deep inside the protein and does not directly contact with the cocaine molecule. The Y419S mutation was tested because it was initially expected that this mutation would further increase the free space of the active site pocket so that the (—)-cocaine rotation could be easier. However, as seen in Table 2 above, the average distance between the carbonyl carbon of cocaine benzoyl ester and S198 O' atom in the simulated pre-reactive complex was as long as 5.84 Å. The average distances between the carbonyl oxygen of the cocaine benzoyl ester and the NH hydrolysis atoms of G116, G117, and A199 residues are between 4.56 and 6.97 Å; no any hydrogen bond between them. In addition to the intermolecular distances, another interesting geometric parameter is the dihedral angle, T, formed by S198 O' and the plane of the carbonyl-oxygen group of the cocaine benzoyl ester. As seen in Table 2, the T value in the pre-reactive complexes of cocaine with wild-type BChE and all of the BChE mutants other than A328W/Y332A/Y419S BChE all slightly deviate from the ideal value of 90° for the nucleophilic attack of S198 O' at the carbonyl carbon of cocaine. The T value in the pre-reactive complex of (—)-cocaine with A328W/Y332A/ Y419S BChE is 164°, which is considerably different from the ideal value of 90°.

Catalytic activity. The aforementioned discussion provides evidence that the energy barriers for the (—)-cocaine rotation in A328W/Y332A and A328W/Y332G BChE's from the non-pre-reactive complex to the pre-reactive complex, the rate-determining step of the BChE-catalyzed hydrolysis of (—)- cocaine, should be lower than that in the wild-type BChE. Thus, the MD simulations predict that both A328W/Y332A and A328W/Y332G BChE's should have a higher catalytic activity than the wild-type BChE for (—)-cocaine hydrolysis. Further, the MD simulations also suggest that the energy barrier for the (—)-cocaine rotation in A328W/Y332G BChE should be slightly lower than that in A328W/Y332A BChE and, therefore, the catalytic activity of A328W/Y332G BChE for the (—)-cocaine hydrolysis should be slightly higher than the activity of A328W/Y332A BChE. In addition, the MD simulations predict that A328W/Y332A/Y419S BChE should have no catalytic activity, or have a considerably lower catalytic activity than the wild-type, for (—)-cocaine hydrolysis because (—)-cocaine binds with the mutant BChE in a way that is not suitable for the catalysis.

The catalytic efficiency (kcat/Km) of A328W/Y332A BChE for (—)-cocaine hydrolysis was reported to be 8.56×10^6 M⁻¹ min⁻¹, which is 9.39 times of the kcat/Km value (9.11×10⁸ M⁻¹ min⁻¹) of the wild-type BChE. To examine these theoretical predictions of the relative activity for A328W/Y332G and A328W/Y332A/Y419S BChE’s, a A328W/Y332A, A328W/ Y332G, and A328W/Y332A/Y419S BChE was produced through site-directed mutagenesis. To minimize the possible systematic experimental errors of the kinetic data, kinetic studies were performed with all of these mutants under the same condition and compared the catalytic efficiency of the A328W/Y332G and A328W/Y332A/Y419S to that of the A328W/Y332A for (—)-cocaine hydrolysis at benzoyl ester group. Based on the kinetic analysis of the measured time-dependent radiometric data, the ratio of the kcat/Km value of A328W/Y332G BChE to the kcat/Km value of A328W/ Y332A BChE for the (—)-cocaine hydrolysis was determined to be ~2.08, or A328W/Y332G BChE has a kcat/Km value of ~1.76×10⁷ M⁻¹ min⁻¹ for the (—)-cocaine hydrolysis. The radio-
metric data show no significant catalytic activity for A328W/Y332A/Y419S BChE. These experimental data are consistent with the theoretical predictions based on the MD simulations.

Conclusion. Molecular modeling, molecular docking, and molecular dynamics (MD) simulations were performed to study cocaine binding with human butyrylcholinesterase (BChE) and its mutants, based on a recently reported X-ray crystal structure of human BChE. The MD simulations of cocaine binding with wild-type BChE led to average BChE—cocaine binding structures similar to those obtained recently from the MD simulations based on a homology model of BChE, despite the significant difference found at the acyl binding pocket. This confirms the fundamental structural and mechanistic insights obtained from the prior computational studies of Zhan et al based on a homology model of BChE, e.g., the rate-determining step for BChE-catalyzed hydrolysis of biologically active (−)-cocaine is the (−)-cocaine rotation in the BChE active site from the non-preparative BChE—(−)-cocaine complex to the preparative complex.

The MD simulations further reveal that the (−)-cocaine rotation in the active site of wild-type BChE from the non-preparative complex to the preparative complex is hindered by some residues such that the positions of Y332, A328, and F329 residues in the non-preparative complex are significantly different from those in the preparative complex. Compared to (−)-cocaine binding with wild-type BChE, (−)-cocaine more strongly bind with A328W/Y332A and A328W/Y332G BChE’s in the preparative complexes. More importantly, the (−)-cocaine rotation in the active site of A328W/Y332A and A328W/Y332G BChE’s from the non-preparative complex to the preparative complex did not cause considerable changes of the positions of A332 or G332, W328, and F329 residues. These results provide evidence that A328W/Y332A and A328W/Y332G BChE’s are associated with lower energy barriers than wild-type BChE for the (−)-cocaine rotation from the non-preparative complex to the preparative complex. Further, (−)-cocaine binding with A328W/Y332G BChE is very similar to the binding with A328W/Y332A BChE, but the position change of F329 residue caused by the (−)-cocaine rotation was significant only in A328W/Y332A BChE, thus suggesting that the energy barrier for (−)-cocaine rotation in A328W/Y332G BChE should be slightly lower than that in A328W/Y332A BChE. It has also been demonstrated that (−)-cocaine binds with A328W/Y332A/Y419S BChE in a way that is not suitable for the catalysis.

Based on the computational results, both A328W/Y332A and A328W/Y332G BChE’s have catalytic activity for (−)-cocaine hydrolysis higher than that of wild-type BChE and the activity of A328W/Y332G BChE should be slightly higher than that of A328W/Y332A BChE, whereas A328W/Y332A/Y419S BChE is expected to lose the catalytic activity. The computational predictions are completely consistent with the experimental kinetic data, providing evidence that the used computational protocol, including molecular modeling, molecular docking, and MD simulations, is reliable in prediction of the catalytic activity of BChE mutants for (−)-cocaine hydrolysis.

Experiment 2

MD Simulations and Quantum Mechanical/Molecular Mechanical (QM/MM)
Calculations Relating to a 199S/A328W/Y332G Mutant (Mutant 1) (SEQ ID NO: 1)

Generally speaking, for rational design of a mutant enzyme with a higher catalytic activity for a given substrate, one needs to design a mutation that can accelerate the rate-determining step of the entire catalytic reaction process while the other steps are not slowed down by the mutation. Reported computational modeling and experimental data indicated that the formation of the preparative BChE—(−)-cocaine complex (ES) is the rate-determining step of (−)-cocaine hydrolysis catalyzed by wild-type BChE as disclosed by Sun et al, Zhan et al and Hamza, A.; Cho, H.; Tai, H.-H.; Zhan, C.-G. J. Phys. Chem. B 2005, 109, 4776, herein incorporated by reference, whereas the rate-determining step of the corresponding (−)-cocaine hydrolysis is the chemical reaction process consisting of four individual reaction steps disclosed by Zhan et al and shown in Scheme 3 and Scheme 4 below.

![Diagram of ES](image-url)
-continued
Scheme 3. Schematic representation of BChE-catalyzed hydrolysis of (-)-cocaine. Only QM-treated high-layer part of the reaction system in the QM/MM calculations are drawn. Notation [H] refers to a non-hydrogen atom in the MM-treated low-layer part of the protein and the cut covalent bond with this atom is saturated by a hydrogen atom. The dash lines in the transition state structures represent the transition bonds. This mechanistic understanding is consistent with the experimental observation of Sun et al, that the catalytic rate constant of wild-type BChE against (+)-cocaine is pH-dependent, whereas that of the same enzyme against (-)-cocaine is independent of the pH. The pH-dependence of the rate constant for (+)-cocaine hydrolysis is clearly associated with the protonation of H438 residue in the catalytic triad (S198, H438, and E325). For the first and third steps of the reaction process, when H438 is protonated, the catalytic triad cannot function and, therefore, the enzyme becomes inactive. The lower the pH of the reaction solution is, the higher the concentration of the protonated H438 is, and the lower the concentration of the active enzymes is. Hence, the rate constant was found to decrease with decreasing the pH of the reaction solution for the enzymatic hydrolysis of (+)-cocaine. Based on the above mechanistic understanding, the efforts for rational design of the BChE mutants reported in literature have been focused on how to improve the ES formation process. Indeed, several BChE mutants, including A328W, A328W/Y332A, A328W/Y332G, and P22A/S287G/A328W/Y332M, have been found to have a significantly higher catalytic efficiency (kcat/Km) against (-)-cocaine; these mutants of BChE have an approximate 9 to 34-fold improved catalytic efficiency against (-)-cocaine. Experimental observation also indicated that the catalytic rate constant of A328W/Y332A BChE is pH-dependent for both (+)- and (-)-cocaine. The pH-dependence reveals that for both (+)- and (-)-cocaine, the rate-determining step of the hydrolysis catalyzed by A328W/Y332A BChE should be either the first or the third step of the reaction process. Further, if the third step were rate determining, then the catalytic efficiency of the A328W/Y332A mutant against (-)-cocaine should be as high as that of the same mutant against (+)-cocaine because the (-)- and (+)-cocaine hydrolyses share the same third and fourth steps (see Scheme 3). However, it has also been observed that the A328W/Y332A mutant only has a -9-fold improved catalytic efficiency against (+)-cocaine, whereas the A328W/Y332A mutant does not change the high catalytic activity against (-)-cocaine. This analysis of the experimental and computational data available in literature clearly shows that the rate-determining step of (-)-cocaine hydrolysis catalyzed by the A328W/Y332A mutant should be the first step of the chemical reaction process. Further, recently reported computational modeling also suggests that the formation of the prereactive BChE(-)-cocaine complex (ES) is hindered mainly by the bulky side chain of Y332 residue in wild-type BChE, but the hindering can be removed by the Y332A or Y332G mutation. Therefore, starting from the A328W/Y332A or A328W/Y332G mutant, the truly rational design of further mutation(s) to improve the catalytic efficiency of BChE against (-)-cocaine should aim to decrease the energy barrier for the first reaction step without significantly affecting the ES formation and other chemical reaction steps. The following rational design of a high-activity mutant of BChE against (-)-cocaine is based on detailed computational modeling of the transition state for the rate-determining step (i.e., the first step of the chemical reaction process). Molecular dynamics (MD) simulations and hybrid quantum mechanical/molecular mechanical (QM/MM) calculations were performed to model the protein environmental effects on the stabilization of the transition-state structure for BChE-catalyzed hydrolysis of (-)-cocaine. The simulated and calculated results indicate that the transition-state structure can be stabilized better by the protein environment in A199S/ A328W/Y332G mutant of BChE than that in the wild-type. Computational modeling led to a prediction of the higher catalytic efficiency for the A199S/A328W/Y332G mutant against (-)-cocaine. The prediction has been confirmed by wet experimental tests showing that the A199S/A328W/ Y332G mutant has a significantly improved catalytic efficiency against (-)-cocaine. All of the obtained results clearly demonstrate that directly modeling the transition-state structure provides a reliable computational approach to the rational design of a high-activity mutant of BChE against (-)-cocaine. MD simulations. It should be stressed that a critical issue exists with regard to any MD simulation on a transition state. In principle, MD simulation using a classical force field (molecular mechanics) can only simulate a stable structure corresponding to a local minimum on the potential energy surface, whereas a transition state during a reaction process is always associated with a first-order saddle point on the potential energy surface. Hence, MD simulation using a classical force field cannot directly simulate a transition state without any restraint on the geometry of the transition state. Nevertheless, if one can technically remove the freedom of imaginary vibration in the transition state structure, then the number of vibrational freedoms (normal vibration modes) for a nonlinear molecule will decrease from 3N-6. The transition state structure is associated with a local minimum on the potential energy surface within a subspace of the reduced vibrational freedoms, although it is associated with a first-order saddle point on the potential energy surface with all of the 3N-6 vibrational freedoms. Theoretically, the vibrational freedom associated with the imaginary vibrational frequency in the transition state structure can be removed by appropriately freezing the reaction coordinate. The reaction coordinate corresponding to the imaginary vibration of the transition state is generally characterized by a combination of some key geometric parameters. These key geometric parameters are bond lengths of the forming and breaking covalent bonds for BChE-catalyzed hydrolysis of cocaine, as seen in Scheme 3. Thus, one just needs to maintain the bond lengths of the forming and breaking covalent bonds during the MD simulation on a transition state. Technically, one can maintain the bond lengths of the forming and breaking covalent bonds by simply fixing all atoms within the reaction center, by using some constraints on the forming and breaking covalent bonds, or by redefining the forming and breaking covalent bonds. It should be pointed out that the only purpose of performing such type of MD simulation on a transition state is to examine the dynamic change of the protein environment surrounding the reaction center and the interaction between the reaction center and the protein environment. For this study, of interest is the simulated structures, as the total energies calculated in this way are meaningless. The initial BChE structures used in the MD simulations were prepared based on the previous MD simulation in accordance with Hamzi et al on the prereactive ES complex for wild-type BChE with (-)-cocaine in water by using Amber7 program package. The previous MD simulations on the prereactive BChE(-)-cocaine complex (ES) started from the X-ray crystal structure of Nicolet et al deposited in the Protein Data Bank (pdb code: 1 POP). The present MD simulation on the transition state for the first step (TS1) was performed in such a way that bond lengths of the partially formed and
partially broken covalent bonds in the transition state were all constrained to be the same as those obtained from our previous ab initio reaction coordinate calculations on the model reaction system of wild-type BChE in accordance with Zhan et al. The partially formed and partially broken covalent bonds in the transition state will be called “transition” bonds below, for convenience. A sufficiently long MD simulation with the transition bonds constrained should lead to a reasonable protein environment stabilizing the reaction center in the transition-state structure simulated. Further, the simulated TS1 structure for wild-type BChE with (−)-cocaine was used to build the initial structures of TS1 for the examined BChE mutants with (−)-cocaine; only the side chains of mutated residues needed to be changed.

The partial atomic charges for the non-standard residue atoms, including cocaine atoms, in the TS1 structures were calculated by using the RESP protocol implemented in the Antechamber module of the Amber7 package following electrostatic potential (ESP) calculations at ab initio HF/6-31G* level using Gaussian03 program known in the art. The geometries used in the ESP calculations came from those obtained from the previous ab initio reaction coordinate calculations of Zhan et al, but the functional groups representing the oxanyion hole were removed. Thus, residues G116, G117, and A199 were the standard residues as supplied by Amber7 in the MD simulations. The general procedure for carrying out the MD simulations in water is essentially the same as that used in our previously reported other computational studies including Zhan et al, Hanza et al and (a) Zhan, C.-G.; Norberto de Souza, O.; Rittenhouse, R.; Ornstein, R. L. J. Am. Chem. Soc. 1999, 121, 7279; (b) Koča, J.; Zhan, C.-G.; Rittenhouse, R.; Ornstein, R. L. J. Am. Chem. Soc. 2001, 123, 817, (c) Koča, J.; Zhan, C.-G.; Rittenhouse, R. C.; Ornstein, R. L. J. Comput. Chem. 2003, 24, 368, (d) Hanza, A.; Cho, H.; Tai, H.-H.; Zhan, C.-G. Biophys. Rev. Lett. 2005, 13, 4544, herein all incorporated by reference. Each aforementioned starting TS1 structure was neutralized by adding chloride counterions and was solvated in a rectangular box of TIP3P water molecules with a minimum solute-wall distance of 10 Å as described by Jorgensen, W. L.; Chandrasekhar, J.; Madura, J.; Klein, M. L. J. Chem. Phys. 1983, 79, 926, herein incorporated by reference. The total numbers of atoms in the solvated protein structures for the MD simulations are nearly 70,000, although the total number of atoms of BChE and (−)-cocaine is only 8417 (for the wild-type BChE). All of the MD simulations were performed by using the Sander module of Amber7 package. The solvated systems were carefully equilibrated and fully energy minimized. These systems were gradually heated from T=10 K to T=298.15 K in 30 ps before running the MD simulation at T=298.15 K for 1 ns or longer, making sure that a stable MD trajectory was obtained for each of the simulated TS1 structures. The time step used for the MD simulations was 2 fs. Periodic boundary conditions in the NPT ensemble at T=298.15 K with Berendsen temperature coupling and P=1 atm with isotropic molecule-based scaling were applied. The SHAKE algorithm was used to fix all covalent bonds containing hydrogen atoms. The non-bonded pair list was updated every 10 steps. The particle mesh Ewald (PME) method in accordance with Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T. A.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 98, 10089, herein incorporated by reference, was used to treat long-range electrostatic interactions. A residue-based cutoff of 10 Å was utilized to the non-covalent interactions. The coordinates of the simulated systems were collected every 1 ps during the production MD stages.

QM/MM calculations. For each TS1 structure examined, after the MD simulation was completed and a stable MD trajectory was obtained, all of the collected snapshots of the simulated structure, excluding those before the trajectory was stabilized, were averaged and further energy-minimized. The energy-minimized average structure (with the transition bonds constrained) was used as an initial geometry to carry out a further geometry optimization by using the ONIOM approach of Dapprich, S.; Komoromi, J.; Byun, K. S.; Morokuma, K.; Frisch, M. J. J. Mol. Struct. (Theochem) 1999, 461, 1-21, herein incorporated by reference, implemented in the Gaussian03 program of Frisch, M. J. et al Gaussian 03, Revision A.1, Gaussian, Inc., Pittsburg, Pa., 2003, herein incorporated by reference. Two layers were defined in the present ONIOM calculation: the high layer, as depicted in Scheme 3 above, was calculated quantum mechanically at the ab initio HF/3-21G level, whereas the low layer was calculated molecular mechanically by using the Amber force field as used in our MD simulation and energy minimization with the Amber7 program. The ONIOM calculations at the HF/3-21 G: Amber level in this study are a type of QM/MM calculations of Vreven, T.; Morokuma, K. J. Chem. Phys. 2000, 113, 2969-2975 and Frisch, M.; Vreven, T.; Schlegel, H. B.; Morokuma, K. J. Comput. Chem. 2003, 24, 760-769, herein both incorporated by reference. Previous reaction coordinate calculations with an active site model of wild-type BChE demonstrate that the HF/3-21G level is adequate for the geometry optimization of this enzymatic reaction system shown by Zhan et al, although the final energy calculations for calculating the energy barriers must be carried out at a higher level. As depicted in Scheme 3, for all of these QM/MM calculations, the same part of the enzyme was included in the QM-treated high layer. So, the QM-treated high layer included (−)-cocaine, key functional groups from the catalytic triad (S198, H134, and E325), and the three residues, i.e., G116, G117, and A199 (or S199 for a particular mutant, see Scheme 4), of the possible oxanyion hole, whereas the entire enzyme structure of BChE was included in the MM-treated low layer. A language computer program was developed to automatically generate the input files for the ONIOM calculations following the MD simulations and subsequent energy minimizations in order to make sure that the atom types used for all low-layer atoms are the same as what were used in the Amber7. During the TS1 geometry optimization using the two-layer ONIOM, the length of a key transition C−O bond was fixed which dominates the reaction coordinate; all of the other transition bond lengths were relaxed. The C and O atoms in the key transition C−O bond are the carbonyl carbon of (−)-cocaine benzoyl ester and the O' atom of S198, respectively, according to the previous reaction coordinate calculations with an active site model of wild-type BChE of Zhan et al.

Most of the MD simulations and QM/MM calculations were performed in parallel on an HP supercomputer (Superdome, with 256 shared-memory processors) at the Center for Computational Sciences, University of Kentucky.
the computations were carried out on a 34-processors IBM x335 Linux cluster and SGI Fuel workstations.

