6-11-2012

Estimating Medical Cost Offsets Attributable to Public Health Spending

Glen P. Mays
University of Kentucky, glen.mays@uky.edu

Click here to let us know how access to this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/hsm_present

Part of the Econometrics Commons, Health and Medical Administration Commons, Health Economics Commons, Health Policy Commons, Health Services Administration Commons, and the Health Services Research Commons

Repository Citation
https://uknowledge.uky.edu/hsm_present/44

This Presentation is brought to you for free and open access by the Health Management and Policy at UKnowledge. It has been accepted for inclusion in Health Management and Policy Presentations by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Estimating Medical Cost Offsets Attributable to Public Health Spending

Glen Mays, PhD, MPH
University of Kentucky

glen.mays@uky.edu

American Society of Health Economists Biennial Conference • Minneapolis, MN • 11 June 2012
Acknowledgements

Research support provided by:

- Robert Wood Johnson Foundation’s Changes in Healthcare Financing and Organization (HCFO) Initiative
- Robert Wood Johnson Foundation’s Public Health Practice-Based Research Networks program
- National Institutes of Health Clinical and Translational Science Award
Preventable mortality in the U.S.

Preventable Deaths per 100,000 population

Source: Commonwealth Fund 2008

Countries’ age-standardized death rates before age 75; including ischemic heart disease, diabetes, stroke, and bacterial infections. See report Appendix B for list of all conditions considered amenable to health care in the analysis.
Geographic variation in preventable mortality

Source: Commonwealth Fund 2008
Preventable disease burden and national health spending

>75% of national health spending is attributable to chronic diseases that are largely preventable
 – 80% of cardiovascular disease
 – 80% of diabetes
 – 60% of lung diseases
 – 40% of cancers
 (not counting injuries, vaccine-preventable diseases)

<3% of national health spending is allocated to public health and prevention

CDC 2011
Public health activities

Organized programs, policies, and laws to prevent disease and injury and promote health on a population-wide basis

- Epidemiologic surveillance & investigation
- Community health assessment & planning
- Communicable disease control
- Chronic disease prevention
- Health education
- Environmental health monitoring and assessment
- Enforcement of health laws and regulations
- Inspection and licensing
- Inform, advise, and assist school-based, worksite-based, and community-based health programming

...and legacy of assuring access to medical care
Public health’s share of national health spending

USDHHS National Health Expenditure Accounts

% of total health spending
Factors driving growth in medical spending

Health spending growth rate 1996-2006

Growth rate due to cost per case

Growth rate due to prevalence

Roehrig et al. Health Affairs 2011
$15 billion in new federal public health spending over 10 years (cut by $5B last week)

Public Health and Prevention Trust Fund

Incentives for hospitals, health insurers to invest in public health and prevention
Some research questions of interest…

- How does *public health* spending vary across communities and change over time?
- What are the health effects attributable to changes in public health spending?
- What are the medical cost effects attributable to changes in public health spending?
The problem with public health spending

- Federal & state funding sources often targeted to communities based in part on disease burden, risk, need

- Local funding sources often dependent on local economic conditions that may also influence health

- Public health spending may be correlated with other resources that influence health

Sources of Local Public Health Agency Revenue, 2005

- Medicaid 9%
- Medicare 2%
- Medicaid 9%
- Federal direct 7%
- Federal pass-thru 13%
- Other 12%
- State direct 23%
- Local 28%

NACCHO 2005
Example: cross-sectional association between PH spending and mortality

- Public health spending/capita
- Heart disease mortality

Quintile of public health spending/capita

Deaths per 100,000

Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5
Example: cross-sectional association between PH spending and Medical spending

Quintile 1
Quintile 2
Quintile 3
Quintile 4
Quintile 5

Public health spending/capita

Medicare spending per recipient

Quintiles of public health spending/capita

Mays et al. 2009
Analyzing spending effects

Approaches

1. Cross-sectional regression: control for **observable** confounders
2. Fixed effects: also control for **time-invariant, unmeasured** differences between communities
3. IV: use exogenous sources of variation in spending
4. Discriminate between causes of death amenable vs. non-amendable to PH intervention
Data used in empirical work

- Residual state and federal spending estimates from US Census of Governments and Consolidated Federal Funding Report

- Community characteristics obtained from Census and Area Resource File (ARF)

