Method of Increasing Mass Transfer Rate of Acid Gas Scrubbing Solvents

Joseph E. Remias
University of Kentucky

Cameron A. Lippert
University of Kentucky, cameron.lippert@uky.edu

Kunlei Liu
University of Kentucky, kunlei.liu@uky.edu

Follow this and additional works at: https://uknowledge.uky.edu/caer_patents
Part of the [Engineering Commons](https://uknowledge.uky.edu/caer_patents)

Recommended Citation

Remias, Joseph E.; Lippert, Cameron A.; and Liu, Kunlei, "Method of Increasing Mass Transfer Rate of Acid Gas Scrubbing Solvents" (2016). *Center for Applied Energy Research Faculty Patents*. 41.
https://uknowledge.uky.edu/caer_patents/41

This Patent is brought to you for free and open access by the Center for Applied Energy Research at UKnowledge. It has been accepted for inclusion in Center for Applied Energy Research Faculty Patents by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
METHOD OF INCREASING MASS TRANSFER RATE OF ACID GAS SCRUBBING SOLVENTS

A method of increasing the overall mass transfer rate of acid gas scrubbing solids is disclosed. Various catalyst compounds for that purpose are also disclosed.

6 Claims, 6 Drawing Sheets
(56) References Cited

U.S. PATENT DOCUMENTS

<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Date</th>
<th>Inventor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,601,315 B2</td>
<td>10/2009</td>
<td>Ouimet</td>
</tr>
<tr>
<td>7,758,673 B2</td>
<td>7/2010</td>
<td>Brok et al.</td>
</tr>
<tr>
<td>8,329,929 B2</td>
<td>12/2012</td>
<td>Matsunaga et al.</td>
</tr>
<tr>
<td>2008/0025893 A1</td>
<td>1/2008</td>
<td>Aspiron et al.</td>
</tr>
</tbody>
</table>

FOREIGN PATENT DOCUMENTS

<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Date</th>
<th>Inventor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP wo 2003260364 A</td>
<td>9/2003</td>
<td></td>
</tr>
<tr>
<td>WO 2012034027 A1</td>
<td>3/2012</td>
<td></td>
</tr>
</tbody>
</table>

OTHER PUBLICATIONS

* cited by examiner
FIG. 1
FIG. 2
FIG. 3

Removal Rate (mol/h/kg)

Carbon Loading (mol C/mol N)
FIG. 4
FIG. 6
1

METHOD OF INCREASING MASS TRANSFER RATE OF ACID GAS SCRUBBING SOLVENTS

TECHNICAL FIELD

The present invention relates generally to various methods of increasing the overall mass transfer rate of acid gas scrubbing solvents utilizing various catalyst compounds.

BACKGROUND

The cleanup of acid gases or sour gas, such as CO₂ in particular, from natural gas and in oil refining has been an extensively practiced technology. The industrial removal of CO₂ from natural gas dates back to the 1930’s. In the 21st century, due to the potential impact of anthropogenic CO₂ emissions on the climate, post-combustion CO₂ capture has gained tremendous attention. While several technologies exist for the removal of acid gases one of the most commonly employed practices is the use of aqueous amines. Of these amines, tertiary amines are often used for natural gas applications due to their low energy of regeneration. For post-combustion CO₂ capture applications primary and secondary amines tend to be in part favored by their faster rate at the low CO₂ driving force condition. Regardless of the application, the mass transfer rate in the absorber column dictates the size of the column (capital cost) used and, consequently, has a substantial impact on the overall process cost. An overall process depicting a thermal swing process is presented in FIG. 1. An aqueous amine solution is circulated between the absorber 10 and stripper 12. The gas, containing CO₂, enters the bottom of the absorber where it contacts the aqueous amine absorbent removing it from the gas stream. The liquid solution, CO₂ rich amine solution, is then passed through a heat exchanger 14 to improve efficiency before being heated to a higher temperature in the stripper 12. The stripper 12 removes the CO₂ as a gas from the amine solution to produce a lean, or CO₂ deficient solution. The lean solution is returned to the absorber 10 by way of the heat exchanger 14 to repeat the process.

In order to minimize system capital (absorber cost) it is important to maximize the overall mass transfer rate for the scrubber system as there is a direct correlation between the two. This invention relates to methods for this purpose as well as to catalyst compounds useful in those methods.