Scheme 4. Schematic representation of the first reaction step for (−)-cocaine hydrolysis catalyzed by a BChE mutant with an A199S mutation.

Experimental materials. Cloned pBlu DNA polymerase and Dpn I endonuclease were obtained from Stratagene (La Jolla, Calif.). 3H-(−)-cocaine (50 Ci/mmol) was purchased from PerkinElmer Life Sciences (Boston, Mass.). The expression plasmid pRC/CMV was a gift from Dr. O. Lockridge, University of Nebraska Medical Center (Omaha, Nebr.). All oligonucleotides were synthesized by Integrated DNA Technologies, Inc. The QiAprep Spin Plasmid Miniprep Kit and QIagen plasmid purification kit and QIAGen PCR purification kit were obtained from QIagen (Santa Clarita, Calif.).

Human embryonic kidney 293T/17 cells were from ATCC (Manassas, Va.). Dulbecco’s modified Eagle’s medium (DMEM) was purchased from Fisher Scientific (Fairlawn, N.J.). Oligonucleotide primers were synthesized by the Integrated DNA Technologies and Analysis Facility of the University of Kentucky. 3′, 3′, 5′, 5′-Tetramethylbenzidine (TMB) was obtained from Sigma (St. Louis, Mo.). Anti-butyrylcholinesterase (mouse monoclonal antibody, Product # HA1002-01) was purchased from AntibodyShop (Gentofte, Denmark) and Goat anti-mouse IgG HRP conjugate from Zymed (San Francisco, Calif.).

Site-directed mutagenesis, protein expression, and BChE activity assay. Site-directed mutagenesis of human BChE cDNA was performed by using the QuickChange method of Stratagene et al. Mutations were generated from wild-type human BChE in a pRC/CMV expression plasmid in accordance with (a) Masson, P.; Legrand, P.; Bartels, C. F.; Froment, M.-T.; Schoepfl, L. M.; Lockridge, O. Biochemistry 1997, 36, 2266, (b) Masson, P.; Xie, W.; Froment, M.-T.; Levitsky, V.; Fortier, P.-L.; Albaret, C.; Lockridge, O. Biochem. Biophys. Acta 1999, 1433, 281, (c) Xie, W.; Altmannato, C. V.; Bartels, C. F.; Speirs, R. J.; Cashman, J. R.; Lockridge, O. Mol. Pharmacol. 1999, 55, 83, (d) Duyssen, E. G.; Bartels, C. F.; Lockridge, O. J. Pharmacol. Exp. Ther. 2002, 302, 751, (e) Nachon, F.; Nicolet, Y.; Viguie, N.; Masson, P.; Fontecilla-Camps, J. C.; Lockridge, O. Eur. J. Biochem. 2002, 269, 630, herein all incorporated by reference. Using plasmid DNA as template and primers with specific base-pair alterations, mutations were made by polymerase chain reaction with Pfu DNA polymerase, for replication fidelity. The PCR product was treated with Dpn I endonuclease to digest the parental DNA template. Modified plasmid DNA was transformed into Escherichia coli, amplified, and purified. The DNA sequences of the mutants were confirmed by DNA sequencing. BChE mutants were expressed in human embryonic kidney cell line 293T/17. Cells were grown to 80-90% confluency in 6-well dishes and then transfected by Lipofectamine 2000 complexes of 4 μg plasmid DNA per well. Cells were incubated at 37°C in a CO2 incubator for 24 hours and were moved to 60-nm culture vessel and cultured for four more days. The culture medium [10% fetal bovine serum in Dulbecco’s modified Eagle’s medium (DMEM)] was harvested for a BChE activity assay. To measure (−)-cocaine and benzoic acid, the product of (−)-cocaine hydrolysis catalyzed by BChE, sensitive radiometric assays were used based on tolune extraction of [3H]- (−)-cocaine labeled on its benzene ring in accordance with Sun et al. In brief, to initiate the enzymatic reaction, 100 nCi of [3H]- (−)-cocaine was mixed with 100 μl of culture medium. The enzymatic reactions proceeded at room temperature (25°C) for varying time. The reactions were stopped by adding 300 μl of 0.02 M HCl, which neutralized the liberated benzoic acid while ensuring a positive charge on the residual (−)-cocaine. [3H]Benzoic acid was extracted by 1 ml of toluene and measured by scintillation counting. Finally, the measured time-dependent radiometric data were fitted to the kinetic equation so that the catalytic efficiency (kcat/KM) was determined along with the use of an enzyme-linked immunosorbent assay (ELISA) described below.

Enzyme-linked immunosorbent assay (ELISA). The ELISA buffers used in the present study are the same as those described in the literature such as (a) Brock, A.; Mortensen, V.; Lofl, A. G. R.; Nergaard-Pedersen, B. J. Clin. Chem. Clin. Biochem. 1990, 28, 221-224, (b) Khatlab, A. D.; Walker, C. H.; Johnston, G.; Siddiqui, M. K. Saphier, P. W. Environmental Toxicology and Chemistry 1994, 13, 1661-1667, herein both incorporated by reference. The coating buffer was 0.1 M
sodium carbonate/bicarbonate buffer, pH 9.5. The diluent buffer (ELISA buffer) was potassium phosphate monobasic/potassium phosphate monohydrate buffer, pH 7.5, containing 0.9% sodium chloride and 0.1% bovine serum albumin. The washing buffer (PBS-T) was 0.01 M potassium phosphate monobasic/potassium phosphate monohydrate buffer, pH 7.5, containing 0.05% (v/v) Tween-20. All the assays were performed in triplicate. Each well of an ELISA microtiter plate was filled with 100 µl of the mixture buffer consisting of 20 µl culture medium and 80 µl coating buffer. The plate was covered and incubated overnight at 4°C to allow the antigen to bind to the plate. The solutions were then removed and the wells were washed four times with PBS-T. The washed wells were filled with 200 µl diluent buffer and kept shaking for 1.5 h at room temperature (25°C). After washing with PBS-T for four times, the wells were filled with 100 µl antibody (1:8000) and were incubated for 1.5 h, followed by washing for four times. Then, the wells were filled with 100 µl goat anti-mouse IgG HRP conjugate complex diluted to a final 1:3000 dilution, and were incubated at room temperature for 1.5 h, followed by washing for four times. The enzyme reactions were started by addition of 100 µl substrate (TMB) solution. The reactions were stopped after 15 min by the addition of 100 µl of 2 M sulfuric acid, and the absorbance was read at 460 nm using a Bio-Rad ELISA plate reader.

Hydrogen bonding revealed by the MD simulations. In accordance with one aspect of the present invention, namely the generation of high-activity mutants of BChE against (–)-cocaine, the present invention includes predicting some possible mutations that can lower the energy of the transition state for the first chemical reaction step (TS1) and, therefore, lower the energy barrier for this critical reaction step. Apparently, a mutant associated with the stronger hydrogen bonding between the carbonyl oxygen of (–)-cocaine benzoyl ester and the oxygen hole of the BChE mutant in the TS1 structure may potentially have a more stable TS1 structure and, therefore, a higher catalytic activity for (–)-cocaine hydrolysis. Hence, the hydrogen bonding with the oxygen hole in the TS1 structure is a crucial factor affecting the transition state stabilization and the catalytic activity. The possible effects of some mutations on the hydrogen bonding were examined by performing MD simulations and QM/MM calculations on the TS1 structures for (–)-cocaine hydrolysis catalyzed by the wild-type and various mutants BChE’s.

The MD simulation in water was performed for 1 ns or longer to make sure a stable MD trajectory was obtained for each simulated TS1 structure with the wild-type or mutant BChE. The MD trajectories actually became stable quickly, so were the H—O distances involved in the potential hydrogen bonds between the carbonyl oxygen of (–)-cocaine and the oxygen hole of BChE.

Depicted in FIG. 5 are plots of four important H-O distances in the MD-simulated TS1 structure versus the simulation time for (–)-cocaine hydrolysis catalyzed by A328W/Y332A or A199S/A328W/Y332G BChE, along with the root-mean-square deviation (RMSD) of the simulated positions of backbone atoms from those in the corresponding initial structure. Traces D1, D2, and D3 refer to the distances between the carbonyl oxygen of (–)-cocaine and the N1I hydrogen of G116, G117, and S199, respectively. Trace D4 is the internuclear distance between the carbonyl oxygen of (–)-cocaine and the hydroxyl hydrogen of the S199 side chain which exists only in A199S/A328W/Y332G BChE. RMSD represents the root-mean-square deviation (in Å) of the simulated positions of the protein backbone atoms from those in the initial structure. The H-O distances in the simulated TS1 structures corresponding to the wild-type BChE and the two mutants are summarized in Table 3. The H—O distances between the carbonyl oxygen of (–)-cocaine and the peptide NH hydrogen atoms of G116, G117, and A199 (or S199) of BChE are denoted by D1, D2, and D3, respectively, in Table 2 and FIG. 1. D4 in Table 3 and FIG. 5 refers to the H—O distance between the carbonyl oxygen of (–)-cocaine and the hydroxyl hydrogen of S199 side chain in the simulated TS1 structure corresponding to the A199S/A328W/Y332G mutant, (1) (SEQ ID NO: 2).

Table 3

Summary of the MD-simulated and QM/MM-optimized key distances (in Å) and the calculated total hydrogen-bonding energies (HBE, in kcal/mol) between the oxygen hole and the carbonyl oxygen of (–)-cocaine benzoyl ester in the first transition state (TS1).

<table>
<thead>
<tr>
<th>Transition State</th>
<th>Method</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4 Total HBEb</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS1 for (–)-cocaine</td>
<td>MD Average</td>
<td>4.59</td>
<td>2.91</td>
<td>1.92</td>
<td>–5.5 (–4.6)</td>
</tr>
<tr>
<td>hydrolysis catalyzed</td>
<td>Maximum</td>
<td>5.73</td>
<td>4.14</td>
<td>2.35</td>
<td></td>
</tr>
<tr>
<td>by wild-type BChE</td>
<td>Minimum</td>
<td>3.35</td>
<td>1.97</td>
<td>1.61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluctuation</td>
<td>0.35</td>
<td>0.35</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>QM/MM</td>
<td>4.10</td>
<td>2.21</td>
<td>2.05</td>
<td>–4.2</td>
</tr>
<tr>
<td>TS1 for (–)-cocaine</td>
<td>MD Average</td>
<td>3.62</td>
<td>2.35</td>
<td>1.95</td>
<td>–6.2 (–4.9)</td>
</tr>
<tr>
<td>hydrolysis catalyzed</td>
<td>Maximum</td>
<td>4.35</td>
<td>3.37</td>
<td>3.02</td>
<td></td>
</tr>
<tr>
<td>by A328W/Y332A</td>
<td>Minimum</td>
<td>2.92</td>
<td>1.78</td>
<td>1.61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluctuation</td>
<td>0.23</td>
<td>0.27</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>QM/MM</td>
<td>3.39</td>
<td>2.05</td>
<td>2.47</td>
<td>–3.3</td>
</tr>
<tr>
<td>TS1 for (–)-cocaine</td>
<td>MD Average</td>
<td>5.30</td>
<td>2.21</td>
<td>1.94</td>
<td>2.15 (–9.7)</td>
</tr>
<tr>
<td>hydrolysis catalyzed</td>
<td>Maximum</td>
<td>6.08</td>
<td>3.06</td>
<td>2.47</td>
<td>3.27</td>
</tr>
<tr>
<td>by A199S/A328W/</td>
<td>Minimum</td>
<td>4.57</td>
<td>1.71</td>
<td>1.66</td>
<td>1.56</td>
</tr>
<tr>
<td>Transition State</td>
<td>Method</td>
<td>D1</td>
<td>D2</td>
<td>D3</td>
<td>D4</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------------</td>
</tr>
<tr>
<td>Y332G mutant</td>
<td>Fluctuation</td>
<td>0.22</td>
<td>0.20</td>
<td>0.13</td>
<td>0.29</td>
</tr>
<tr>
<td>BCHE</td>
<td>QM/MM</td>
<td>4.83</td>
<td>2.09</td>
<td>1.91</td>
<td>2.59</td>
</tr>
</tbody>
</table>

* D1, D2, and D3 represent the intermolecular distances between the carboxyl oxygen of cocaine benzoyl ester and the NH hydrogen of residues 116 (i.e., G116), 117 (i.e., G117), and 199 (i.e., A199 or S199) of BCHE, respectively. D4 is the intermolecular distance between the carboxyl oxygen of cocaine benzoyl ester and the hydroxyl hydrogen of S199 side chain in the A199S/A328W/Y332G mutant.

* The total HBE value under MD is the average of the HBE values calculated by using the instantaneous distances in all of the snapshots. The value in parentheses is the total HBE value calculated by using the MD-simulated average distances. The total HBE value under QM/MM was evaluated by using the QM/MM-optimized distances.

As seen in Table 3, the simulated H—O distance D1 is always too long for the peptide NH of G116 to form a N—H—O hydrogen bond with the carboxyl oxygen of (−)-coca. In the simulated TS1 structure corresponding to wild-type BCHE, the carboxyl oxygen of (−)-coca formed a firm N—H—O hydrogen bond with the peptide NH hydrogen atom of A199 residue; the simulated H–O distance was 1.61 to 2.35 Å, with an average value of 1.92 Å. Meanwhile, the carboxyl oxygen of (−)-coca also had a partial N—H—O hydrogen bond with the peptide NH hydrogen atom of G117 residue; the simulated H–O distance was 1.97 to 4.14 Å (the average value: 2.91 Å). In the simulated TS1 structure corresponding to the A328W/Y332A mutant, the simulated average H–O distances with the peptide NH hydrogen of G117 and A199 are 2.35 and 1.95 Å, respectively. These distances suggest a slightly weaker N—H—O hydrogen bond with A199, but a stronger N—H—O hydrogen bond with G117, in the simulated TS1 structure corresponding to the A328W/Y332A mutant. The overall strength of the hydrogen bonding between the carboxyl oxygen of (−)-coca and the oxygen ion of the enzyme is not expected to change considerably when wild-type BCHE is replaced by the A328W/Y332A mutant.

However, the story for the simulated TS1 structure associated with the A199S/A328W/Y332G mutant was remarkably different. As one can see from Scheme 4, FIG. 5, and Table 3, when residue #199 becomes a serine (i.e., S199), the hydroxyl group on the side chain of S199 can also hydrogen-bond to the carboxyl oxygen of (−)-coca to form an O—H—O hydrogen bond, in addition to the two N—H—O hydrogen bonds with the peptide NH of G117 and S199. The simulated average H–O distances with the peptide NH hydrogen of G117, peptide NH hydrogen of S199, and hydroxyl hydrogen of S199 are 2.21, 1.94, and 2.15 Å, respectively. Due to the additional O—H—O hydrogen bond, the overall strength of the hydrogen bonding with the modified oxygen hole of A199S/A328W/Y332G BCHE should be significantly stronger than that of the wild-type and A328W/Y332A BCHE’s.

To better represent the overall strength of hydrogen bonding between the carboxyl oxygen of (−)-coca and the oxygen hole in a MD-simulated TS1 structure, the hydrogen bonding energy (HBE) associated with each simulated H–O distance was estimated by using the empirical HBE equation implemented in AutoDock 3.0 program suite in accordance with (a) Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. J. Comput. Chem. 1998, 19, 1639-1662, and based on the general HBE equation, \(HBE(r) = 5r^{-1.0}/r^{-1.2} - 6r^{-10}/r^{10} \), in which \(r \) is the H—O distance in the considered hydrogen bond and \(r_0 \) is the minimum value of the H—O distance for which the HBE equation can be used. For the calculation, \(r_0 = 1.52 \) Å, because it is the shortest H—O distance found in all of our MD simulations. The \(r_0 \) value was determined by using the condition that HBE \((r) = -5.0 \text{ kcal/mol} \) when \(r = 1.90 \) Å, herein incorporated by reference. Specifically, for each hydrogen bond with the carboxyl oxygen of (−)-coca, a HBE value can be evaluated with each snapshot of the MD-simulated structure. The final HBE of the MD-simulated hydrogen bond is considered to be the average HBE value of all snapshots taken from the stable MD trajectory. The estimated total HBE value for the hydrogen bonds between the carboxyl oxygen of (−)-coca and the oxygen hole in each simulated TS1 structure is given in Table 3.

The HBE for each hydrogen bond was estimated by using the MD-simulated average H—O distance. As seen in Table 3, the total hydrogen-bonding energies (i.e., −4.6, −4.9, and −7.4 kcal/mol for the wild-type, A328W/Y332A, and A199S/A328W/Y332G BCHE’s, respectively) estimated in this way are systematically higher (i.e., less negative) than the corresponding total hydrogen-bonding energies (i.e., −5.5, −6.2, and −9.7 kcal/mol) estimated in the aforementioned way. However, the two sets of total HBE values are qualitatively consistent in terms of the relative hydrogen-bonding strengths in the three studied TS1 structures. In particular, the two sets of total HBE values consistently reveal that the overall strength of the hydrogen bonding between the carboxyl oxygen of (−)-coca and the oxygen hole in the simulated TS1 structure for A199S/A328W/Y332G BCHE is significantly higher than that for the wild-type and A328W/Y332A BCHE’s.

Hydrogen bonding based on the QM/MM calculations. The above conclusion obtained from the MD simulations was further examined by carrying out QM/MM calculations. Although this enzymatic reaction system is too large to calculate the QM/MM force constant matrix required in the automated search for a first-order saddle point corresponding to TS1, a partial geometry optimization was performed by fixing the length of the transition C—O bond between the carbonyl carbon of (−)-coca and the O atom of S198 in the QM/MM calculation. This transition C—O bond length dominates the reaction coordinate, according to the previous
first-principle reaction coordinate calculations, in accordance with Zhan et al., with an active model of wild-type BChe. In the partial geometry optimization, the transition C-O bond length was fixed at that in the TS1 geometry optimized previously by performing the first-principle reaction coordinate calculation with an active site model of wild-type BChe. This partially optimized geometry should be close to the precisely defined TS1 geometry associated with a first-order saddle point on the potential energy surface, particularly for the hydrogen bonding between the carbonyl oxygen of (−)-cocaine and the oxygen hole of BChe.

The QM/MM results summarized in Table 3 demonstrate two hydrogen bonds in each of the QM/MM-optimized TS1 structures. Specifically, D2−2.21 Å and D3−2.05 Å in the optimized TS1 structure for wild-type BChe; D2−2.05 Å and D3−2.47 Å in the optimized TS1 structure for the A328W/Y332A mutant; D2−2.09 Å, D3−1.91 Å, and D4−2.59 Å in the optimized TS1 structure for the A199S/A328W/Y332G mutant. Although the QM/MM-optimized individual H−O distances and the estimated HBE values are different from the corresponding values for individual hydrogen bonds, the relative total HBE values (i.e., −4.2, −3.3, and −7.46 kcal/mol) for the wild-type, A328W/Y332A, and A199S/A328W/Y332G BChe’s, respectively, estimated from these optimized distances are qualitatively consistent with the corresponding total HBE values (i.e., −4.6, −4.9, and −7.4 kcal/mol) estimated from the MD-simulated average H−O distances.

It should be pointed out that the absolute HBE values estimated in this study are not expected to be accurate, as different computational approaches led different HBE values. Nevertheless, for the purpose of our computational design of a high-activity mutant of BChe, one only needs to know the relative strength of the hydrogen bonding based on the estimated relative total HBE values of different mutants. The three sets of total HBE values (Table 3) estimated from the MD-simulated and QM/MM-optimized H−O distances all consistently demonstrate: (1) the overall strength of hydrogen bonding between the carbonyl oxygen of (−)-cocaine and the oxygen hole in the TS1 structure for (−)-cocaine hydrolysis catalyzed by A328W/Y332A BChe should be close to that in the TS1 structure for (−)-cocaine hydrolysis catalyzed by wild-type BChe; (2) the overall hydrogen bonding between the carbonyl oxygen of (−)-cocaine and the oxygen hole in the TS1 structure for (−)-cocaine hydrolysis catalyzed by A199S/A328W/Y332G BChe should be significantly stronger than that in the TS1 structure for (−)-cocaine hydrolysis catalyzed by A328W/Y332A BChe.