- Community mortality data obtained from CDC’s Compressed Mortality File

- **HSA-level** medical care spending data from CMS and Dartmouth Atlas (Medicare claims data)
Analytical approach

- Dependent variables
 - Age-adjusted mortality rates, conditions sensitive to public health interventions
 - Medical care spending per recipient (Medicare as proxy)

- Independent variables of interest
 - Local PH spending per capita, all sources
 - Residual state spending per capita (funds not passed thru to local agencies)
 - Residual federal spending per capita

- Analytic strategy for panel data: 1993-2008
 - Fixed effects estimation
 - Random effects with instrumental variables (IV)
Analytical approach: IV estimation

- Identify exogenous sources of variation in spending that are unrelated to outcomes
 - Governance structures: local boards of health
 - Decision-making authority: agency, board, local, state

- Controls for unmeasured factors that jointly influence spending and outcomes
Analytical approach

- Semi-logarithmic multivariate regression models used to test associations between spending, service delivery, and outcomes while controlling for other factors

$$\ln(\text{PH}$_{ijt}$) = \beta\text{Agency}$_{ijt}$ + \delta\text{Community}$_{ijt}$ + \lambda\text{State}$_{jt}$ + \mu_j + \phi_t + \epsilon_{ijt}$$

$$\ln(\text{Mortality}$_{ijt}$) = \alpha\ln(\text{PH}$_{ijt}$) + \beta\text{Agency}$_{ijt}$ + \delta\text{Community}$_{ijt}$ + \lambda\text{State}$_{jt}$ + \mu_j + \phi_t + \epsilon_{ijt}$$

$$\ln(\text{Medical}$_{ijt}$) = \alpha\ln(\text{PH}$_{ijt}$) + \beta\text{Agency}$_{ijt}$ + \delta\text{Community}$_{ijt}$ + \lambda\text{State}$_{jt}$ + \mu_j + \phi_t + \epsilon_{ijt}$$

Sensitivity analyses using 1, 3, and 5 year lag structures
Other Variables Used in the Models

- **Agency characteristics**: type of government jurisdiction, scope of services offered, *local governance and decision-making structures*

- **Community characteristics**: population size, rural-urban, poverty, income per capita, education attainment, unemployment, age distributions, physicians per capita, CHC funding per low income, health insurance coverage, local health care wage index

- **State characteristics**: Private insurance coverage, Medicaid coverage, state fixed effects
Variation in Local Public Health Spending

Gini = 0.485
Changes in Local Public Health Spending 1993-2008

- 62% growth
- 38% decline
Determinants of Local Public Health Spending Levels: IVs

<table>
<thead>
<tr>
<th>Governance/Decision Authority</th>
<th>Coefficient</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Governed by local board of health</td>
<td>0.131**</td>
<td>(0.061, 0.201)</td>
</tr>
<tr>
<td>State hires local PH agency head†</td>
<td>-0.151*</td>
<td>(-0.318, 0.018)</td>
</tr>
<tr>
<td>Local govt approves local PH budget†</td>
<td>-0.388***</td>
<td>(-0.576, -0.200)</td>
</tr>
<tr>
<td>State approves local PH budget†</td>
<td>-0.308**</td>
<td>(-0.162, -0.454)</td>
</tr>
<tr>
<td>Local govt sets local PH fees</td>
<td>0.217**</td>
<td>(0.101, 0.334)</td>
</tr>
<tr>
<td>Local govt imposes local PH taxes</td>
<td>0.190**</td>
<td>(0.044, 0.337)</td>
</tr>
<tr>
<td>Local board can request local PH levy</td>
<td>0.120**</td>
<td>(0.246, 0.007)</td>
</tr>
</tbody>
</table>

Elasticity

\[F = 13.4 \quad p < 0.001 \]

Log regression estimates controlling for community-level and state-level characteristics.
* \(p < 0.10 \)
** \(p < 0.05 \)
*** \(p < 0.01 \)

† As compared to the local board of health having the authority.
Multivariate estimates of public health spending effects on mortality 1993-2008