SUMMARY

A method is provided for increasing the overall mass transfer rate of acid gas scrubbing solvents. The method comprises adding a catalyst compound to a fluid stream including an acid gas and an acid gas scrubbing solvent wherein that catalyst compound has a chemical formula:

where:
(a) M is any group VII B through XII B element;
(b) E is any combination of N, O, S having a net 2⁻ charge per individual ligand;
(c) R₁₋₄ = —H, —COOH, —[OCH₂CH₂]ₙ—OR₉, CH₃, amine, amide, phosphate, —OH, —R₉OH, —[SO₃]¹⁻;
(d) R₂ = —H, —COOH, —[OCH₂CH₂]ₙ—OR₉, amine, amide, phosphate, —OH, —R₉OH, —[SO₃]¹⁻, —[(CH₃)ₙQ]¹⁻;
(e) R₃ = C₁₋₅ alkyl; (f) A=monovalent anion: Cl, Br, I, F, PF₆, BF₄, acetate, trifluoroacetate, ClO₄, NO₃;
(g) Q=monovalent cation: PX₃ where X=alkyl, cyclic alkyl, 0-alkyl, 0-aryl, N(R₆)₃ where R₆ = alkyl, cyclic alkyl, N-heterocyclic ring, imidazole;
(h) Z₁₋₆ = —H, any alkyl, —COOH, —R₉OOH (R₉=alkyl ranging from 2-10 carbons); —[OCH₂CH₂]ₙ—OR₉; —OH; —SO₃; —NO₃; amine, amide; and
(i) where n=1 to 10; and
(j) R₉=H or alkyl.
In one possible embodiment the catalyst compound has a chemical formula:

where R = any alkyl
M = Co, Zn.

In another possible embodiment the catalyst compound has a chemical formula:

In yet another possible embodiment the catalyst compound has a chemical formula:

where M = Co, Zn.

In another possible embodiment the catalyst compound has a chemical formula:

where M = Co, Zn.

In still another possible embodiment the catalyst compound has a chemical formula:

where M = Co, Zn.

In any of the embodiments the acid gas scrubbing solvent includes an amine or a mixture of amines. In one possible embodiment the acid gas scrubbing solvent includes a mixture of (a) a promoter amine and (b) a tertiary amine.

In one possible embodiment the acid gas scrubbing solvent includes chemical compounds selected from a group including but not limited to, monoethanolamine (MEA), 1-amino-2-propanol (1A2P), 3-amino-1-propanol, 2-amino-1-pro-
panol, 2-amino-1-butanol, 1-amino-2-butanol, 3-amino-2-butanol, 2-(methylamino)ethanol (MAE), 2-(ethylamino)ethanol, morpholine, piperazine (PZ), 1-methylpiperazine (NMP), 2-methylpiperazine, hydroxypiperidine, 2-piperidinemethanol, 4-amino-2-piperidinemethanol, 2-amino-2-methyl-1-propanol (AMP), diethanolamine (DEA), diisopropanolamine (DIPA), glycine, alanine, β-alanine, sarcosine, ethylene diamine (EDA), 1,3-propanediamine, 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexanediamine, methyldiethanolamine (MDEA), triethanolamine (TEA), dimethylethanolamine (DMEA), N,N,N',N'-tetramethyl-1,8-naphthalenediamine, diethylmonoethanolamine, dipropylmonoethanolamine, 1,4-dimethylpiperazine, N,N,N',N'-tetramethyl-1,6-hexanediamine, N,N,N',N'-tetrakis(2-hydroxyethyl)ethylenediamine, N,N,N',N'-pentamethylene diamine, N,N,N',N'-pentamethylene diamine, N,N,N',N'-tetr methylethylene diamine, N,N,N',N'-tetramethylethylene diamine, N,N,N',N'-tetramethylbutane-1,4-diamine, N,N,N',N'-tetramethyl-1,5-pentanedi amine, alkali carbonate, and mixtures thereof.

Further the catalyst compound is provided at a concentration of between about 0.05 mM and about 100 mM.

Various catalyst compounds are also claimed.

BRIEF DESCRIPTION OF THE DRAWING

The accompanying drawings incorporated herein and forming a part of the specification illustrate several aspects of the present method and together with the description serve to explain certain principles thereof. In the drawings:

FIG. 1 is a schematical illustration of a process for removing acid gas from a fluid stream utilizing solvent and thermal swing regeneration.

FIG. 2 is a schematical illustration of a simple CO2 bubbling apparatus used for catalyst testing.

FIG. 3 is a graphical illustration of removal rate versus carbon loading for various catalysts used with 30 wt% MEA at 40°C.

FIG. 4 is a graphical illustration of removal rate versus carbon loading for various catalysts in 20% 1-amino-2-propanol solvent with 13% CO2 at 40°C.

FIG. 5 is a schematical illustration of a wetted wall column (WWC) apparatus used in testing the catalysts.

FIG. 6 is a graphical comparison of CO2 overall mass transfer as measured on a wetted wall column for 30 wt% MEA at 40°C with catalyst CAER-CIP and CAER-CS1.

DETAILED DESCRIPTION

This document relates generally to methods of increasing overall mass transfer rate of acid gas scrubbing solvents as well as to novel transition metal monomer complexes incorporating a single transition metal atom.