Catalytic activity. The computational results discussed above suggest that the transition state for the first chemical reaction step (TS1) of (−)-cocaine hydrolysis catalyzed by the A199S/A328W/Y332G mutant should be significantly more stable than that by the A328W/Y332A mutant, due to the significant increase of the overall hydrogen bonding between the carbonyl oxygen of (−)-cocaine and the oxygen hole of the enzyme in the TS1 structure. The aforementioned analysis of the literature, namely Sun et al. and Hamazu et al., also indicate that the first chemical reaction step associated with TS1 should be the rate-determining step of (−)-cocaine hydrolysis catalyzed by a BChe mutant including Y332A or Y332G mutation, although the formation of the prereactive enzyme-substrate complex (ES) is the rate-determining step for (−)-cocaine hydrolysis catalyzed by wild-type BChe. This provides evidence of a clear correlation between the TS1 stabilization and the catalytic activity of A328W/Y332A and A199S/A328W/Y332G BChe’s for (−)-cocaine hydrolysis: the more stable the TS1 structure, the lower the energy barrier, and the higher the catalytic activity. Thus, both the MD simulations and QM/MM calculations predict that A199S/A328W/Y332G BChe should have a higher catalytic activity than A328W/Y332A BChe for (−)-cocaine hydrolysis.

The catalytic efficiency (k_{cat}/K_m) of A328W/Y332A BChe for (−)-cocaine hydrolysis was reported by Sun et al. to be 8.6×10^7 M$^{-1}$ min$^{-1}$, which is 0.94 times of the k_{cat}/K_m value (9.1×10^7 M$^{-1}$ min$^{-1}$) of wild-type BChe. To examine the theoretical prediction of the higher catalytic activity for A199S/A328W/Y332G BChe, A328W/Y332A and A199S/A328W/Y332G mutants of BChe were produced through site-directed mutagenesis. To minimize the possible systematic experimental errors of the kinetic data, kinetic studies were performed with the two mutants and wild-type BChe under the same condition and compared the catalytic efficiency of A328W/Y332A and A199S/A328W/Y332G BChe’s to that of the wild-type for (−)-cocaine hydrolysis at benzyl ester group. Based on the kinetic analysis of the measured time-dependent radiometric data and the ES/SIA data, the ratio of the k_{cat}/K_m value of A328W/Y332A BChe to the k_{cat}/K_m value of wild-type BChe for (−)-cocaine hydrolysis was determined to be 8.6. The determined catalytic efficiency ratio of 8.6 is in good agreement with the ratio of 0.94 determined by Sun et al. Further, by using the same experimental protocol, the ratio of the k_{cat}/K_m value of A199S/A328W/Y332G BChe to the k_{cat}/K_m value of A328W/Y332A BChe for (−)-cocaine hydrolysis was determined to be 7.2. These data indicate that the ratio of the k_{cat}/K_m value of A199S/A328W/Y332G BChe to the k_{cat}/K_m value of wild-type BChe for (−)-cocaine hydrolysis should be $7.2 \times 8.6 \approx 62$ or $7.2 \times 9.4 \approx 68$. Thus, A199S/A328W/Y332G BChe has a ~65-fold improved catalytic efficiency against (−)-cocaine compared to the wild-type, or A199S/A328W/Y332G BChe has a k_{cat}/K_m value of $(5.9 \pm 0.5) \times 10^8$ M$^{-1}$ min$^{-1}$ for (−)-cocaine hydrolysis.

Very recently reported F227A/S287G/A328W/Y332M BChe (i.e., AME-359, k_{cat}/K_m $= 3.1 \times 10^8$ M$^{-1}$ min$^{-1}$) has a ~34-fold improved catalytic efficiency for (−)-cocaine hydrolysis. AME-359 has the highest catalytic efficiency against (−)-cocaine inside all of the BChe mutants reported in literature prior to the present study. The catalytic efficiency for our A199S/A328W/Y332G BChe is about two times of that for AME-359 against (−)-cocaine.

Conclusion. Molecular dynamics (MD) simulations and hybrid quantum mechanical/molecular mechanical (QM/MM) calculations on the transition state for the first chemical reaction step (TS1) of (−)-cocaine hydrolysis catalyzed by butyrylcholinesterase (BChe) mutants lead to a better understanding of the effects of protein environment on the transition state stabilization. All of the computational results consistently demonstrate that the overall hydrogen bonding between the carbonyl oxygen of (−)-cocaine benzoyl ester and the oxygen hole of BChe in the TS1 structure for (−)-cocaine hydrolysis catalyzed by A199S/A328W/Y332G BChe should be significantly stronger than that in the TS1 structure for (−)-cocaine hydrolysis catalyzed by A328W/Y332A BChe.
K_d value for F227A/S287G/A328W/Y332M BCHE (i.e., AME-359, which has the highest catalytic efficiency within all BCHE mutants reported prior to the present study) against (-)-cocaine. The encouraging outcome of this study suggests that the transition-state modeling is a promising approach for rational design of high-activity mutants of BCHE as a therapeutic treatment of cocaine abuse.

Experiment 3

MD Simulation and Generation of Mutant A199S/S287G/A328W/Y332G BCHE (Mutant 3) (SEQ ID NO: 14).

The following simulation and mutant generation relate to A199S/S287G/A328W/Y332G (mutant 3) as a rational design of a high-activity mutant of BCHE against (-)-cocaine based on detailed computational modeling of the transition state for the rate-determining step (i.e., the first step of the chemical reaction process). Molecular dynamics (MD) simulations were performed to model the protein environmental effects on the stabilization of the transition-state structure for BCHE-catalyzed hydrolysis of (-)-cocaine as described above for mutant A199S/A328W/Y332G (mutant 1). The simulated results indicate that the transition-state structure can be stabilized much better by the protein environment in A199S/S287G/A328W/Y332G BCHE than that in wild-type BCHE and in other BCHE mutants examined. The computational modeling led to a prediction of the higher catalytic efficiency for the A199S/S287G/A328W/Y332G mutant against (-)-cocaine. The prediction has been confirmed by wet experimental tests showing that A199S/S287G/A328W/Y332G mutant has a remarkably improved catalytic efficiency against (-)-cocaine. All of the obtained results clearly demonstrate that directly modeling the transition-state structure provides a reliable computational approach to the rational design of a high-activity mutant of BCHE against (-)-cocaine.

MD simulations. As with the A199S/A328W/Y332G mutant, when performing any MD simulation on a transition state, in principle, MD simulation using a classical force field (molecular mechanics) can only simulate a stable structure corresponding to a local minimum on the potential energy surface, whereas a transition state during a reaction process is always associated with a first-order saddle point on the potential energy surface.

The initial BCHE structures used in the MD simulations were prepared based on our previous MD simulation as above with the prior mutant and the permissive BCHE-(-)-cocaine complex (ES) started from the X-ray crystal structure deposited in the Protein Data Bank (pdb code: 1 POP).

The general procedure for carrying out the MD simulations in water is essentially the same as that used in the computational studies for mutant A199S/A328W/Y332G (mutant 1). Site-directed mutagenesis of human BCHE cDNA was performed as described before.

The MD simulation in water was performed as described above, on this mutant. Depicted in Fig. 6 are plots of four important H-O distances in the MD-simulated TSI structure versus the simulation time for (-)-cocaine hydrolysis catalyzed by A199S/S287G/A328W/Y332G BCHE, along with the root-mean-square deviation (RMSD) of the simulated positions of backbone atoms from those in the corresponding initial structure. Traces D1, D2, and D3 refer to the distances between the carbonyl oxygen of (-)-cocaine and the NH hydrogen of G116, G117, and S199, respectively. Trace D4 is the internuclear distance between the carbonyl oxygen of (-)-cocaine and the hydroxyl hydrogen of the S199 side chain in A199S/S287G/A328W/Y332G BCHE (mutant 3). RMSD represents the root-mean-square deviation (in Å) of the simulated positions of the protein backbone atoms from those in the initial structure.

The H-O distances in the simulated TSI structures for wild-type BCHE and its three mutants are summarized in Table 4. The H-O distances between the carbonyl oxygen of (-)-cocaine and the peptide NH hydrogen atoms of G116, G117, and A199 (or S199) of BCHE are denoted by D1, D2, and D3, respectively, in Table 4 and Fig. 6. D4 in Table 4 and Fig. 6 refers to the H-O distance between the carbonyl oxygen of (-)-cocaine and the hydroxyl hydrogen of S199 side chain in the simulated TSI structure corresponding to the A199S/S287G/A328W/Y332G mutant.

Table 4

<table>
<thead>
<tr>
<th>Transition State</th>
<th>Distance^a</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>Total HBE^b</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSI structure for (-)-cocaine hydrolysis catalyzed by wild-type BCHE</td>
<td>Average</td>
<td>4.59</td>
<td>2.91</td>
<td>1.92</td>
<td>-5.5 (-4.6)</td>
<td></td>
</tr>
<tr>
<td>TSI structure for (-)-cocaine hydrolysis catalyzed by A328W/Y332G mutant of BCHE</td>
<td>Average</td>
<td>3.60</td>
<td>2.25</td>
<td>1.97</td>
<td>-6.4 (-5.0)</td>
<td></td>
</tr>
<tr>
<td>TSI structure for (-)-cocaine hydrolysis catalyzed by A328W/Y332G mutant of BCHE</td>
<td>Maximum</td>
<td>5.73</td>
<td>4.14</td>
<td>2.35</td>
<td>-6.2 (-4.9)</td>
<td></td>
</tr>
</tbody>
</table>

^a Distance (in Å)

^b Total HBE (in kcal/mol)
As seen in Table 4, the simulated H—O distance D1 is always too long for the peptide NH of G116 to form a N—H—O hydrogen bond with the carbonyl oxygen of (−)-cocaine in all of the simulated TS1 structures. In the simulated TS1 structure for wild-type BChE, the carbonyl oxygen of (−)-cocaine also had a partial N—H—O hydrogen bond with the peptide NH hydrogen atom of G117 residue; the simulated H O distance (D2) was 1.61 to 2.35 Å, with an average D2 value of 1.92 Å. Meanwhile, the carbonyl oxygen of (−)-cocaine also had a partial N—H—O hydrogen bond with the peptide NH hydrogen atom of G117 residue; the simulated H—O distance (D3) was 1.97 to 4.14 Å (the average D3 value: 2.91 Å). The average D2 and D3 values became 2.35 and 1.95 Å, respectively, in the simulated TS1 structure for the A328W/Y332A mutant. These distances suggest a slightly weaker N—H—O hydrogen bond with A199, but a stronger N—H—O hydrogen bond with G117, in the simulated TS1 structure for the A328W/Y332A mutant than that of the corresponding N—H—O hydrogen bonds for the wild-type. The average D2 and D3 values (2.25 and 1.97 Å, respectively) in the simulated TS1 structure for the A328W/Y332G mutant are close to the corresponding distances for the A328W/Y332A mutant. The overall strength of the hydrogen bonding between the carbonyl oxygen of (−)-cocaine and the oxygen hole of the enzyme is not expected to change considerably when wild-type BChE is replaced by the A328W/Y332A or A328W/Y332G mutant.

However, the story for the simulated TS1 structure for the A199S/S287G/A328W/Y332G mutant was remarkably different. As one can see from Scheme 5, FIG. 6, and Table 4, when residue #199 becomes a serine (i.e., S199), the hydroxyl group on the side chain of S199 can also hydrogen-bond to the carbonyl oxygen of (−)-cocaine to form an O—H—O hydrogen bond, in addition to the two N—H—O hydrogen bonds with the peptide NH of G117 and S199. The simulated average H—O distances with the peptide NH hydrogen of G117, peptide NH hydrogen of S199, and hydroxyl hydrogen of S199 are 2.60, 2.01, and 1.76 Å, respectively. Due to the additional O—H—O hydrogen bond, the overall strength of the hydrogen bonding with the modified oxygen hole of A199S/S287G/A328W/Y332G BChE should be significantly stronger than that of wild-type, A328W/Y332A, and A328W/Y332G BChE’s.
Scheme 5. Schematic representation of the transition-state structure for first reaction step for (−)-cocaine hydrolysis catalyzed by a BChE mutant with an A199S mutation.

Specifically, for each hydrogen bond with the carbonyl oxygen of (−)-cocaine, a HBE value can be evaluated with each snapshot of the MD-simulated structure. The final HBE of the MD-simulated hydrogen bond is considered to be the average HBE value of all snapshots taken from the stable MD trajectory. The estimated total HBE value for the hydrogens bonds between the carbonyl oxygen of (−)-cocaine and the oxygen hole in each simulated TS1 structure is also listed in Table 4.

The HBE for each hydrogen bond was estimated by using the MD-simulated average H—O distance. As shown in Table 4, the total hydrogen-bonding energies (i.e., −4.6, −4.9, −5.0, and −12.0 kcal/mol) for the wild-type, A328W/Y332A, A328W/Y332G, and A199S/S287G/A328W/Y332G BChE’s, respectively, estimated in this way are systematically higher (i.e., less negative) than the corresponding total hydrogen-bonding energies (i.e., −5.5, −6.2, −6.4, and −14.0 kcal/mol) estimated in the aforementioned way. However, the two sets of total HBE values are qualitatively consistent with each other in terms of the relative hydrogen-bonding strengths in the three simulated TS1 structures. In particular, the two sets of total HBE values consistently reveal that the overall strength of the hydrogen bonding between the carbonyl oxygen of (−)-cocaine and the oxygen hole in the simulated TS1 structure for A199S/S287G/A328W/Y332G BChE is significantly higher than that for wild-type, A328W/Y332A, and A328W/Y332G BChE’s.

Catalytic activity. The computational results discussed above provides evidence that the transition state for the first chemical reaction step (TS1) of (−)-cocaine hydrolysis catalyzed by the A199S/S287G/A328W/Y332G mutant should be significantly more stable than that by the A328W/Y332A or A328W/Y332G mutant, due to the significant increase of the overall hydrogen bonding between the carbonyl oxygen of (−)-cocaine and the oxygen hole in the enzyme, in the TS1 structure. The aforementioned analysis of the literature of Sun et al and Hamza et al also indicates that the first chemical reaction step associated with TS1 should be the rate-limiting step of (−)-cocaine hydrolysis catalyzed by BChE mutant including Y332A or Y332G mutation, although the formation of the prereactive enzyme-substrate complex (ES) is the rate-limiting step for (−)-cocaine hydrolysis catalyzed by wild-type BChE. This suggests a clear correlation between the TS1 stabilization and the catalytic activity of A328W/Y332A, A328W/Y332G, and A199S/S287G/A328W/Y332G BChE’s for (−)-cocaine hydrolysis: the more stable the TS1 structure, the lower the energy barrier, and the higher the catalytic activity. Thus, the MD simulations predict that A199S/S287G/A328W/Y332G BChE should have a higher catalytic activity than A328W/Y332A or A328W/Y332G BChE for (−)-cocaine hydrolysis.

The catalytic efficiency (kcat/Km) of A328W/Y332A BChE for (−)-cocaine hydrolysis was reported to be ~8.6x10^10 M^-1 min^-1, which is ~9.4 times of the kcat/Km value (~9.1x10^9 M^-1 min^-1) of wild-type BChE for (−)-cocaine hydrolysis. The catalytic efficiency of A328W/Y332G BChE was found to be slightly higher than that of A328W/Y332A BChE for (−)-cocaine hydrolysis. To examine the theoretical prediction of the higher catalytic activity for A199S/S287G/A328W/Y332G BChE, the A328W/Y332A and A199S/S287G/A328W/Y332G mutants of BChE were produced as previously discussed through site-directed mutagenesis. To minimize the possible systematic experimental errors of the kinetic data, kinetic studies were performed with the two mutants and wild-type BChE under the same condition and compared the catalytic efficiency of A328W/Y332A and A199S/S287G/A328W/Y332G BChE’s to that of the wild-type for (−)-cocaine hydrolysis at benzoyl ester group. Based on the kinetic analysis of the measured time-dependent radioimmunoassay data and the ELISA data, the ratio of the kcat/Km value of A328W/Y332A BChE to the kcat/Km value of wild-type BChE for (−)-cocaine hydrolysis was determined to be ~8.6. The determined catalytic efficiency ratio of ~8.6 is in good agreement with the ratio of ~9.4 determined by Sun et al. Further, by using the same experimental protocol, the ratio of the kcat/Km value of A199S/S287G/A328W/Y332G BChE for (−)-cocaine hydrolysis was determined to be ~50.6. These data indicate that the ratio of the kcat/Km value of A199S/S287G/A328W/Y332G BChE to the kcat/Km value of wild-type BChE for (−)-cocaine hydrolysis should be ~50.6x8.6—435 or ~50.6x9.4—476. Thus, A199S/S287G/A328W/Y332G BChE has a ~45x6.4-fold improved catalytic efficiency against (−)-cocaine compared to the wild-type, or A199S/S287G/A328W/Y332G BChE has a kcat/Km value of ~4.15x10^7 M^-1 min^-1 for (−)-cocaine hydrolysis. The catalytic efficiency of A199S/S287G/A328W/Y332G BChE against (−)-cocaine is much higher than that of AME-359 (i.e., F272A/S287G/A328W/Y332M BChE, kcat/Km=3.1x10^8 M^-1 min^-1), whose catalytic efficiency against (−)-cocaine is the highest within all of the previously reported BChE mutants) which has a ~34-fold improved catalytic efficiency against (−)-cocaine compared to wild-type BChE.

By using the designed A199S/S287G/A328W/Y332G BChE as an exogenous enzyme in human, when the concentration of this mutant is kept the same as that of the wild-type BChE in plasma, the half-life time of (−)-cocaine in plasma should be reduced from the ~45-90 min to only ~6-12 seconds, considerably shorter than the time required for cocaine crossing the blood-brain barrier to reach CNS. Hence, the outcome of this study could eventually result in a valuable, efficient anti-cocaine medication.

Conclusion. The transition-state simulations demonstrate that the overall hydrogen bonding between the carbonyl oxygen of (−)-cocaine benzoyl ester and the oxygen hole of BChE in the TS1 structure for (−)-cocaine hydrolysis catalyzed by A199S/S287G/A328W/Y332G BChE should be significantly stronger than that in the TS1 structure for (−)-cocaine hydrolysis catalyzed by the wild-type BChE and other BChE mutants simulated. Thus, the MD simulations predict that A199S/S287G/A328W/Y332G BChE should have a significantly lower energy barrier for the chemical reaction process and, therefore, a significantly higher catalytic efficiency (kcat/Km) for (−)-cocaine hydrolysis. The theoretical prediction has been confirmed by wet experimen-
tual tests showing ~456x41-fold improved catalytic efficiency for A199S/S287G/A328W/Y332G BChE against (--)cocaine compared to the wild-type BChE. The k_{cat}/K_m value determined for A199S/S287G/A328W/Y332G BChE is much higher than the k_{cat}/K_m value for AME-359 (i.e., F227A/S287G/A328W/Y332M BChE, whose catalytic efficiency against (--)cocaine is the highest within all of the BChE mutants reported previously in literature) which has a ~34-fold improved catalytic efficiency against (--)cocaine compared to the wild-type BChE. The outcome of this study provides evidence that the transition-state simulation is a novel and unique approach for rational enzyme redesign and drug discovery.