Cross-sectional model

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Elasticity</th>
<th>St. Err.</th>
<th>Elasticity</th>
<th>St. Err.</th>
<th>Elasticity</th>
<th>St. Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infant mortality</td>
<td>0.0516</td>
<td>0.0181 **</td>
<td>0.0234</td>
<td>0.0192</td>
<td>-0.1437</td>
<td>0.0589 ***</td>
</tr>
<tr>
<td>Heart disease</td>
<td>-0.0003</td>
<td>0.0051</td>
<td>-0.0103</td>
<td>0.0040 **</td>
<td>-0.1881</td>
<td>0.0292 **</td>
</tr>
<tr>
<td>Diabetes</td>
<td>0.0323</td>
<td>0.0187</td>
<td>-0.0487</td>
<td>0.0174 ***</td>
<td>-0.3015</td>
<td>0.0633 **</td>
</tr>
<tr>
<td>Cancer</td>
<td>0.0048</td>
<td>0.0029 *</td>
<td>-0.0075</td>
<td>0.0240</td>
<td>-0.0532</td>
<td>0.0166 **</td>
</tr>
<tr>
<td>Influenza</td>
<td>-0.0400</td>
<td>0.0200 **</td>
<td>-0.0275</td>
<td>0.0107 **</td>
<td>-0.4320</td>
<td>0.0624 **</td>
</tr>
</tbody>
</table>

Fixed-effects model

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Elasticity</th>
<th>St. Err.</th>
<th>Elasticity</th>
<th>St. Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infant mortality</td>
<td>0.0516</td>
<td>0.0181 **</td>
<td>0.0234</td>
<td>0.0192</td>
</tr>
<tr>
<td>Heart disease</td>
<td>-0.0003</td>
<td>0.0051</td>
<td>-0.0103</td>
<td>0.0040 **</td>
</tr>
<tr>
<td>Diabetes</td>
<td>0.0323</td>
<td>0.0187</td>
<td>-0.0487</td>
<td>0.0174 ***</td>
</tr>
<tr>
<td>Cancer</td>
<td>0.0048</td>
<td>0.0029 *</td>
<td>-0.0075</td>
<td>0.0240</td>
</tr>
<tr>
<td>Influenza</td>
<td>-0.0400</td>
<td>0.0200 **</td>
<td>-0.0275</td>
<td>0.0107 **</td>
</tr>
</tbody>
</table>

IV model

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Elasticity</th>
<th>St. Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infant mortality</td>
<td>-0.1437</td>
<td>0.0589 ***</td>
</tr>
<tr>
<td>Heart disease</td>
<td>-0.1881</td>
<td>0.0292 **</td>
</tr>
<tr>
<td>Diabetes</td>
<td>-0.3015</td>
<td>0.0633 **</td>
</tr>
<tr>
<td>Cancer</td>
<td>-0.0532</td>
<td>0.0166 **</td>
</tr>
<tr>
<td>Influenza</td>
<td>-0.4320</td>
<td>0.0624 **</td>
</tr>
</tbody>
</table>

log regression estimates controlling for community-level and state-level characteristics

*p<0.10 **p<0.05 ***p<0.01
Effects of public health spending on medical care spending 1993-2008

Change in Medical Care Spending Per Capita Attributable to 1% Increase in Public Health Spending Per Capita

<table>
<thead>
<tr>
<th>Model</th>
<th>Elasticity</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed effects</td>
<td>-0.010</td>
<td>0.002</td>
</tr>
<tr>
<td>Instrumental variables</td>
<td>-0.088</td>
<td>0.013</td>
</tr>
</tbody>
</table>

log regression estimates controlling for community-level and state-level characteristics

*p<0.10 **p<0.05 ***p<0.01
Projected effects of ACA public health spending

- 10% increase in public health spending in average community:

 - Public health cost: $594,291
 - Medical cost offset: -$515,114 (Medicare only)
 - Deaths averted: 14.8
 - LY gained: 148
 - Net cost/LY: $534
Conclusions

- Local public health spending varies widely across communities
- Communities with higher spending experience lower mortality from leading preventable causes of death
- Growth in local public health spending appears to offset growth in medical care spending
Implications for Policy and Practice

- Mortality reductions achievable through increases in public health spending may equal or exceed the reductions produced by similar expansions in local medical care resources.
- Increased federal investments may help to reduce geographic disparities in population health and bend the medical cost curve.
- Gains from federal investments may be offset by reductions in state and local spending.
Limitations and next steps

- Aggregate spending measures
 - Average effects
 - Role of allocation decisions?

- Mortality – distal measures with long incubation periods

- Medical care spending relies on Medicare as a proxy measure (20% of total medical $)

- Ongoing exploration of lag structures