Although the invention has been described in detail with respect to preferred embodiments thereof, it will be apparent that the invention is capable of numerous modifications and variations, apparent to those skilled in the art, without departing from the spirit and scope of the invention.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 30

<210> SEQ ID NO 1
<211> LENGTH: 1722
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 14-1 mutant A199S/A328W/Y332G of Human butryrylcholinesterase (BChE)

<260> SEQUENCE: 1

gagaggtgaca tcataaggca aacaaagata ggaagacgtc gaggagtga cttgacagt 60
tttggtgtga cggtgaagac cttcttctga atcccttcct ccagccctcc tttggtgta 120
tctctgattc aaagccgcac gcggctgacc aagtttgcttg atatcctggaa tggccacaa 180
	tatgcaatt cttgctgctg gcagcatgtt ccaagttttc caggtcccca tggatcag 240
tagttgcaaa ccacacctgta ccgcgatgaa guacttgatt atctttgatg tctttcaact 300
gagagcatct ctatagtggc aagtttcctgg ctgctggtga aagtgatctg 420
gagagctgca taactcataag ggtggtgtgcc cttaggatcct tagttttgcc agggatcct 480
gaggtctcgc ggacacttggg tttattgtat caacagttgct ctcctcagctg gttctcaaaa 540
aatatatgcct cctcctggag aaaccttaaa aagtttaact ccctctgagg aagtctccgga 600
geagctccag tttagctgctgattgttctct gctggag acc atccagtctg cccagagac 660
aatgcctctac gttgtccctt tatttgtcctt caggtctgaa caaccgatgct cagctgatc 720
aatgctacag tggcctgctg agctccttc tgggtgcctga atccatcgcct tttttttttt 780
aatagttcctg gttcttcgctg gatcagcttt ccttctgctga atccattctg 840
cctctgctg ggtgtgcttt cccattcgtt ccacacacat 900
gacagtctgccgca catattata ggtcctgctt atctttttttt cctggtcctg ggggg 960
gttataaag atcagagggc atcgggtttttt gattggtccttt tctgctgctc 1020
aatcattcag cattaccatc ctaaatattt ctagaggtc atcaaatattt cccttctgctg 1080

gtaataaggc atggggcatttt gattggtctttct cctggtcctt cctgtctgct 1140
agacggtgctg cattggttcct tcttcttctt ggggtctgtgg ggtatgattg 1200
cctgtctgg cagccacaccc ggtctgctg aagtccttc gatcagcttc 1260
	tagtagctt cttggagatat gttctccttg atcagtctttt gttctcttttt 1320

gaaatggaaa gctggagatat gttctccttg atcagtctttt gttctcttttt 1380

gaaatggaaa gctggagatat gttctccttg atcagtctttt gttctcttttt 1440

gaaatggaaa gctggagatat gttctccttg atcagtctttt gttctcttttt 1500
tcaacacatc atacagacat ccacagcgtt cctgtctgctc 1560
ttctggacat cattttttcc aaaaagtcttg gaaatgscag gaaatattga tgaagcagas 1620
ttgaggtagga aacagggatt ccacgtcgtg gacaattaca tgatggactg gaaaaaatcaa 1680
ttaacgatt acactagcga gaaagaaagt tgggtgggttc 1722

<210> SEQ ID NO 2
<211> LENGTH: 574
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 14-1 mutant (A199S/A320W/Y332G) amino acid
sequence modified BChE

<400> SEQUENCE: 2

Glu Asp Asp Ile Ile Ile Ala Thr Lys Asn Gly Lys Val Arg Gly Met
1 5 10 15
Asn Leu Thr Val Phe Gly Gly Thr Val Thr Ala Phe Leu Gly Ile Pro
20 25 30
Tyr Ala Gln Pro Pro Leu Gly Arg Leu Arg Phe Lys Pro Gln Ser
35 40 45
Leu Thr Lys Trp Ser Asp Ile Trp Asn Ala Thr Lys Tyr Ala Asn Ser
50 55 60
Cys Cys Gln Asn Ile Asp Gln Ser Phe Pro Gly Phe His Gly Ser Glu
65 70 75 80
Met Trp Asn Pro Asn Thr Asp Leu Ser Glu Asp Cys Leu Tyr Leu Asn
85 90
Val Trp Ile Pro Ala Pro Lys Pro Lys Asn Ala Thr Val Leu Ile Trp
100 105 110
Ile Tyr Gly Gly Gly Phe Gln Thr Gly Thr Ser Ser Leu His Val Tyr
115 120 125
Asp Gly Lys Phe Leu Ala Arg Val Glu Arg Val Ile Val Val Ser Met
130 135 140
Asn Tyr Arg Val Gly Ala Leu Gly Phe Leu Ala Leu Pro Gly Asn Pro
145 150 155 160
Glu Ala Pro Gly Asn Met Gly Leu Phe Asp Gln Gln Leu Ala Leu Gln
165 170 175
Trp Val Gln Lys Asn Ile Ala Ala Phe Gly Gly Asn Pro Lys Ser Val
180 185 190
Thr Leu Phe Gly Glu Ser Ser Ser Ala Ala Ser Val Ser Leu His Leu
195 200 205
Leu Ser Pro Gly Ser His Ser Leu Phe Thr Arg Ala Ile Leu Gln Ser
210 215 220
Gly Ser Phe Asn Ala Pro Trp Ala Val Thr Ser Leu Tyr Glu Ala Arg
225 230 235 240
Asn Arg Thr Leu Asn Leu Ala Lys Leu Thr Gly Cys Ser Arg Glu Asn
245 250 255
Glu Thr Glu Ile Ile Lys Cys Leu Arg Asn Lys Asp Pro Gln Glu Ile
260 265 270
Leu Leu Asn Glu Ala Phe Val Val Pro Tyr Gly Thr Pro Leu Ser Val
275 280 285
Asn Phe Gly Pro Thr Val Asp Gly Asp Phe Leu Thr Asp Met Pro Asp
290 295 300
Ile Leu Leu Glu Leu Gly Gln Phe Lys Thr Gln Ile Leu Val Gly
305 310 315 320
Val Asn Lys Asp Glu Gly Thr Trp Phe Leu Val Gly Gly Ala Pro Gly
325 330 335
gtascttttg gtccgaccgt ggtggtgat tttctcactg acatgccaga catatacttt
720
gaacctggac aatattaaaa aaccccagatt ttagggggtg ttataaaga tgaagggaca
780
tggttttttag tcggggtggc tcctgggttc agcaagagata acaatagcat cataactaga
840
aaagaatcctt agggaggttt aaaaattttt tttccagggag ttagtgagtt tgggaagggas
900
tccatcctttt ttcattaaca agaaggggta gatgtcagca gaocctgaaaa ctaccgtgag
960
gcctggggtg atggtttaag ggtattaat ttcatagcgc cttgcttgaga gtttaaccaag
1020
aagtttcctag aatgggggaa taattgctttttttttcactattttttttttttttttttt ttgaacacgg atcctcaca
1080
ctccgctgggc cagacagtggat ggaggtgtgct caaggtctatg aaatt
1125

<210> SEQ ID NO 4
<211> LENGTH: 375
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: truncated 1-1 mutant (A199S/A328/Y332G) amino acid sequence of modified BCHE

<400> SEQUENCE: 4

Ann Ile Asp Gln Ser Phe Pro Gly Phe His Gly Ser Glu Met Trp Ann
1 5 10 15
Pro Asn Thr Asp Leu Ser Glu Asp Cys Leu Tyr Leu Aen Val Trp Ile
20 25 30
Pro Ala Pro Lys Pro Lys Ann Ala Thr Val Leu Ile Trp Ile Tyr Gly
35 40 45
Gly Gly Phe Gln Thr Gly Thr Ser Ser Leu His Val Tyr Asp Gly Lys
50 55 60
Phe Leu Ala Arg Val Glu Arg Val Ile Val Val Ser Met Ann Tyr Arg
65 70 75 80
Val Gly Ala Leu Gly Phe Leu Ala Leu Pro Gly Ann Pro Glu Ala Pro
85 90 95
Gly Asn Met Gly Leu Phe Asp Gln Gln Leu Ala Leu Gln Trp Val Gln
100 105 110
Lys Ann Ile Ala Ala Phe Gly Gly Asn Pro Lys Ser Val Thr Leu Phe
115 120 125
Gly Glu Ser Ser Gly Ala Ala Ser Val Ser Leu His Leu Leu Ser Pro
130 135 140
Gly Ser His Ser Leu Phe Thr Arg Ala Ile Leu Gln Ser Gly Ser Phe
145 150 155 160
Ann Ala Pro Trp Ala Val Thr Ser Leu Tyr Glu Ala Arg Ann Arg Thr
165 170 175
Leu Ann Leu Ala Lys Leu Thr Gly Cys Ser Arg Glu Ann Glu Thr Glu
180 185 190
Ile Ile Lys Cys Leu Arg Ann Asp Pro Gin Glu Ile Leu Leu Ann
195 200 205
Glu Ala Phe Val Val Pro Tyr Gly Thr Pro Leu Ser Val Ann Phe Gly
210 215 220
Pro Thr Val Asp Gly Asp Phe Leu Thr Asp Met Pro Asp Ile Leu Leu
225 230 235 240
Glu Leu Gly Gln Phe Lys Thr Glu Ile Leu Val Gly Val Ann Lys
245 250 255
Asp Glu Gly Thr Trp Phe Leu Val Gly Gly Ala Pro Gly Phe Ser Lys
260 265 270
Asp Ann Ann Ser Ile Ile Thr Arg Lys Glu Phe Gin Glu Gly Leu Lys
<table>
<thead>
<tr>
<th>275</th>
<th>280</th>
<th>285</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ile Phe Phe Pro Gly Val Ser Glu Phe Gly Lys Glu Ser Ile Leu Phe</td>
<td>290</td>
<td>295</td>
</tr>
<tr>
<td>His Tyr Thr Asp Trp Val Asp Asp Gln Arg Pro Gly Asn Tyr Arg Glu</td>
<td>305</td>
<td>310</td>
</tr>
<tr>
<td>Ala Leu Gly Asp Val Val Gly Tyr Asn Phe Ile Cys Pro Ala Leu</td>
<td>325</td>
<td>330</td>
</tr>
<tr>
<td>Glu Phe Thr Lys Phe Ser Glu Trp Gly Asn Asn Ala Phe Phe Tyr</td>
<td>340</td>
<td>345</td>
</tr>
<tr>
<td>Tyr Phe Glu His Arg Ser Ser Lys Leu Pro Trp Pro Glu Trp Met Gly</td>
<td>355</td>
<td>360</td>
</tr>
<tr>
<td>Val Met His Gly Tyr Glu Ile</td>
<td>370</td>
<td>375</td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 5
<211> LENGTH: 966
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 14-1 mutant (A199S/A328W/Y332G) BChe nucleic acid sequence corresponding to a.a. residues 117-430

<400> SEQUENCE: 5

```
gtttttccaa ctggagact atcctttcct gtttatgatg gcaagtttct tggctgggtt 60
gaagaagtt aaggagtgcct ctccttcttct cctctggtt gcttctgttt 120
ccggagag ccctgggttgc ctccttttct ctcctgggtt gcttctgttt 180
tggctttc aaatatatgc gacccctgtg ggaatcctaat aaggttaaag tctctgttt 240
gaagaagtt atggcagtt ggtggttgg ctccttttct ctcctgggtt gcttctgttt 300
ttcctttgaa gcattttgc ctccttttct ctcctgggtt gcttctgttt 360
tatgatctg ggaacagac gcctgttctt cttctgttgg ctccttttct ctcctgggtt 420
gaggtcttt ttttcttttg ctccttttct ctcctgggtt gcttctgttt 480
gactttctgt gcactttctt ctccttttct ctcctgggtt gcttctgttt 540
gatctctct ttctctctct ctccttttct ctcctgggtt gcttctgttt 600
atttctgt ccgattttct ctgctttctt ctccttttct ctcctgggtt gcttctgttt 660
tctctaag ctgctttctt ctccttttct ctcctgggtt gcttctgttt 720
atttttat ctgctttctt ctccttttct ctcctgggtt gcttctgttt 780
tttttttt ctgctttctt ctccttttct ctcctgggtt gcttctgttt 840
tttttttt ctgctttctt ctccttttct ctcctgggtt gcttctgttt 900
tttttttt ctgctttctt ctccttttct ctcctgggtt gcttctgttt 960
```

<210> SEQ ID NO 6
<211> LENGTH: 322
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 14-1 mutant (A199S/A328W/Y332G) BChe a.a. residues 117-430

<400> SEQUENCE: 6

```
Gly Phe Phe Lys Thr Ser Ser Leu His Val Val Asp Gly Lys Phe 1 5 10 15
```
Leu Ala Arg Val Glu Arg Val Ile Val Val Ser Met Aen Tyr Arg Val
20 25 30
Gly Ala Leu Gly Phe Leu Ala Leu Pro Gly Aen Pro Glu Ala Pro Gly
35 40 46
Aen Met Gly Leu Phe Aen Gln Gln Leu Ala Leu Gln Trp Val Glu Lys
50 55 60
Aen Ile Ala Ala Phe Gly Gly Aen Pro Lys Ser Val Thr Leu Phe Gly
65 70 75 80
Glu Ser Ser Gly Ala Ala Ser Val Ser Leu His Leu Leu Ser Pro Gly
85 90 95
Ser His Ser Leu Phe Thr Ala Ile Leu Gin Ser Gly Ser Phe Aen
100 105 110
Aen Pro Trp Ala Val Thr Ser Leu Tyr Glu Ala Arg Aen Arg Thr Leu
115 120 125
Aen Leu Ala Lys Leu Thr Gly Cys Ser Arg Glu Aen Glu Thr Glu Ile
130 135 140
Ile Lys Cys Leu Arg Aen Lys Asp Pro Gin Glu Ile Leu Aen Glu
145 150 155 160
Aen Phe Val Val Pro Tyr Gly Thr Pro Leu Ser Val Aen Phe Gly Pro
165 170 175
Thr Val Asp Gly Asp Phe Leu Thr Asp Met Pro Aen Ile Leu Leu Glu
180 185 190
Leu Gly Gin Phe Lys Lys Thr Gin Ile Leu Val Gly Val Aen Lys Asp
195 200 205
Glu Gly Thr Trp Phe Leu Val Gly Gly Ala Pro Gly Phe Ser Lys Aen
210 215 220
Aen Aen Ser Ile Ile Thr Arg Lys Glu Phe Gin Glu Glu Leu Lys
225 230 235 240
Phe Phe Pro Gly Val Ser Glu Phe Gly Lys Glu Ser Ile Leu Phe His
245 250 255
Tyr Thr Asp Trp Val Asp Gin Aen Pro Glu Aen Tyr Arg Glu Ala
260 265 270
Leu Gly Asp Val Val Gly Asp Tyr Asn Phe Ile Cys Pro Ala Leu Glu
275 280 285
Phe Thr Lys Phe Ser Glu Trp Gly Aen Aen Ala Phe Phe Tyr Tyr
290 295 300
Phe Glu His Arg Ser Ser Lys Leu Pro Trp Pro Glu Trp Met Gly Val
305 310 315 320
Met His

<210> SEQ ID NO 7
<211> LENGTH: 1722
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 14-2 mutant [A199S/P227A/A328W/Y332G] BCHE, full nucleic acid sequence
<400> SEQUENCE: 7
gaagatgaca tctataattgc aacaasagat ggaaagctca gagggatgaa cttgacagt
60
ttttgtgca cggtaaagct cttctctgga attcctcatg cacagccacc tcttgctga
120
cctcagattca aaagccaca gtcctctgcac aagtggcctg atatctgaga tgccacaaaa
180	atgcagaattt ctcagctgca gcaactagat caagttttttc cagaccttca tggatcagag
240
tagctgacc caaaccactga cctcagtgaa gactgttat atctaaatgt atggattcc
300
<210> SEQ ID NO 8
<211> LENGTH: 574
<212> TYPE: PRT
<213> ORGANISM: Artificial
<214> FEATURE:
<220> OTHER INFORMATION: 14-2 mutant (A199S/F227A/A320W/Y332G), full nucleic acid sequence

<400> SEQUENCE: 8

Glu Asp Asp Ile Ile Ile Ala Thr Lys Asn Gly Lys Val Arg Gly Met
1 5 10 15

Asn Leu Thr Val Phe Gly Gly Thr Val Thr Ala Phe Leu Gly Ile Pro
20 25 30

Tyr Ala Gln Pro Pro Leu Gly Arg Leu Arg Phe Lys Pro Gln Ser
35 40 45

Leu Thr Lys Thr Ser Asp Ile Thr Asn Ala Thr Lys Tyr Ala Asn Ser
50 55 60

Cys Cys Gln Asn Ile Asp Gln Ser Phe Pro Gly Phe His Gly Ser Glu
65 70 75 80

Met Trp Asn Pro Asn Thr Asp Leu Ser Glu Asp Cys Leu Tyr Leu Asn
85 90 95

Val Trp Ile Pro Ala Pro Pro Lys Pro Lys Asn Ala Thr Val Leu Ile Trp
Ile Tyr Gly Gly Gly Phe Gln Thr Gly Thr Ser Ser Leu His Val Tyr
Asp Gly Lys Phe Leu Ala Arg Val Glu Arg Val Val Val Ser Met
Asn Tyr Arg Val Gly Ala Leu Gly Phe Leu Ala Leu Pro Gly Asn Pro
Glu Ala Pro Gly Asn Met Gly Leu Phe Asp Glu Gin Gin Leu Ala Leu Gin
Trp Val Gin Lys Asn Ile Ala Ala Phe Gly Gly Asn Pro Lys Ser Val
Thr Leu Phe Gly Glu Ser Ser Gly Ala Ala Ala Ser Val Ser Leu His Leu
Leu Ser Pro Gly Ser His Ser Leu Phe Thr Arg Ala Ile Leu Gin Ser
Gly Ser Ala Asn Ala Pro Trp Ala Val Thr Ser Leu Tyr Glu Ala Arg
Asn Arg Thr Leu Asn Leu Ala Lys Leu Thr Gly Cys Ser Arg Glu Asn
Glu Thr Glu Ile Ile Lys Cys Arg Asn Lys Asp Pro Gin Glu Glu Ile
Leu Leu Asn Glu Ala Phe Val Val Pro Tyr Glu Thr Pro Leu Ser Val
Asn Phe Gly Pro Thr Val Asp Gly Asp Phe Leu Thr Asp Met Pro Asp
Ile Leu Leu Glu Leu Gly Gin Phe Lys Lys Thr Gin Ile Leu Val Gly
Val Asn Lys Asp Glu Gly Thr Trp Phe Leu Val Gly Gly Ala Pro Gly
Phe Ser Lys Asp Asn Ser Ile Ile Thr Arg Lys Glu Phe Gin Glu
Gly Leu Lys Ile Phe Phe Pro Gly Val Ser Glu Phe Gly Lys Glu Ser
Ile Leu Phe His Tyr Thr Asp Thr Val Asp Asp Gin Arg Pro Glu Asn
Tyr Arg Glu Ala Leu Gly Asp Val Val Gly Asp Tyr Asn Phe Ile Cys
Pro Ala Leu Glu Phe Thr Lys Phe Ser Glu Thr Gin Asn Ala
Phe Phe Tyr Tyr Phe Glu His Arg Ser Ser Lys Leu Pro Trp Pro Glu
Trp Met Gin Val Met His Gin Tyr Glu Ile Glu Phe Val Phe Gly Leu
Pro Leu Glu Arg Arg Asn Tyr Lys Ala Glu Glu Ile Leu Ser
Arg Ser Ile Val Lys Arg Trp Ala Asn Phe Ala Lys Tyr Gly Asn Pro
Asn Glu Thr Gin Asn Ser Thr Ser Thr Pro Val Phe Lys Ser Thr
Glu Gin Lys Tyr Leu Thr Leu Asn Thr Glu Ser Thr Arg Ile Met Thr
Lys Leu Arg Ala Gin Gin Cys Arg Phe Thr Thr Ser Phe Phe Pro Lys
Val Leu Glu Met Thr Gly Asn Ile Asp Glu Ala Glu Trp Glu Trp Lys
530 535 540
Ala Gly Phe His Arg Trp Asn Tyr Met Met Asp Trp Lys Asn Glu
545 550 555 560
Phe Asn Asp Tyr Thr Ser Lys Glu Ser Cys Val Gly Leu
565 570

<210> SEQ ID NO 9
<211> LENGTH: 1125
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 14-2 mutant [A199/F227A/A328W/Y332G] BChE nucleic acid sequence for a.a. residues 68-442

<400> SEQUENCE: 9
aacataagtc aagtttttcc aggctccat ggatacaga tggtaaacc aaacactgac 60
cctcagtaag actgttttta tctaatgtg tggatccag ccaatcacc aaaaaatgcc 120
actgttga taattgattta tgggctggcc tttccagctg gacatcattc gttcaggtg 180
tataaggca aacagtctct ctggttctgg gggtatggag aagtgattt gatgtgctat gaatctagg 240
gtgggttcag tagatctct acagttgcca ggaatatcctgc aggtccaggg gaactatggtg 300
atatgttgg aacagtctct ctggttctgg gggtatggag aagtgattg gatgtgctat gaatctagg 360
aatcctaaag gttgctaacct ttctcgagca agttcgggag cagcttctg tggctgctg 420
tttccttcct tcggagcgcc ttcagttgcttt accagagcgc ttcgctcagag tcgctgctg 480
aatgctctgt gggctgcacc atctttcttat ggaatctgga acagacgctt gaaatctgtg 540
aatggactgt gtctctctag agaagagct actgaaattaa tcaagtgtct tgaataataaa 600
gatcaccagc aatattctctt gaatgagct ctctccggtc tgcctctgca 660
gtcaacctgc gttctctgctt gcggctggta tctctctgct ctgctcagga ctaattttctc 720
gaacatggc aatattcaga aaccagacg ttgtgctgctttt aaaaagaag tgaaggggcata 780
tgtctattcg tggctttgctg tgtgctcattc agctaaacga acaattattt catatcagaa 840
aaagacttgc aacagctttt aaaaaatactt ttcctggagag ttggatgatt ggaagaagga 900
tccatcctt tccatattc aatcactgctgata cagcctggtagc actcggctgg 960
gocctggctt aagccttgct cctcattgct cctgcgtctgg gctcagagcag 1020
aagctctcag aagctggagaa ttaactgttt tctactattt tgaaccaccc atctctcaca 1080
cctcctctgac cagatcgcag cggagctctg atcgctctac agat 1125

<210> SEQ ID NO 10
<211> LENGTH: 375
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 14-2 mutant [A199S/F227A/A328W/Y332G] BChE amino acid sequence for residues 68-442

<400> SEQUENCE: 10
An Ile Asp Gln Ser Phe Pro Gly Phe His Gly Ser Glu Met Trp Asn
1 5 10 15
Pro Asn Thr Asp Leu Ser Glu Asp Cys Leu Tyr Leu Asn Val Trp Ile
20 25 30
Pro Ala Pro Lys Pro Lys An Ile Thr Val Leu Ile Trp Ile Tyr Gly
35 40 45
<table>
<thead>
<tr>
<th>Gly Gly Phe Gln Thr Gly Thr Ser Ser Leu His Val Tyr Asp Gly Lys</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
</tr>
<tr>
<td>55</td>
</tr>
<tr>
<td>Phe Leu Ala Arg Val Glu Arg Val Ile Val Val Ser Met Asn Tyr Arg</td>
</tr>
<tr>
<td>65</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>Val Gly Ala Leu Gly Phe Leu Ala Leu Pro Gly Asn Pro Glu Ala Pro</td>
</tr>
<tr>
<td>85</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>Gly Asn Met Gly Leu Phe Asp Gln Gln Leu Ala Leu Gln Trp Val Gln</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>105</td>
</tr>
<tr>
<td>Lys Asn Ile Ala Ala Phe Gly Gln Leu Ser Val Thr Leu Phe</td>
</tr>
<tr>
<td>115</td>
</tr>
<tr>
<td>120</td>
</tr>
<tr>
<td>125</td>
</tr>
<tr>
<td>Gly Glu Ser Ser Gly Ala Ala Ser Ser Leu His Leu Leu Ser Pro</td>
</tr>
<tr>
<td>130</td>
</tr>
<tr>
<td>135</td>
</tr>
<tr>
<td>140</td>
</tr>
<tr>
<td>Gly Ser His Leu Phe Thr Arg Ala Ile Leu Gln Ser Gly Ser Ala</td>
</tr>
<tr>
<td>145</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>155</td>
</tr>
<tr>
<td>160</td>
</tr>
<tr>
<td>Asn Ala Pro Trp Ala Val Thr Ser Leu Tyr Gln Ala Arg Asn Arg Thr</td>
</tr>
<tr>
<td>165</td>
</tr>
<tr>
<td>170</td>
</tr>
<tr>
<td>175</td>
</tr>
<tr>
<td>Leu Asn Leu Ala Lys Leu Thr Gly Cys Ser Arg Gln Asn Glu Thr Glu</td>
</tr>
<tr>
<td>180</td>
</tr>
<tr>
<td>185</td>
</tr>
<tr>
<td>190</td>
</tr>
<tr>
<td>Ile Ile Lys Cys Leu Arg Asn Lys Asp Pro Gln Glu Ile Leu Leu Aan</td>
</tr>
<tr>
<td>195</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>205</td>
</tr>
<tr>
<td>Glu Ala Phe Val Val Pro Tyr Gly Thr Pro Leu Ser Val Asn Phe Gly</td>
</tr>
<tr>
<td>210</td>
</tr>
<tr>
<td>215</td>
</tr>
<tr>
<td>220</td>
</tr>
<tr>
<td>Pro Thr Val Asp Gly Asp Phe Leu Thr Asp Met Pro Asp Ile Leu Leu</td>
</tr>
<tr>
<td>225</td>
</tr>
<tr>
<td>230</td>
</tr>
<tr>
<td>235</td>
</tr>
<tr>
<td>240</td>
</tr>
<tr>
<td>Glu Leu Gly Gln Phe Lys Thr Gln Ile Leu Val Gly Val Asn Lye</td>
</tr>
<tr>
<td>245</td>
</tr>
<tr>
<td>250</td>
</tr>
<tr>
<td>255</td>
</tr>
<tr>
<td>Asp Glu Gly Thr Trp Phe Leu Val Gly Ala Pro Gly Phe Ser Lys</td>
</tr>
<tr>
<td>260</td>
</tr>
<tr>
<td>265</td>
</tr>
<tr>
<td>270</td>
</tr>
<tr>
<td>Asp Asn Asn Ser Ile Ile Thr Arg Lys Glu Phe Gln Glu Gly Leu Lye</td>
</tr>
<tr>
<td>275</td>
</tr>
<tr>
<td>280</td>
</tr>
<tr>
<td>285</td>
</tr>
<tr>
<td>Ile Phe Phe Pro Gly Val Ser Glu Phe Gly Lys Glu Ser Ile Leu Phe</td>
</tr>
<tr>
<td>290</td>
</tr>
<tr>
<td>295</td>
</tr>
<tr>
<td>300</td>
</tr>
<tr>
<td>His Tyr Thr Asp Trp Val Asp Asp Gln Arg Pro Glu Asn Tyr Arg Glu</td>
</tr>
<tr>
<td>305</td>
</tr>
<tr>
<td>310</td>
</tr>
<tr>
<td>315</td>
</tr>
<tr>
<td>320</td>
</tr>
<tr>
<td>Ala Leu Gly Asp Val Val Gly Asp Tyr Asp Ile Cys Pro Ala Leu</td>
</tr>
<tr>
<td>325</td>
</tr>
<tr>
<td>330</td>
</tr>
<tr>
<td>335</td>
</tr>
<tr>
<td>Glu Phe Thr Lys Phe Ser Glu Trp Gly Asn Ala Phe Phe Tyrr</td>
</tr>
<tr>
<td>340</td>
</tr>
<tr>
<td>345</td>
</tr>
<tr>
<td>350</td>
</tr>
<tr>
<td>Tyr Phe Glu His Arg Ser Ser Lys Leu Pro Trp Pro Glu Trp Met Gly</td>
</tr>
<tr>
<td>355</td>
</tr>
<tr>
<td>360</td>
</tr>
<tr>
<td>365</td>
</tr>
<tr>
<td>Val Met His Gly Tyr Glu Ile</td>
</tr>
<tr>
<td>370</td>
</tr>
<tr>
<td>375</td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 11
<211> LENGTH: 966
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 14-2 mutant [A199S/P227A/A328W/Y332G] BChE
 amino acid sequence for residues 117-438
<400> SEQUENCE: 11

```
agtatatgg gcagttttct tggagttaaat cagctagtctg ctgactgct
```

tgggtctaa aatatatgc agcttttgct ggaatctctta aagtgaacag tctctttgga 240
gaaagctccg gagcagcttc agttgccttg cttctgtgaaatc caattcattg 300
tccacagag ccaatctcga aagtgttcttc gataatgctg cttcgccgctg acacatcttt 360
ttagaagcta gaacagcag tggaaaccc agaaatggcc cttggtacc gaaatgacaat 420
gagaacctaa taacatacgct ctcttacaagt aagaaatcct cttgtaacaaat 490
gcattttgtg ttccctatgg gactcccctgg tcagaaact tgggtccagac ctcggtatgtg 540
gatttttcac tggccacagc gagaatattttga cttgaactttg gcacaaattta aaaacccagg 600
atctgtgcg gttgtaataa agatgaaggg acatggttttt tagctggttgg tggctctggc 660
tccagcaag ataacacaggt tatcatatac actgaaacag ttcaggaagg ttttaaaaatt 720

 tirttttcagg gtaggtacta gttgggaaag gaaatcctcc ttctttcattt cagacagcttg 780
gttgagatgc agagacggct agcatcctgg gcctggcttg gcgggtattat 840
aatctcgtg ccctgtcctt ggctgctaccc aagaaggtct ccaatgggga aattatgcct 900

 ttttttctt ctgttctgcc aacaatattttgg cttgaacgctg ggccttcgctt tattcattcctg 960
atcct 966

<210> SEQ ID NO 12
<211> LENGTH: 322
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<400> SEQUENCE: 12

Gly Phe Gln Thr Gly Thr Ser Ser Leu His Val Tyr Asp Gly Lys Phe
1 5 10 15
Leu Ala Arg Val Glu Arg Val Ile Val Val Ser Met Aen Tyr Arg Val
20 25 30
Gly Ala Leu Gly Phe Leu Ala Leu Pro Gly Aen Pro Gla Ala Pro Gly
35 40 45
Asn Met Gly Leu Phe Asp Gln Gln Leu Ala Leu Gln Tryp Val Gln Lys
50 55 60
Asn Ile Ala Ala Phe Gly Gly Aen Pro Lys Ser Val Thr Leu Phe Gly
65 70 75 80
Glu Ser Ser Gly Ala Ala Ser Val Ser Leu His Leu Leu Ser Pro Gly
85 90 95
Ser His Ser Leu Phe Thr Arg Ala Ile Leu Gln Ser Gly Ser Ala Aen
100 105 110
Ala Pro Tryp Ala Val Thr Ser Leu Tyr Glu Ala Arg Aen Arg Thr Leu
115 120 125
Asn Leu Ala Lys Leu Thr Gly Cys Ser Arg Glu Aen Glu Thr Glu Ile
130 135 140
Ile Lys Cys Leu Arg Aen Lys Asp Pro Gln Glu Ile Leu Leu Aen Glu
145 150 155 160
Ala Phe Val Val Pro Tyr Gly Thr Pro Leu Ser Val Aen Phe Gly Pro
165 170 175
Thr Val Asp Gly Asp Phe Leu Thr Aep Met Pro Ape Ile Leu Leu Glu
180 185 190
Leu Gly Gln Phe Lys Lys Thr Gln Ile Leu Val Gly Val Aen Lys Aep
195 200 205
Glu Gly Thr Trp Phe Leu Val Gly Gly Ala Pro Gly Phe Ser Lys Asp
210 215 220
Asn Asn Ser Ile Ile Thr Arg Lys Glu Phe Gin Glu gly Leu Lys Ile
225 230 235 240
Phe Phe Pro Gly Val Ser Glu Phe Gly Lys Glu Ser Ile Leu Phe His
245 250 255
Tyr Thr Asp Trp Val Asp Asp Gin Arg Pro Glu Asn Tyr Arg Glu Ala
260 265 270
Leu Gly Asp Val Val Gly Asp Tyr Asn Phe Ile Cys Pro Ala Leu Glu
275 280 285
Phe Thr Lys Phe Ser Glu Trp Gly Asn Asn Ala Phe Phe Tyr Tyr
290 295 300
Phe Glu His Arg Ser Ser Lys Leu Pro Trp Pro Glu Trp Met Gly Val
305 310 315 320
Met His

<210> SEQ ID NO 13
<211> LENGTH: 1722
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 14-3 mutant [A199S/S287Q/A328W/Y332G] BChE nucleic acid sequence

<400> SEQUENCE: 13

gaagatgaca tcataattgc aaacaagat ggaaaaatca gagggtgaa cttgacagt 60
tttggtccg cgtgaacag ccctcatcttg caacacccaag cttggtgag 120
cctcattca aaaaaaacca gttctgtgac aagttgcttg atatatttgaa tggcaaaaaa 180
tatgcaaaat cttgcttcag gcacatgat caagtttttc caggcctccaa tggatcagag 240
agtgtaaccc caaacaacct cctccagtgaa gacttttatt atcaaaatgt atggtcttca 300
gcaccaatc caaaaaaattc cactttattg atagttggttaa ttttttaaatc 360
ggaacactct ctttacagt ttatgtggtg cagtttccttg gttggtttaa aagagtattt 420
gtagttcag tgaactctag gttggtgccc cttgccatct tagctgctggc aggaatcatt 480
gaggtctcag ggaaccgtag tttatttgat caacatggtg ctctctggag tggctaaaaaa 540
aatatacgac cttttagctcc ccaacattttaa agtgaacttc cttttggtgaa aagttccgga 600
gaeagctctg cttggtctggc tttttctcttg ctttgaagcc atctttgtgt ccacacgacc 660
attctggttctg ctttattttct tggcgtctga ctatctttta acaattttata 720
aacagaacgt tgaactctgg taaattttgt gttgctctga gagaataata gacgtgaaata 780
atcaagctgc ttagaatctctt caaatccacag cagttgatctg atttggtgctgc 840
ccttggga taattttttc tggtaaaatg tggccctaccc gttggtaccc tttttctcct 900
gacagctgac acaatatctgt gtaacatggca cttttaaaatg ccdcaggtgaattttggtg 960
gtttaataag atgaagggac atgttttttt ctgttgcttggt ctctctgtct gcaacgaatg 1020
ataaattgtc ctatactcg aaaaagatct caggaaggtct ctaaaattct ttctcagga 1080
gttgctttctg tgggaaggtg atttcctctct tttcactaca cagactggatg atagctcgag 1140
agactgtgac atcagctgac ggcctttgag gatgttgttg gggattattaa ttttatctgc 1200
cctgctttgtt tgtgctcaca gaatgcttga gagaattggcata ataatccttt tttttcttct 1260
tttgaaaccg ctatctgctg cattcaatggt cgggtgtgct gctggcttat gctgctttct 1320
ggaatatgt tgggttgtgttgt gcaccagag agatatttctacttatcag aaaaagcagag 1380
Glu Aep Asp Ile Ile Ala Thr Lys Aan Gly Lys Val Arg Gly Met
1 5 10 15

Asn Leu Thr Val Phe Gly Gly Thr Val Thr Ala Phe Leu Gly Ile Pro
20 25 30

Tyr Ala Gln Pro Pro Leu Gly Arg Leu Arg Phe Lys Pro Gln Ser
36 40 45

Leu Thr Lys Trp Ser Asp Ile Trp Asn Ala Thr Lys Tyr Ala Aan Ser
50 55 60

Cys Cys Gln Aan Ile Asp Gln Ser Phe Pro Gly Phe His Gly Ser Glu
65 70 75 80

Met Trp Aan Pro Aan Thr Aep Leu Ser Gly Asp Cys Leu Tyr Leu Aan
85 90 95

Val Trp Ile Pro Ala Pro Lys Aan Ala Thr Val Leu Ile Trp
100 105 110

Ile Tyr Gly Gly Gly Phe Gin Thr Gly Thr Ser Leu Ser Leu His Val Tyr
115 120 125

Aep Gly Lys Phe Leu Ala Aep Val Glu Arg Val Ile Val Val Ser Met
130 135 140

Aan Tyr Arg Val Gly Ala Leu Gly Phe Leu Ala Leu Pro Gly Aen Pro
145 150 155 160

Glu Ala Pro Gly Aen Met Gly Leu Phe Aep Gin Gin Leu Ala Leu Gin
165 170 175

Trp Val Gin Lys Aan Ile Ala Ala Phe Gly Gly Aan Pro Lys Ser Val
180 185 190

Thr Leu Phe Gly Glu Ser Ser Gly Ala Ala Ser Val Ser Leu His Leu
195 200 205

Leu Ser Pro Gly Ser His Ser Leu Phe Thr Arg Ala Ile Leu Gin Ser
210 215 220

Gly Ser Phe Aan Ala Pro Trp Ala Val Thr Ser Leu Tyr Glu Ala Arg
225 230 235 240

Aan Arg Thr Leu Aan Ala Lys Leu Thr Gly Cys Ser Arg Gly Aen
245 250 255

Glu Thr Glu Ile Ile Lys Cys Arg Aen Lys Aep Gin Gin Glu Ile
260 265 270

Leu Leu Aan Glu Ala Phe Val Val Pro Tyr Gly Tyr Thr Pro Leu Gly Val
275 280 285

Aan Phe Gly Pro Thr Val Aep Gly Aep Phe Leu Thr Aep Met Pro Aep
Ile Leu Leu Glu Leu Gly Gin Phe Lys Lys Thr Gin Ile Leu Val Gly
305 310 315 320
Val Asn Lys Asp Gly Lys Thr Trp Phe Leu Val Gly Gin Ala Pro Gin
325 330 335
Phe Ser Lys Asp Asn Gin Ser Ile Gin Thr Arg Lys Glu Phe Gin Glu
340 345 350
Gly Leu Lys Ile Gin Phe Pro Gly Val Ser Gin Phe Gin Lys Gin Ser
355 360 365
Ile Leu Gin His Tyr Thr Asp Trp Val Gin Gin Gin Arg Pro Gin Gin
370 375 380
Tyr Gin Gin Lea Gin Gin Asp Gin Gin Gin Gin Gin Gin Gin Ser Gin
385 390 395 400
Pro Gin Gin
405 410 415
Phe Gin Gin
420 425 430
Trp Gin Gin
440 445
Pro Gin Gin
455 460
Arg Gin Gin
470 475 480
Asn Gin Thr Gin Gin
485 490 495
Gln Gin Gin
500 505 510
Lys Gin Gin
515 520 525
Val Gin Met Gin Gin
530 535 540
 Ala Gin Gin
545 550 555 560
Phe Gin Gin
565 570

<210> SEQ ID NO 15
<211> LENGTH: 1125
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 14-3 mutant [A199S/S287G/A328W/Y332G] BChE
nucleic acid sequence for amino acid residues 68-442
<400> SEQUENCE: 15

aacaatgctac aasegttctcc aggcttcgac attctgcag aagatccgc ctgtaaccac gagaacgtgac 60
cagctgtgag aacggttcta accaatatg cgccacaaacc aaaaaaatgcc 120
aacgttacg agtagttacttc ttcgagattc gacctcag cactaaccct gataacagtta 180
tagctggcag aagctgcggc ctcgagatcc gacctgagc 240
tgttcggtgcc tgtgagttctc aagacctgac 300
tatcttcgtat acagatccgt ctgtgcttgac atatctgctg 360
atctgacttc atctgtgcgt ctgctga actctctact atctgctctgtct 420
tgtggagttt cctctgagc aacc tctcagat cttgctcttt 480
aattgctcct gggcgttaac atctcttttat gaagctagga acagaacgtt gaaacttagt
 540
aattgactcgttgtctcgctcag agagaatgag actgaasdfa tcaagtgtcott tagaataaaa
 600
gatcoccag aatactctaaa gaaatgagaat tttgttgtccc cttatgggac tctctttggg
ttaaaacttttg ttctggccgtc tccctgcttc agcaagaaaaa acatataagtaga tatacaactga
 720
gaacctggac aatttattaaaa aacaaccttatt ttagtggtggtt taataaagaa aaaaagggacc
 900
tctatctctt ttcattaacag aagctgggtt aagctgtaaagac gatcctgaaaa ctacccgtggag
 960
gctctgggttaggctgtaaagtc gattataat ttcatatgcc gctctgtggag gttccaccaag
 1020
aagttcctcg aatgggggaa taatgctcttt ttcactttatt ttgacacccct atctctccaaa
 1080
cctcgttcggc cagagatgtg catggtgcatg aaatt
 1105
<210> SEQ ID NO 16
<211> LENGTH: 375
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 14-3 mutant [A199S/S287G/A328W/Y332G] BChE
 amino acid sequence for residues 68-442

<400> SEQUENCE: 16

Asm Ile Asp Gln Ser Phe Pro Gly Phe His Gly Ser Glu Met Trp Asn
 1 5 10 15
Pro Asn Thr Asp Leu Ser Glu Asp Cys Leu Tyr Leu Asn Val Trp Ile
 20 25 30
Pro Ala Pro Lys Pro Lys Asn Ala Thr Val Leu Ile Trp Ile Tyr Gly
 35 40 45
Gly Gly Phe Glu Thr Gly Thr Ser Ser Leu His Val Tyr Asp Gly Lys
 50 55 60
Phe Leu Ala Arg Val Glu Arg Val Ile Val Val Ser Met Asn Tyr Arg
 65 70 75 80
Val Gly Ala Leu Gly Phe Leu Ala Leu Pro Gly Asn Pro Glu Ala Pro
 95 90 95
Gly Asn Met Gly Leu Phe Asp Gln Glu Leu Ala Leu Glu Trp Val Gln
100 105 110
Lys Asn Ile Ala Ala Phe Gly Gly Asn Pro Lys Ser Val Thr Leu Phe
115 120 125
Gly GLU Ser Ser Gly Ala Ser Val Ser Leu His Leu Leu Ser Pro
130 135 140
Gly Ser His Ser Leu Phe Thr Arg Ala Ile Leu Glu Ser Gly Ser Phe
145 150 155 160
Asn Ala Pro Trp Ala Val Thr Ser Leu Tyr Glu Ala Arg Asn Arg Thr
165 170 175
Leu Asn Leu Ala Lys Leu Thr Gly Cys Ser Arg Glu Asn Glu Thr Glu
180 185 190
Ile Ile Lys Cys Leu Arg Asn Lys Asp Pro Glu Glu Ile Leu Leu Asn
195 200 205
Glu Ala Phe Val Val Pro Tyr Gly Thr Pro Leu Gly Val Asn Phe Gly
210 215 220
Pro Thr Val Asp Gly Asp Phe Leu Thr Asp Met Pro Asp Ile Leu Leu
225 230 235 240
-continued

Glu Leu Gly Gln Phe Lys Lys Thr Gln Ile Leu Val Gly Val Aen Lys
245 250 255
Asp Glu Gly Thr Phe Leu Val Gly Gly Ala Pro Gly Phe Ser Lys
260 265 270
Asp Aen Aen Ser Ile Ile Thr Arg Lys Glu Phe Gln Glu Gly Leu Lys
275 280 285 290
Ile Phe Phe Pro Gly Val Ser Glu Phe Gly Lys Gly Ser Ile Leu Phe
295 300
His Tyr Thr Asp Trp Val Asp Gly Arg Pro Gly Aen Tyr Arg Glu
305 310 315 320
Ala Leu Gly Asp Val Val Gly Asp Tyr Aen Phe Ile Cys Pro Ala Leu
325 330 335
Glu Phe Thr Lys Phe Ser Gly Thr Gly Asn Ala Phe Phe Tyr
340 345 350
Tyr Phe Glu His Arg Ser Ser Lys Leu Pro Trp Pro Gly Trp Met Gly
355 360 365
Val Met His Gly Tyr Glu Ile
370 375

<210> SEQ ID NO 17
<211> LENGTH: 966
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 14-3 mutant (A199S/G287G/A328W/Y332G) BChE
nucleic acid sequence for amino acid residues 117-418

<400> SEQUENCE: 17

GTTTTTCAAA CTTGAAATAC TCTTTTACAT GTTTTATGAT GCAAGTTTCT GCTTTCTCTTT

60
GAAGAAGTGA TTGAGAGTTG AGTGAACAT GAGTGGTTG CGCTGAGTTT CTTAGTTTG
120
CCAGGAATC CTGTGCTCC AGGGAACTG GTTTATTTTG ATCAACAGTT GCTTTCCAG
180
TGTTTCAAA AAAAAATACG AGGCTCTGTG GGAATCTCTA AAAGTGAAC TCTCTTGGGA
240
GAAGATCCTG GCCGCTGTCC CATTGTTCT CCTCTGGAAG CGCTCTATTG
300
TTCGACAG GCATTCTGC ACCTCTGTTCC TTTAAGCTG TCGGCCTG AGACCTCTT
360
tatgaagct ggaacagagc gttgaaactt cttggttcg tcggctctac tagacagat
420
agaagctgaa tatagtacag ttcatagcat aaagatcccc aagaaacctt tctgtgagaa
480
GCTTTTGGTG GACTTCTGCT GACTGCTGTT CCTGGAGAAC GTTGGTTGCTA
540
GAGTTTCTCA TCTGACTGCC AGACATATT AAGAACATTCA CACATTTAAA AAAACCCAG
600
ATTTTGGTGG GAATCAATTG ACATTGCTG GTTATGTGTTG GCCTGGTCTG
660
TGCGACAGAA ATACATATAC GCAAGATCTG TCCGAGAAGT TCTCAAAATT
720
TTTCTTCTGG GAGTGACCG GGTGGGAAGA AGGCCATCC TTTTCTTTA CACAGACTG
780
GTAGTCGAC AGACGAGCAC AAACACGCTG GCCGCTGGTG TGGGATTAT
840
AAATTCTG CTGGCCTGGG GGGGGCCCA AGAGGCTCT AAGATAAAGG AAGAAATG
900
TTCCTTTGCT ATTTTGAAGA CAGTATCC AAAGCTGCTG GCAAGAGTTG GCTGTATCT
960
GCTCTC
966

<210> SEQ ID NO 18
<211> LENGTH: 322
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 14-3 mutant (A199S/G287G/A328W/Y332G) BChE
amino acid sequence for residues 117-438

<400> SEQUENCE: 18

Gly Phe Gln Thr Gly Thr Ser Leu His Val Tyr Asp Gly Lys Phe
1 5 10 15
Leu Ala Arg Val Glu Arg Val Val Ser Met Tyr Arg Val
20 25 30
Gly Ala Leu Gly Phe Leu Ala Ala Pro Gly Asn Pro Glu Ala Pro Gly
35 40 45
Asn Met Gly Leu Phe Asp Glu Glu Leu Ala Glu Trp Val Gln Lys
50 55 60
Asn Ile Ala Ala Phe Gly Gly Asn Pro Lys Val Ser Thr Leu Phe Gly
65 70 75 80
Glu Ser Ser Gly Ala Ala Ser Val Ser Leu His Leu Leu Ser Pro Gly
85 90 95
Ser His Ser Leu Phe Thr Arg Ala Ile Leu Gln Ser Gly Ser Phe Asn
100 105 110
Ala Pro Trp Ala Val Thr Ser Leu Tyr Glu Ala Arg Asn Arg Thr Leu
115 120 125
Asn Leu Ala Lys Leu Thr Gly Cys Ser Arg Glu Asn Arg Thr Glu Ile
130 135 140
Ile Lys Cys Leu Arg Asn Lys Asp Pro Glu Ile Leu Leu Asn Glu
145 150 155 160
Ala Phe Val Val Pro Tyr Gly Thr Pro Leu Gly Val Asn Phe Gly Pro
165 170 175
Thr Val Asp Gly Asp Phe Leu Thr Asp Met Pro Asp Ile Leu Leu Glu
180 185 190
Leu Gly Glu Phe Lys Lys Thr Glu Ile Leu Val Gly Val Asn Lys Asp
195 200 205
Glu Thr Trp Phe Leu Val Gly Gly Ala Pro Gly Phe Ser Lys Asp
210 215 220
Asn Asn Ser Ile Ile Thr Arg Lys Glu Phe Glu Glu Gly Leu Ile
225 230 235 240
Phe Phe Pro Gly Val Ser Glu Phe Gly Lys Gly Ser Ile Leu Phe His
245 250 255
Tyr Thr Asp Trp Val Asp Glu Arg Pro Glu Asn Tyr Arg Glu Ala
260 265 270
Leu Gly Asp Val Val Gly Asp Tyr Asn Phe Ile Cys Pro Ala Leu Glu
275 280 285
Phe Thr Lys Phe Ser Glu Trp Gly Asn Asn Ala Phe Phe Tyr Tyr
290 295 300
Phe Glu His Arg Ser Ser Lys Leu Pro Trp Pro Glu Trp Met Gly Val
305 310 315 320
Met His

<210> SEQ ID NO 19
<211> LENGTH: 1722
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 127 mutant [A199S/P227A/S287Q/A320N/Y332G]
BChE nucleic acid sequence

<400> SEQUENCE: 19

gaagatgaca tcataattgc aacaagaat ggaaagtca gaggagtga cttgacagt
-continued

ttgggtga ca cgtaaacga cgccccggca tttcttggga attcctatg caacagcccc ttcctggtag a 120
cctcgatta caaaagccac gccctcggac aegggtgctg atatcgggaa tgcccacaaa 180
tattcaaat ttctgctgca aaagatagac caaagttttc caggtcctca tggatcagag 240
atgtggaacc caacacatcg cctcagtgaa gctctgtttat atccaatagt atggattcca 300
gacccataac caaaaaaga ccactgtattg atacggtttt atgggtcgttg ttcctcaact 360
ggaacatcat ttctcacatg ttcgcatgcc aegttcctgg gtcggtgtga aagagtttt 420
gtgtgcacaa tgaacattag ggtgggtgcc ctaggttctc tagnctttgc agggaaacct 480
gaggtccag ggaacatcggg tttattcag caacagctgg cttctcagtg gttccacaaa 540
aatatagcag cctttgtggg aatccctaaa agttgatcct cttcctgaga aagttcctgg 600
gcaggtctcc ttcagtcgca tttcgtctct cctggagaccc attcattgtt ccaacagccc 660
atcctgaaata gtgcttcgag taatggctct tggggtaaaa ataattttta tgaagctgag 720
aacagaagta gtaaactcag taaatgcgat ggtgtctata gagaagattc cctgtgcataa 780
atacggtcact ttagaaaaaa aacgttttcc tctgatgcaga atttggttgc 840
cctatgggac ctctcttgag ttaaaccctt gttcggaccc tggagttcgga tttcttcact 900
gacagctgac acattattcat tgaacttttga caatctttaaa aacccacagat ttttgctggg 960
gttataaag atgaagggac atggttttttt gttggttttgt ctcctgtcct cagcaagatg 1020
aacatagt caatacaattg aaaaagtattt caggagatgt ttaaattattt tttttctccag 1080
gtgtgagt gttggagagg cttcaattcct cttcaccatc acaagttggtt tggagtctgag 1140
agacgtcggaa acacgtcgtga ggccttggtgc gttgttgtgt gcgggtatattt ttttccatgc 1200
cctcgctttgg agtcctctca gaaattttcg tgaattttcg aatatagctt tttttactat 1260
tttgaacacc gttccctccaa acttcgtgag cctcagttga cggcgatgat gcatgctat 1320
gaaattggaattc ttaaccttggg tttactctcg gaagaagaag ataattacac aaagccgag 1380
gaacattttaa gtagcatcag aagctgaagcg tgggcaaat ttcgaaaaat tgggataca 1440
atagagactc agaagtaatg caacagcttg cccctgttctc aagacgtga taacaaataat 1500
ctaaaccttg aatacagatg aacagaaata aagcogacgct atcgtctgca aataagtcga 1560
tttggcatc aattttttcg aaaaaatttg gaatacagc aataattgga tgaagacgaa 1620
tggggagttg cagcaagctat ccacgctggt gcacatccta ctggagactg gaattacca 1680	tttacagatt ccacagctgttaa gaagaggtgt ttgctgggttc t 1722

<210> SEQ ID NO 20
<211> LENGTH: 574
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 12-7 mutant [A1998/P227A/S287G/A328W/Y332G]

<400> SEQUENCE: 20

Glu Asp Asp Ile Ile Ile Ala Thr Lys Asn Gly Lys Val Arg Gly Met
1 5 10 15

Asn Leu Thr Val Phe Gly Gly Thr Val Thr Ala Phe Leu Gly Ile Pro
20 28 30

Tyr Ala Gln Pro Pro Leu Gly Arg Leu Arg Phe Gly Lys Pro Gln Ser
35 40 45

Leu Thr Lys Trp Ser Asp Ile Trp Asn Ala Thr Lys Tyr Ala Asn Ser
50 55 60
<table>
<thead>
<tr>
<th>Cys</th>
<th>Cys</th>
<th>Glu</th>
<th>Asn</th>
<th>Ile</th>
<th>Asp</th>
<th>Gln</th>
<th>Ser</th>
<th>Phe</th>
<th>Pro</th>
<th>Gly</th>
<th>Phe</th>
<th>His</th>
<th>Gly</th>
<th>Ser</th>
<th>Glu</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>70</td>
<td>75</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Met</td>
<td>Trp</td>
<td>Asn</td>
<td>Pro</td>
<td>Asn</td>
<td>Thr</td>
<td>Asp</td>
<td>Leu</td>
<td>Ser</td>
<td>Glu</td>
<td>Asp</td>
<td>Gln</td>
<td>Ser</td>
<td>Phe</td>
<td>His</td>
<td>Gly</td>
</tr>
<tr>
<td>85</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Trp</td>
<td>Ile</td>
<td>Pro</td>
<td>Ala</td>
<td>Pro</td>
<td>Lys</td>
<td>Pro</td>
<td>Lyu</td>
<td>Asn</td>
<td>Ala</td>
<td>Thr</td>
<td>Val</td>
<td>Leu</td>
<td>Ile</td>
<td>Trp</td>
</tr>
<tr>
<td>100</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Tyr</td>
<td>Gly</td>
<td>Gly</td>
<td>Phe</td>
<td>Gln</td>
<td>Thr</td>
<td>Gly</td>
<td>Thr</td>
<td>Ser</td>
<td>Ser</td>
<td>Leu</td>
<td>His</td>
<td>Val</td>
<td>Tyr</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>Gly</td>
<td>Lys</td>
<td>Phe</td>
<td>Leu</td>
<td>Ala</td>
<td>Arg</td>
<td>Val</td>
<td>Glu</td>
<td>Arg</td>
<td>Val</td>
<td>Ile</td>
<td>Val</td>
<td>Val</td>
<td>Ser</td>
<td>Met</td>
</tr>
<tr>
<td>130</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>Tyr</td>
<td>Arg</td>
<td>Val</td>
<td>Gly</td>
<td>Ala</td>
<td>Leu</td>
<td>Gly</td>
<td>Phe</td>
<td>Leu</td>
<td>Ala</td>
<td>Leu</td>
<td>Pro</td>
<td>Gly</td>
<td>Asn</td>
<td>Pro</td>
</tr>
<tr>
<td>145</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Ala</td>
<td>Pro</td>
<td>Gly</td>
<td>Asn</td>
<td>Met</td>
<td>Gly</td>
<td>Leu</td>
<td>Phe</td>
<td>Asp</td>
<td>Gin</td>
<td>Gin</td>
<td>Gin</td>
<td>Leu</td>
<td>Ala</td>
<td>Leu</td>
</tr>
<tr>
<td>165</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>Trp</td>
<td>Val</td>
<td>Gln</td>
<td>Lys</td>
<td>Asn</td>
<td>Ile</td>
<td>Ala</td>
<td>Ala</td>
<td>Phe</td>
<td>Gly</td>
<td>Gly</td>
<td>Asn</td>
<td>Pro</td>
<td>Lys</td>
<td>Ser</td>
<td>Val</td>
</tr>
<tr>
<td>180</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Leu</td>
<td>Phe</td>
<td>Gly</td>
<td>Glu</td>
<td>Ser</td>
<td>Gly</td>
<td>Ala</td>
<td>Ala</td>
<td>Leu</td>
<td>Ser</td>
<td>Leu</td>
<td>Ser</td>
<td>Leu</td>
<td>His</td>
<td>Leu</td>
</tr>
<tr>
<td>195</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Ser</td>
<td>Pro</td>
<td>Gly</td>
<td>Ser</td>
<td>His</td>
<td>Ser</td>
<td>Leu</td>
<td>Phe</td>
<td>Thr</td>
<td>Arg</td>
<td>Ala</td>
<td>Ile</td>
<td>Leu</td>
<td>Gln</td>
<td>Ser</td>
</tr>
<tr>
<td>210</td>
<td>215</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Ser</td>
<td>Ala</td>
<td>Asn</td>
<td>Ala</td>
<td>Pro</td>
<td>Trp</td>
<td>Ala</td>
<td>Val</td>
<td>Thr</td>
<td>Ser</td>
<td>Leu</td>
<td>Tyr</td>
<td>Ala</td>
<td>Arg</td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Thr</td>
<td>Leu</td>
<td>Asn</td>
<td>Leu</td>
<td>Ala</td>
<td>Lys</td>
<td>Leu</td>
<td>Thr</td>
<td>Gly</td>
<td>Cys</td>
<td>Ser</td>
<td>Arg</td>
<td>Glu</td>
<td>Asn</td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Thr</td>
<td>Glu</td>
<td>Ile</td>
<td>Ile</td>
<td>Lys</td>
<td>Cys</td>
<td>Leu</td>
<td>Arg</td>
<td>Asn</td>
<td>Lys</td>
<td>Asp</td>
<td>Pro</td>
<td>Gin</td>
<td>Glu</td>
<td>Ile</td>
</tr>
<tr>
<td>260</td>
<td>265</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Leu</td>
<td>Asn</td>
<td>Glu</td>
<td>Ala</td>
<td>Phe</td>
<td>Val</td>
<td>Val</td>
<td>Pro</td>
<td>Tyr</td>
<td>Gly</td>
<td>Thr</td>
<td>Pro</td>
<td>Leu</td>
<td>Gly</td>
<td>Val</td>
</tr>
<tr>
<td>275</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>Phe</td>
<td>Gly</td>
<td>Pro</td>
<td>Thr</td>
<td>Val</td>
<td>Asp</td>
<td>Gly</td>
<td>Asp</td>
<td>Phe</td>
<td>Leu</td>
<td>Thr</td>
<td>Asp</td>
<td>Met</td>
<td>Pro</td>
<td>Asp</td>
</tr>
<tr>
<td>290</td>
<td>295</td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Leu</td>
<td>Leu</td>
<td>Glu</td>
<td>Leu</td>
<td>Gln</td>
<td>Phe</td>
<td>Lys</td>
<td>Thr</td>
<td>Gln</td>
<td>Ile</td>
<td>Leu</td>
<td>Val</td>
<td>Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>305</td>
<td>310</td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Asn</td>
<td>Lys</td>
<td>Asp</td>
<td>Glu</td>
<td>Gly</td>
<td>Thr</td>
<td>Trp</td>
<td>Phe</td>
<td>Leu</td>
<td>Val</td>
<td>Gly</td>
<td>Ala</td>
<td>Pro</td>
<td>Gly</td>
<td></td>
</tr>
<tr>
<td>325</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>Ser</td>
<td>Lys</td>
<td>Asp</td>
<td>Asn</td>
<td>Asn</td>
<td>Ser</td>
<td>Lys</td>
<td>Thr</td>
<td>Arg</td>
<td>Lys</td>
<td>Glu</td>
<td>Phe</td>
<td>Gin</td>
<td>Glu</td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>345</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Leu</td>
<td>Lys</td>
<td>Ile</td>
<td>Phe</td>
<td>Phe</td>
<td>Pro</td>
<td>Gly</td>
<td>Val</td>
<td>Ser</td>
<td>Glu</td>
<td>Phe</td>
<td>Gly</td>
<td>Lys</td>
<td>Glu</td>
<td></td>
</tr>
<tr>
<td>355</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Leu</td>
<td>Phe</td>
<td>His</td>
<td>Tyr</td>
<td>Thr</td>
<td>Asp</td>
<td>Trp</td>
<td>Val</td>
<td>Asp</td>
<td>Asp</td>
<td>Gin</td>
<td>Arg</td>
<td>Pro</td>
<td>Glu</td>
<td>Asn</td>
</tr>
<tr>
<td>370</td>
<td>375</td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>Arg</td>
<td>Glu</td>
<td>Ala</td>
<td>Leu</td>
<td>Gly</td>
<td>Asp</td>
<td>Val</td>
<td>Gly</td>
<td>Asp</td>
<td>Tyr</td>
<td>Asn</td>
<td>Phe</td>
<td>Ile</td>
<td>Cys</td>
<td></td>
</tr>
<tr>
<td>385</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Ala</td>
<td>Leu</td>
<td>Glu</td>
<td>Phe</td>
<td>Thr</td>
<td>Lys</td>
<td>Phe</td>
<td>Ser</td>
<td>Glu</td>
<td>Thr</td>
<td>Gln</td>
<td>Asn</td>
<td>Ala</td>
<td></td>
<td></td>
</tr>
<tr>
<td>405</td>
<td>410</td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>Phe</td>
<td>Tyr</td>
<td>Phe</td>
<td>Glu</td>
<td>His</td>
<td>Arg</td>
<td>Ser</td>
<td>Ser</td>
<td>Lys</td>
<td>Leu</td>
<td>Pro</td>
<td>Trp</td>
<td>Pro</td>
<td>Glu</td>
<td></td>
</tr>
<tr>
<td>420</td>
<td>425</td>
<td></td>
</tr>
<tr>
<td>Trp</td>
<td>Met</td>
<td>Gly</td>
<td>Val</td>
<td>Met</td>
<td>His</td>
<td>Gly</td>
<td>Tyr</td>
<td>Glu</td>
<td>Ile</td>
<td>Glu</td>
<td>Phe</td>
<td>Val</td>
<td>Phe</td>
<td>Gly</td>
<td>Leu</td>
</tr>
<tr>
<td>435</td>
<td>440</td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Leu</td>
<td>Glu</td>
<td>Arg</td>
<td>Arg</td>
<td>Asp</td>
<td>Tyr</td>
<td>Thr</td>
<td>Lys</td>
<td>Ala</td>
<td>Gln</td>
<td>Gln</td>
<td>Ile</td>
<td>Leu</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>455</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Ser</td>
<td>Ile</td>
<td>Val</td>
<td>Lys</td>
<td>Arg</td>
<td>Trp</td>
<td>Ala</td>
<td>Asn</td>
<td>Phe</td>
<td>Ala</td>
<td>Lys</td>
<td>Tyr</td>
<td>Gly</td>
<td>Asn</td>
<td>Pro</td>
</tr>
<tr>
<td>465</td>
<td>470</td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>Glu</td>
<td>Thr</td>
<td>Gln</td>
<td>Asn</td>
<td>Asn</td>
<td>Ser</td>
<td>Thr</td>
<td>Ser</td>
<td>Trp</td>
<td>Pro</td>
<td>Val</td>
<td>Phe</td>
<td>Lys</td>
<td>Ser</td>
<td>Thr</td>
</tr>
</tbody>
</table>
<210> SEQ ID NO: 21
<211> LENGTH: 1125
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 12-7 mutant [A199S/F227A/S287G/A328H/Y332G]
BChE nucleic acid sequence for amino acid residues 69-442

<400> SEQUENCE: 21

aacatagact aaagttttcc aggtctccat ggtcatcaga tgtggaaccc aaacagtgc 60
cctagtgaag acgttttaa tctaaatgtg tggatccag caactaaacc aaaaaatgcc 120
acctgattga tgtgtggtgt tgtcacaactg ccacactca tttcactgtt 180
ctagatggca acgtctggcg tgcgggtgaa aagtttactag tagttgcatt ccgaacactag 240
gtgggtcacc tagctccttg agcttgccca ggaaatccttg aggtcctcag ggcactgtgt 300
ttacctgc ttccctcggc gtcataaaaa atlatacagct ctttggtgga 360
aatcctaaa gttctcaact ccggagcaca agttgcagag cggcctcag 420
tttggtctcc ttcgaaacgc ttcattcgtt caccagccct cttgcaagag tggctcgcct 480
aatgctctct gggcggtaac atcccttcat ttgacaaggttc acaacagctt gacacctgtct 540
aaattgatggt tttgctttag taggaaagtct tagaactaata ctatttctct ttagaataaa 600
gattcccaaa aaattctctt cattgaacca gtggttcatt cctacttttg 660
gattctggc aaatttttc aacctcaattt tgggtggttg tttttaaggtc tggagggaca 720
tgatttttac tgcgggtgc ttcggtggttc cggagagatt cacaatagttagtt ctaattaataa 800
aaagaataac aggggtttttttt ttcggagttttt ggaagtttttt tggagagggtg 900
ttcatacttttt tccatttaac cagctggtgc taaaaaagttctgaaacc tctagttttgtgctgactcattc 1020
aaatctgtcg aggagggaga aatacttttttttt tggatagggagc taaaagttggc 1125
-continued

Pro Asn Thr Asp Leu Ser Glu Asp Cys Leu Tyr Leu Asn Val Trp Ile 20 25 30
Pro Ala Pro Lys Pro Lys Asn Ala Thr Val Leu Ile Trp Ile Tyr Gly 35 40 45
Gly Lys Phe Lys Thr Gly Thr Ser Ser Leu His Val Tyr Asp Gly Lys 50 55 60
Phe Leu Ala Arg Val Glu Arg Val Ile Val Val Ser Met Asn Tyr Arg 65 70 75 80
Val Gly Ala Leu Gly Phe Leu Ala Leu Pro Gly Asn Pro Glu Ala Pro 85 90 95
Gly Asn Met Gly Leu Phe Asp Gin Gln Leu Ala Leu Gln Trp Val Gln 100 105 110
Lys Asn Ile Ala Ala Phe Gly Asn Pro Lys Ser Val Thr Leu Phe 115 120 125
Gly Asn Ser Ser Gly Ala Ala Ser Val Ser Leu His Leu Leu Ser Pro 130 135 140
Gly Ser His Ser Leu Phe Thr Arg Ala Ile Leu Gln Ser Gly Ser Ala 145 150 155 160
Asn Ala Pro Trp Ala Val Thr Ser Leu Tyr Glu Ala Arg Asn Arg Thr 165 170 175
Leu Asn Leu Ala Lys Leu Thr Gly Cys Ser Arg Glu Asn Glu Thr Glu 180 185 190
Ile Ile Lys Cys Leu Arg Asn Lys Asp Pro Gin Glu Ile Leu Leu Asn 195 200 205
Glu Ala Phe Val Val Pro Tyr Gly Thr Pro Leu Gly Val Asn Phe Gly 210 215 220
Pro Thr Val Asp Gly Asp Phe Leu Thr Asp Met Pro Asp Ile Leu Leu 225 230 235 240
Glu Leu Gly Gin Phe Lys Thr Gin Ile Leu Val Gly Val Asn Lys 245 250 255
Asp Glu Gly Thr Trp Phe Leu Val Gly Gly Ala Pro Gly Phe Ser Lys 260 265 270
Asp Asn Ser Ser Ile Ile Thr Arg Lys Glu Phe Gin Glu Gly Leu Lys 275 280 285
Ile Phe Phe Pro Gly Val Ser Glu Phe Gly Lys GluSer Ile Leu Phe 290 295 300
His Tyr Thr Asp Trp Val Asp Gin Arg Pro Glu Asn Tyr Arg Glu 305 310 315 320
Ala Leu Gly Asp Val Val Gly Asp Tyr Asn Phe Ile Cys Pro Ala Leu 325 330 335
Glu Phe Thr Lys Lys Phe Ser Glu Trp Gly Asn Ala Phe Phe Tyr 340 345 350
Tyr Phe Glu His Arg Ser Ser Lys Leu Pro Trp Pro Glu Trp Met Gly 355 360 365
Val Met His Gly Tyr Glu Ile 370 375

<210> SEQ ID NO: 23
<211> LENGTH: 966
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 12-7 mutant [A199S/P227A/S287G/A328N/Y332G]
BCHE nucleic acid sequence for amino acid residues 117-438
<table>
<thead>
<tr>
<th>Gly</th>
<th>Phe</th>
<th>Gln</th>
<th>Thr</th>
<th>Gly</th>
<th>Thr</th>
<th>Ser</th>
<th>Ser</th>
<th>Ser</th>
<th>Leu</th>
<th>His</th>
<th>Val</th>
<th>Tyr</th>
<th>Asp</th>
<th>Gly</th>
<th>Lys</th>
<th>Phe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Ala</td>
<td>Arg</td>
<td>Val</td>
<td>Glu</td>
<td>Arg</td>
<td>Val</td>
<td>Val</td>
<td>Ser</td>
<td>Met</td>
<td>Asn</td>
<td>Tyr</td>
<td>Arg</td>
<td>Val</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Ala</td>
<td>Leu</td>
<td>Gly</td>
<td>Phe</td>
<td>Leu</td>
<td>Ala</td>
<td>Leu</td>
<td>Pro</td>
<td>Gly</td>
<td>Asn</td>
<td>Leu</td>
<td>Ala</td>
<td>Pro</td>
<td>Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>40</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>Met</td>
<td>Gly</td>
<td>Leu</td>
<td>Phe</td>
<td>Asp</td>
<td>Gln</td>
<td>Gln</td>
<td>Leu</td>
<td>Ala</td>
<td>Leu</td>
<td>Gln</td>
<td>Trp</td>
<td>Val</td>
<td>Gln</td>
<td>Lys</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>55</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>Ile</td>
<td>Ala</td>
<td>Ala</td>
<td>Phe</td>
<td>Gly</td>
<td>Asn</td>
<td>Pro</td>
<td>Lys</td>
<td>Ser</td>
<td>Val</td>
<td>Thr</td>
<td>Leu</td>
<td>Phe</td>
<td>Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>70</td>
<td>75</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Ser</td>
<td>Ser</td>
<td>Gly</td>
<td>Ala</td>
<td>Ala</td>
<td>Ser</td>
<td>Val</td>
<td>Ser</td>
<td>Leu</td>
<td>His</td>
<td>Leu</td>
<td>Ser</td>
<td>Pro</td>
<td>Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>90</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>His</td>
<td>Ser</td>
<td>Leu</td>
<td>Phe</td>
<td>Thr</td>
<td>Arg</td>
<td>Ala</td>
<td>Ile</td>
<td>Leu</td>
<td>Gln</td>
<td>Ser</td>
<td>Gly</td>
<td>Ser</td>
<td>Ala</td>
<td>Aen</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>105</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Pro</td>
<td>Trp</td>
<td>Ala</td>
<td>Val</td>
<td>Thr</td>
<td>Ser</td>
<td>Leu</td>
<td>Tyr</td>
<td>Glu</td>
<td>Ala</td>
<td>Arg</td>
<td>Aen</td>
<td>Arg</td>
<td>Thr</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>120</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>Leu</td>
<td>Ala</td>
<td>Lys</td>
<td>Leu</td>
<td>Thr</td>
<td>Gly</td>
<td>Cys</td>
<td>Ser</td>
<td>Arg</td>
<td>Gly</td>
<td>Asn</td>
<td>Gln</td>
<td>Thr</td>
<td>Glu</td>
<td>Ile</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>135</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Lys</td>
<td>Cys</td>
<td>Leu</td>
<td>Arg</td>
<td>Aen</td>
<td>Lys</td>
<td>Asp</td>
<td>Pro</td>
<td>Gln</td>
<td>Glu</td>
<td>Ile</td>
<td>Leu</td>
<td>Leu</td>
<td>Aen</td>
<td>Glu</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>150</td>
<td>155</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Phe</td>
<td>Val</td>
<td>Val</td>
<td>Pro</td>
<td>Tyr</td>
<td>Gly</td>
<td>Thr</td>
<td>Pro</td>
<td>Leu</td>
<td>Gly</td>
<td>Val</td>
<td>Aen</td>
<td>Phe</td>
<td>Gly</td>
<td>Pro</td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>170</td>
<td>175</td>
<td></td>
</tr>
</tbody>
</table>

<400> SEQUENCE: 24

Gly Phe Gln Thr Gly Thr Ser Ser Ser Leu His Val Tyr Asp Gly Lys Phe

Leu Ala Arg Val Glu Arg Val Ile Val Val Ser Met Aen Tyr Arg Val

Gly Ala Leu Gly Phe Leu Ala Leu Pro Gly Aen Pro Glu Ala Pro Gly

Asn Met Gly Leu Phe Asp Gln Gln Leu Ala Leu Gln Trp Val Gln Lys

Asn Ile Ala Ala Phe Gly Gly Asn Pro Lys Ser Val Thr Leu Phe Gly

Glu Ser Ser Gly Ala Ala Ser Val Ser Leu His Leu Leu Ser Pro Gly

Ser His Ser Leu Phe Thr Arg Ala Ile Leu Gln Ser Gly Ser Ala Aen

Ala Pro Trp Ala Val Thr Ser Leu Tyr Glu Ala Arg Aen Arg Thr Leu

Asn Leu Ala Lys Leu Thr Gly Cys Ser Arg Glu Asn Glu Thr Glu Ile

Ile Lys Cys Leu Arg Aen Lys Asp Pro Gln Glu Ile Leu Leu Aen Glu

Ala Phe Val Val Pro Tyr Gly Thr Pro Leu Gly Val Aen Phe Gly Pro

<210> SEQ ID NO 24
<211> LENGTH 122
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:

<400> SEQUENCE: 24
-continued

Thr Val Asp Gly Asp Phe Leu Thr Asp Met Pro Asp Ile Leu Leu Leu Glu
180 185 190
Leu Gly Gln Phe Lys Lys Thr Gin Ile Leu Val Gly Val Asn Lys Asp
195 200 205
Glu Gly Thr Trp Phe Leu Val Gly Gly Ala Pro Gly Phe Ser Lys Asp
210 215 220
Asn Asn Ser Ile Ile Thr Arg Lys Glu Phe Gin Glu Gly Leu Lys Ile
225 230 235 240
Phe Phe Pro Gly Val Ser Glu Phe Gly Lys Glu Ser Ile Leu Phe His
245 250 255
Tyr Thr Asp Trp Val Asp Gin Arg Pro Glu Asn Tyr Arg Glu Ala
260 265 270
Leu Gly Asp Val Val Gly Asp Tyr Asn Phe Ile Cys Pro Ala Leu Glu
275 280 285
Phe Thr Lys Phe Ser Glu Trp Gly Asn Asn Ala Phe Phe Tyr Tyr
290 295 300
Phe Glu His Arg Ser Ser Lys Leu Pro Trp Pro Glu Trp Met Gly Val
305 310 315 320
Met His

<210> SEQ ID NO: 25
<211> LENGTH: 1722
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE: OTHER INFORMATION: 12-4 mutant [AI998/P227A/S287O/A320H/141D]
BCh e nucleic acid sequence

<400> SEQUENCE: 25

gaagatgaca tcataattgc aacaaagaat ggaaagtcga gagggagtga atctggagtctaatcggag
60
ytttggtgcg cggatcggc cttctctaga ttcggatcgg cccagccccc tttggtgcga
120
cctcgatcgg ccaacctgcgg gcttcgatgc acaggggttc tttctctggt gccttaaag
180
tatgcaactatt cggatcggc ccaacctgcgg gcttcgatgc acaggggttc tttctctggt gccttaaag
240
atgtgcctgat ccctctctat cccatctctat cccatctctat cccatctctat cccatctctat cccatctctat
300
gcacttcgaa ttcctctctat cccatctctat cccatctctat cccatctctat cccatctctat cccatctctat
360
sacagatgga ctacgagact atccttctctat cccatctctat cccatctctat cccatctctat cccatctctat
420
gtggattctt ttttctctat cccatctctat cccatctctat cccatctctat cccatctctat cccatctctat
480
ggatccttac gggatccttt cccatctctat cccatctctat cccatctctat cccatctctat cccatctctat
540
aatagctgct cccctctctat cccatctctat cccatctctat cccatctctat cccatctctat cccatctctat
600
gcacttcgaa ttcctctctat cccatctctat cccatctctat cccatctctat cccatctctat cccatctctat
660
acatcctctgc tggctctctgc tggctctctgc tggctctctgc tggctctctgc tggctctctgc tggctctctgc
720
aacagactac gggaaacatg gttgtcctgc tggctctctgc tggctctctgc tggctctctgc tggctctctgc
780
atcagatgc gaaacatgac gttgtcctgc tggctctctgc tggctctctgc tggctctctgc tggctctctgc
840
cccattgcc gggaaacatg gttgtcctgc tggctctctgc tggctctctgc tggctctctgc tggctctctgc
900
gacatcctag gatcttacg gttgtcctgc tggctctctgc tggctctctgc tggctctctgc tggctctctgc
960
gttattctc gttgtcctgc tggctctctgc tggctctctgc tggctctctgc tggctctctgc tggctctctgc
1020
aacagactac gggaaacatg gttgtcctgc tggctctctgc tggctctctgc tggctctctgc tggctctctgc
1080
gtggctctgc tggctctctgc tggctctctgc tggctctctgc tggctctctgc tggctctctgc tggctctctgc
1140
agacotgaa actacotgta ggcttgggt gatgttggg gtggatttaa ttctatattc 1200
cctgcttgg agtctacca gaaagttcct caaatggggaa ataagctcct ttctactatt 1260
tttgaaconc atcatcctcct acctctgtg ccaaatcgtg agcggagctc ccatgtgtctat 1320
gtcattgta tttgctttgg tttaactcttg gaagaagaag aataatacct aaagcggcag 1380
gaaattttga gtgaagcatc agtggagacg tggcagaaat ttgcacaataa tgggaatcctg 1440
aatgagacct agaacatagc ccaagctttg cctgtctctca aacagcagta aaaaaaat 1500
catcaacctgta atacagatgc acacaagaata atgacgacac taccgctca ccaatgtcga 1560	ttcagcactt cattttttcc aaagctcttg gaaatgacag gaataatgta taagaacagaa 1620
tgggagtggca aagcaggt ccatcgtcgtg aacaaattc ca aataaactg ctaaaatc 1680	tttaagcatt cactctgcaaa gaaaggttc tttgctggg ctac 1722

<210> SEQ ID NO 26
<211> LENGTH: 574
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 12-4 mutant [A199S/F227A/S287D/A328W/R441D]
BChE amino acid sequence

<400> SEQUENCE: 26
Glu Asp Asp Ile Ile Ala Thr Lys Arg Gly Lys Val Arg Gly Met
1 5 10 15
Asn Leu Thr Val Phe Gly Thr Val Thr Ala Phe Leu Gly Ile Pro
20 25 30
Tyr Ala Gln Pro Pro Leu Gly Arg Leu Arg Phe Lys Pro Gln Ser
35 40 45
Leu Thr Lys Trp Ser Asp Ile Trp Asn Ala Thr Lys Tyr Ala Asn Ser
50 55 60
Cys Cys Gln Asn Ile Asp Gln Ser Phe Pro Gly Phe His Gly Ser Glu
65 70 75 80
Met Trp Asn Pro Arg Thr Asp Leu Ser Gly Asp Cys Leu Tyr Leu Ann
85 90 95
Val Trp Ile Pro Ala Pro Lys Pro Lys Ann Ala Thr Val Leu Ile Trp
100 105 110
Ile Tyr Gly Gly Gly Phe Gln Thr Gly Thr Ser Leu His Val Tyr
115 120 125
Asp Gly Lys Phe Leu Ala Arg Val Glu Arg Val Ile Val Val Ser Met
130 135 140
Asn Tyr Arg Val Gly Ala Leu Gly Phe Leu Ala Leu Pro Gly Asn Pro
145 150 155 160
Glu Ala Pro Gly Ann Met Gly Leu Phe Asp Gln Gln Leu Ala Leu Glu
165 170 175
Trp Val Glu Lys Ann Ile Ala Ala Phe Gly Gly Ann Pro Lys Ser Val
180 185 190
Thr Leu Phe Gly Ser Gly Ala Ala Ser Val Ser Leu His Leu
195 200 205
Leu Ser Pro Gly Ser His Ser Leu Phe Thr Arg Ala Ile Leu Gln Ser
210 215 220
Gly Ser Ala Ann Ala Pro Trp Ala Val Thr Ser Leu Tyr Glu Ala Arg
225 230 235 240
Ann Arg Thr Leu Ann Leu Ala Lys Leu Thr Gly Cys Ser Arg Glu Ann
245 250 255
<table>
<thead>
<tr>
<th>Glu</th>
<th>Thr</th>
<th>Glu</th>
<th>Ile</th>
<th>Ile</th>
<th>Lys</th>
<th>Cys</th>
<th>Leu</th>
<th>Arg</th>
<th>Asn</th>
<th>Lys</th>
<th>Asp</th>
<th>Pro</th>
<th>Gln</th>
<th>Glu</th>
<th>Ile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Leu</td>
<td>Asn</td>
<td>Glu</td>
<td>Ala</td>
<td>Phe</td>
<td>Val</td>
<td>Val</td>
<td>Pro</td>
<td>Tyr</td>
<td>Gly</td>
<td>Thr</td>
<td>Pro</td>
<td>Leu</td>
<td>Gly</td>
<td>Val</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ann</td>
<td>Phe</td>
<td>Gly</td>
<td>Pro</td>
<td>Thr</td>
<td>Val</td>
<td>Asp</td>
<td>Gly</td>
<td>Asp</td>
<td>Phe</td>
<td>Leu</td>
<td>Thr</td>
<td>Asp</td>
<td>Met</td>
<td>Pro</td>
<td>Asp</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Leu</td>
<td>Leu</td>
<td>Glu</td>
<td>Leu</td>
<td>Gly</td>
<td>Phe</td>
<td>Lys</td>
<td>Thr</td>
<td>Gln</td>
<td>Ile</td>
<td>Leu</td>
<td>Val</td>
<td>Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Asn</td>
<td>Lys</td>
<td>Asp</td>
<td>Glu</td>
<td>Gly</td>
<td>Thr</td>
<td>Trp</td>
<td>Phe</td>
<td>Leu</td>
<td>Val</td>
<td>Tyr</td>
<td>Gly</td>
<td>Ala</td>
<td>Asp</td>
<td>Gly</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>Ser</td>
<td>Lys</td>
<td>Asp</td>
<td>Ann</td>
<td>Ser</td>
<td>Ile</td>
<td>Ile</td>
<td>Thr</td>
<td>Arg</td>
<td>Lys</td>
<td>Glu</td>
<td>Phe</td>
<td>Gln</td>
<td>Glu</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Leu</td>
<td>Lys</td>
<td>Ile</td>
<td>Phe</td>
<td>Phe</td>
<td>Gly</td>
<td>Val</td>
<td>Ser</td>
<td>Glu</td>
<td>Phe</td>
<td>Gly</td>
<td>Lys</td>
<td>Gln</td>
<td>Gly</td>
<td>Ser</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Leu</td>
<td>Phe</td>
<td>His</td>
<td>Tyr</td>
<td>Thr</td>
<td>Asp</td>
<td>Trp</td>
<td>Val</td>
<td>Asp</td>
<td>Gln</td>
<td>Arg</td>
<td>Pro</td>
<td>Glu</td>
<td>Ann</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>Arg</td>
<td>Glu</td>
<td>Ala</td>
<td>Leu</td>
<td>Gly</td>
<td>Asp</td>
<td>Val</td>
<td>Val</td>
<td>Gly</td>
<td>Tyr</td>
<td>Aen</td>
<td>Phe</td>
<td>Ile</td>
<td>Cys</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Ala</td>
<td>Leu</td>
<td>Glu</td>
<td>Phe</td>
<td>Thr</td>
<td>Lys</td>
<td>Phe</td>
<td>Ser</td>
<td>Glu</td>
<td>Trp</td>
<td>Gln</td>
<td>Aen</td>
<td>Aen</td>
<td>Ala</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>Phe</td>
<td>Tyr</td>
<td>Tyr</td>
<td>Phe</td>
<td>Glu</td>
<td>His</td>
<td>Arg</td>
<td>Ser</td>
<td>Ser</td>
<td>Lys</td>
<td>Leu</td>
<td>Pro</td>
<td>Trp</td>
<td>Pro</td>
<td>Glu</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Trp</td>
<td>Met</td>
<td>Gly</td>
<td>Val</td>
<td>Met</td>
<td>His</td>
<td>Gly</td>
<td>Tyr</td>
<td>Asp</td>
<td>Ile</td>
<td>Glu</td>
<td>Phe</td>
<td>Val</td>
<td>Phe</td>
<td>Gly</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Leu</td>
<td>Glu</td>
<td>Arg</td>
<td>Arg</td>
<td>Aen</td>
<td>Tyr</td>
<td>Thr</td>
<td>Lys</td>
<td>Ala</td>
<td>Glu</td>
<td>Gln</td>
<td>Ile</td>
<td>Leu</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Ser</td>
<td>Ile</td>
<td>Val</td>
<td>Lys</td>
<td>Arg</td>
<td>Trp</td>
<td>Ala</td>
<td>Aen</td>
<td>Phe</td>
<td>Ala</td>
<td>Lys</td>
<td>Tyr</td>
<td>Gln</td>
<td>Aen</td>
<td>Pro</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ann</td>
<td>Glu</td>
<td>Thr</td>
<td>Gln</td>
<td>Aen</td>
<td>Aen</td>
<td>Ser</td>
<td>Thr</td>
<td>Ser</td>
<td>Trp</td>
<td>Pro</td>
<td>Val</td>
<td>Phe</td>
<td>Lys</td>
<td>Ser</td>
<td>Thr</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Gln</td>
<td>Lys</td>
<td>Tyr</td>
<td>Leu</td>
<td>Thr</td>
<td>Leu</td>
<td>Aen</td>
<td>Thr</td>
<td>Glu</td>
<td>Ser</td>
<td>Arg</td>
<td>Ile</td>
<td>Met</td>
<td>Thr</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Leu</td>
<td>Arg</td>
<td>Ala</td>
<td>Gln</td>
<td>Gln</td>
<td>Cys</td>
<td>Arg</td>
<td>Phe</td>
<td>Trp</td>
<td>Thr</td>
<td>Ser</td>
<td>Phe</td>
<td>Phe</td>
<td>Pro</td>
<td>Lys</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Leu</td>
<td>Glu</td>
<td>Met</td>
<td>Thr</td>
<td>Gly</td>
<td>Aen</td>
<td>Ile</td>
<td>Asp</td>
<td>Glu</td>
<td>Ala</td>
<td>Gln</td>
<td>Trp</td>
<td>Gln</td>
<td>Trp</td>
<td>Lys</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Gly</td>
<td>Phe</td>
<td>His</td>
<td>Arg</td>
<td>Trp</td>
<td>Aen</td>
<td>Tyr</td>
<td>Met</td>
<td>Met</td>
<td>Aen</td>
<td>Arg</td>
<td>Tyr</td>
<td>Met</td>
<td>Aen</td>
<td>Gln</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>Aen</td>
<td>Asp</td>
<td>Tyr</td>
<td>Thr</td>
<td>Ser</td>
<td>Lys</td>
<td>Glu</td>
<td>Ser</td>
<td>Cys</td>
<td>Val</td>
<td>Gly</td>
<td>Leu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 27
<211> LENGTH: 1125
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 12-4 mutant [A1998/T227A/G287G/A328W/R441D]

NCBI nucleic acid sequence for amino acid residues 68-442

<400> SEQUENCE: 27

aacatagatc aaagttttcc aggttccct cat gat cag agga tgtgaacc cc aac ctg acg ac
60
tctcagga gtc ttttta ttca ggtg tagttcag ca cta ascc aaaaaa tgc c
120
aatggtgta ta tggatttg ttgtgtgggt ttt caactg gaac acactc tttacatgt
180
tatgtagcga agtttctggc tgggtgtaaa aggttattg ta ggtgcat aca ctgtag
240
gtagggtgcc taggattctt agcgtggcag ggaaatctctg agggctccagga gaacatggtt 300
ttatttgacc aacagtggc cttctcaaggg gttcagaaaa aatagcgcgct cttggtgcttaa 360
aacctcataaa ggtgatactt cttggcagaa agtttctctgct tagggtcggctat 420
tgattttccc tctggagcag ttgattgttc accagatgccaa tctgcaaaag tgggtccgctt 480
aaggtctgct gcgggtacag agagaaatag ctaaccttttc tctgattcct tctgagaataa 540
aaaatagctg ctgcttcctgg agaagatagcag actgaattaa tcaagttgctt tagaaatattaa 600
gatcccaac gaaattccttc gcgagtagaa cttggtgctt cctaggggac acctttgggtt 660
gtaaaaccctg tgcggacctg gtagttgatct tttcctcaaggt atagccagac cattaccctt 720
gagcctggac aatcataaaa aacocagggat tgggtgtgggt ttaataaagaa tgaagggaca 780
tgatatattctctagtgct acgcggcgtta cagaaagctgct tagcagatgc tagctctggtgatgg 840
aaaagtaccgggtggttgtaaataaatttt tttcgaggtgc gtgagtgattg tgggtgacgaa 900
tctcattcttc tctactacac agacggttag tgcagctagcag gacgtgaaata ctacggtagg 960
gctctgggtgtc tgggtgtgttt ggtgattcagt ttcattgccc tggcctttgac gttaccaaggg 1020
aagttctctgga cgacgagggaa taaggctttc cttttctcttg tgacacacggc atctttccaa 1080
cctcctgggagcaggaatggtgctagc tggggtcagc acatt
1125

<210> SEQ ID NO 28
<211> LENGTH: 375
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 12-4 mutant [A199S/F227A/S287G/A320H/B441D] BChE amino acid sequence for residues 68-442
<400> SEQUENCE: 28

Asn Ile Asp Gln Ser Phe Pro Gly Phe His Gly Ser Glu Met Trp Asn
1 5 10 15
Pro Asn Thr Asp Leu Ser Glu Asp Cys Leu Tyr Leu Asn Val Trp Ile
20 40 45
Pro Ala Pro Lys Pro Lys Asn Ala Thr Val Leu Ile Trp Ile Tyr Gly
35 50 60
Gly Gly Phe Glu Thr Gly Thr Ser Leu His Val Tyr Asp Gly Lys
55 70 75 80
Phe Leu Ala Arg Val Glu Arg Val Ile Val Ser Met Asn Tyr Arg
65 90 95
Val Gly Ala Leu Gly Phe Leu Ala Leu Pro Gly Asn Pro Glu Ala Pro
95 125
Gly Asn Met Gly Leu Phe Asp Gln Gln Leu Ala Leu Glu Gln Trp Val Gln
105 125
Lys Asn Ile Ala Ala Phe Gly Gln Asn Pro Lys Ser Val Thr Leu Phe
115 125
Gly Glu Ser Ser Gly Ala Ala Ser Val Ser Leu His Leu Leu Ser Pro
130 135 140
Gly Ser His Ser Leu Phe Thr Arg Ala Ile Leu Gln Ser Gly Ser Ala
145 150 155 160
Asn Ala Pro Thr Ala Val Thr Ser Leu Tyr Glu Ala Arg Asn Arg Thr
165 175
Leu Asn Leu Ala Lys Leu Thr Gly Cys Ser Arg Glu Asn Glu Thr Glu
180 190 195
Ile Ile Lys Cys Leu Arg Asn Lys Pro Glu Glu Ile Leu Leu Asn
200 205
Glu Ala Phe Val Val Pro Tyr Gly Thr Pro Leu Gly Val Asn Phe Gly 210 215 220
Pro Thr Val Amp Gly Asp Phe Leu Thr Asp Met Pro Amp Ile Leu Leu 225 230 235 240
Glu Leu Gly Gln Phe Lys Thr Gln Ile Leu Val Gly Val Asn Lys 245 250 255
Amp Glu Gly Thr Trp Phe Leu Val Tyr Gly Ala Pro Gly Phe Ser Lys 260 265 270
Amp Asn Asn Ser Ile Ile Thr Arg Lys Glu Phe Gln Glu Gly Leu Lys 275 280 285
Ile Phe Phe Pro Gly Val Ser Glu Phe Gly Lys Glu Ser Ile Leu Phe 290 295 300
His Tyr Thr Amp Thr Val Amp Gln Arg Asp Glu Asn Tyr Arg Glu 305 310 315 320
Ala Leu Gly Amp Val Val Gly Asp Tyr Asn Phe Ile Cys Pro Ala Leu 325 330 335
Glu Phe Thr Lys Phe Ser Glu Thr Gly Asn Ala Asp Phe Gly Tyr 340 345 350
Tyr Phe Glu His Arg Ser Ser Lys Leu Pro Trp Pro Glu Trp Met Gly 355 360 365
Val Met His Gly Tyr Asp Ile 370 375

<210> SEQ ID NO 29
<211> LENGTH: 975
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE: OTHER INFORMATION: 12-4 mutant [A199S/F227A/S287G/A328W/R441D]
BChE nucleic acid sequence for amino acid residues 117-441
<400> SEQUENCE: 29

ggatattcaaa ctggaacact atctttacat gtttatgatg gcaagtttttc ggcctgggtt 60
gaaagagta ttgtgatgtc aataaactat agggtagggtg cccttgaatg tttggttttg 120
ccaggaactcttt gcaggtgctc agggagactg gataaaccctt ggccttcggag 180
ttgagttctcta aaatattatgc gccctttttg gccaaatatttt gcaccaaatg gtaaat 240
ggaagtttccg gacgaaacct ccattctgtt cttttcttct tcatcttctt 300
ttcacagcag ccccttttct caactggctt ccacatcgcg gctgtctcttc aacctcttc 360
tatgagctt gcacatattt gcttttctact ccttggagttc ctctggtctg 420
gagaagtaa tattcaagtgt ctctataaattta aagatctcttct taattcgttt 480
goatattaag gactcttttt ggaacatagt cctggtcgcg gatgctatct 540
gattttctata ctggaaccttc agaactatat tttggaatctgc gagaatgtct 600
atttttcttc ttttttcttc ggatattttc tttttttttct ccgctgtctg gattttcgtg 660
tttttttttt catttttttt catttttttt tt
Gly Phe Gln Thr Gly Thr Ser Ser Leu His Val Tyr Asp Gly Lys Phe
1 5 10 15
Leu Ala Arg Val Glu Arg Val Ile Val Val Ser Met Asn Tyr Arg Val
20 25 30
Gly Ala Leu Gly Phe Leu Ala Leu Pro Gly Asn Pro Glu Ala Pro Gly
35 40 45
Asn Met Gly Leu Phe Asp Glu Glu Leu Ala Leu Glu Trp Val Glu Lys
50 55 60
Asn Ile Ala Ala Phe Gly Gly Asn Pro Lys Ser Val Thr Leu Phe Gly
65 70 75 80
Glu Ser Ser Gly Ala Ala Ser Val Ser Leu His Leu Leu Ser Pro Gly
85 90 95
Ser His Ser Leu Phe Thr Arg Ala Ile Leu Glu Ser Gly Ser Ala Asn
100 105 110
 Ala Pro Trp Ala Val Thr Ser Leu Tyr Glu Ala Arg Asn Arg Thr Leu
115 120 125
Asn Leu Ala Lys Leu Thr Gly Cys Ser Arg Asp Glu Asn Glu Thr Glu Ile
130 135 140
Ile Lys Cys Leu Arg Asn Lys Asp Pro Glu Ile Leu Leu Asn Glu
145 150 155 160
 Ala Phe Val Val Pro Tyr Gly Thr Pro Leu Gly Val Asn Phe Gly Pro
165 170 175
 Thr Val Asp Gly Asp Phe Leu Thr Asp Met Pro Asp Ile Leu Leu Glu
180 185 190
Leu Gly Gln Phe Lys Thr Gln Ile Leu Val Gly Val Asn Lys Asp
195 200 205
Glu Gly Thr Trp Phe Leu Val Tyr Gly Ala Pro Gly Phe Ser Asp
210 215 220
Asn Asn Ser Ile Ile Thr Arg Lys Glu Phe Glu Glu Glu Gly Leu Lys Ile
225 230 235 240
 Phe Phe Pro Gly Val Ser Glu Phe Gly Lys Glu Ser Ile Leu Phe His
245 250 255
Tyr Thr Asp Trp Val Asp Asp Gln Arg Pro Glu Asn Tyr Arg Glu Ala
260 265 270
Leu Gly Asp Val Val Gly Asp Tyr Asn Phe Ile Cys Pro Ala Ala Glu
275 280 285
 Phe Thr Lys Lys Phe Ser Gly Trp Gly Asn Asn Ala Phe Phe Tyr Tyr
290 295 300
 Phe Glu His Arg Ser Ser Lys Leu Pro Trp Pro Glu Trp Met Gly Val
305 310 315 320
Met His Gly Tyr Asp
325
What is claimed is:

1. A butyrylcholinesterase variant peptide comprising the amino acid sequence of SEQ ID NO: 20.
2. A pharmaceutical composition comprising:
 a butyrylcholinesterase variant peptide comprising the amino acid sequence of SEQ ID NO: 20 and a suitable pharmaceutical carrier.
3. A method of treating a cocaine-induced condition comprising administering to an individual an effective amount of the butyrylcholinesterase variant polypeptide of claim 1 to lowering blood cocaine concentration.
4. The method of claim 3, wherein said butyrylcholinesterase variant polypeptide exhibits a one-hundred-fold or more increase in cocaine hydrolysis catalytic efficiency compared to wild-type butyrylcholinesterase.

* * * * *
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Col. 1, line 12, insert the following:

-- Government Support

Research for this invention was made with support from the National Institute of Health/NIDA, Grant Number R01DA013930. The United States Government has certain rights to this invention. --

Signed and Sealed this

Eighteenth Day of May, 2010

[Signature]

David J. Kappos
Director of the United States Patent and Trademark Office
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 97, line 1-2, should read,

1. A butyrylcholinesterase variant peptide comprising an amino acid sequence of SEQ ID NO 20.

Column 97, lines 8-9 - Column 98, lines 1-2 should read,

3. A pharmaceutical composition comprising:
 a butyrylcholinesterase variant peptide comprising the amino acid sequence of SEQ ID NO 20 and a suitable pharmaceutical carrier.

Column 98, lines 3-6 should read,

4. A method of treating a cocaine-induced condition comprising administering to an individual an effective amount of the butyrylcholinesterase variant polypeptide of claim 1 to lowering blood cocaine concentration.

Column 98, lines 7-8 should read,

5. The method of claim 4, wherein said butyrylcholinesterase variant polypeptide exhibits a one-hundred-fold or more increase in cocaine hydrolysis catalytic efficiency compared to wild-type butyrylcholinesterase.

Signed and Sealed this
First Day of February, 2011

[Signature]

David J. Kappos
Director of the United States Patent and Trademark Office