The method may be broadly described as comprising adding a catalyst compound to a fluid stream including an acid gas and an acid gas scrubbing solvent. The catalyst compound has a chemical formula:

where:
(a) M is any group VII B through XII B element;
(b) E is any combination of N, O, S having a net 2- charge per individual ligand;
(c) R1, R2, R3 = H, —COOH, —CH2 —CH2 —OR9, amine, amide, phosphate, —OH, —R7OH, —SO3 ;
(d) R4, R5 = H, —COOH, —CH2 —CH2 —OR9, amine, amide, phosphate, —OH, —R7OH, —SO3 , —[(CH2)nQ] ;
(e) R6 = C1- C5 alkyl;
(f) A=monovalent anion: Cl, Br, I, F, PF6, BF4, acetate, trifluoroacetate, ClO4, NO3 ;
(g) Q=monovalent cation: PX3 where X=alkyl, cyclic alkyl, O-alkyl, O-aryl, N(R6)3 where R6 = alkyl, cyclic alkyl, N-heterocyclic ring, imidazole;
where \(Z_1 - Z_5 \) and any alkyl, COOH, \(-R_8\)OOH (Rg=alkyl ranging from 2-10 carbons), \([^\text{OCH}_2\text{CH}_2]^n\) OR; OH; SO\(^3\); NO\(^2\); amine, amide;
(i) where \(n=1 \) to 10; and
(ii) \(R_9=\text{H} \) or alkyl.
In one particular embodiment the catalyst compound has a chemical formula:

In another particular embodiment the catalyst compound has a chemical formula:

where \(R=\text{any alkyl} \)

M=Co, Zn.
In another particular embodiment the catalyst compound has a chemical formula:

where M=Co, Zn.
In another possible embodiment the catalyst compound has a chemical formula:

where M=Co, Zn.
In still another possible embodiment the catalyst compound has a chemical formula:

where M=Co, Zn.
R=any alkyl.
In another possible embodiment the catalyst compound has a chemical formula:

where M=Co, Zn.

For any embodiment of catalyst compound, the terms “alkyl” or “any alkyl”, when not otherwise stipulated, include at least C\(_2\)-C\(_{10}\) alkyl compounds.
For any of the method embodiments the acid gas scrubbing solvent may include an amine. In one possible embodiment the acid gas scrubbing solvent includes a mixture of (a) a promoter amine, selected from a group of primary and secondary amines and (b) a tertiary amine.
Such a mixture is described in detail in copending U.S. patent application Ser. No. 13/853,186, filed on Mar. 29, 2013 and entitled “Solvent and Method for Removal of an Acid Gas from a Fluid Stream”, the full disclosure of which is incor
Promoter amines useful in the present method include, but are not limited to, the primary and secondary amines such as 3-N-sulfonylamino (SA), 3-aminopropionitrile (APN), diethyl 2-aminoethanephosphonate (EtP2), N-methyltetrahydrothiophen-3-amine, 3,3'-sulfonyldiisopropanamine, 4,4'-sulfonyldiisobutanamine, 2-aminoethyl methyl sulfone, 4-aminobutanenitrile, 6-aminohexanenitrile, 3-(methylenamo)propanenitrile, diethyl[2-(methylamino)ethyl] phosphonate, diethyl(3-aminopropyl)phosphonate, diethyl (4-aminobutylyphosphonate, diethyl(5-aminopentyl) phosphonate, diethyl(6-aminohexyl)phosphonate, 2-(tert-butoxy)ethan-1-amine, N-methyl-2-(2-methyl-2-propanylamino)ethanamine and mixtures thereof.

In any of the embodiments, the catalyst compound must be stable under the relatively high temperature conditions (e.g. between perhaps 70 and 170°C) found within the stripper. The present catalyst compounds meet this requirement.

The following examples further illustrate how to synthesize or manufacture certain representative catalysts used in the method of increasing the overall mass transfer rate of acid gas scrubbing solvents.

Example 1

CAER-C1P

Preparation of H2LP

To a solution of 1-(3-formyl-4-hydroxybenzyl)triphenylphosphonium chloride (5.00 g, 11.55 mmol) in dry ethanol (40 mL) was added ethylenediamine (0.40 mL, 6 mmol) slowly at room temperature. The resulting solution was allowed to cool to room temperature and the solvent was removed under reduced pressure to give a brown powder. The brown powder was washed with ice cold water to remove ammonium salts and then triturated with ether to give the desired product as a brown solid (3.2295 g, 63% purity based on 1H NMR spectroscopy).

Preparation of CAER-CIP

A 100-mL round-bottom flask was charged with H2LP (4.594 g, 5.17 mmol) and CoCl2.6H2O (1.3541 g, 5.7 ppm), and EtOH (40 mL) was added to make a slurry. 2 equiv. of Et3N (1.5 mL, 11 mmol) was added and the mixture was heated at reflux for 3 hours. The mixture was cooled to room temperature and the solvent was removed under reduced pressure to give a brown powder. The brown powder was washed with ice cold water to remove ammonium salts and then triturated with ether to give the desired product as a brown solid (3.2295 g, 63%).
Preparation of **H₂L₁**

To a solution of 1-(3-formyl-4-hydroxybenzyl)-3-methylimidazolium hexafluorophosphate (5.00 g, 13.80 mmol) in dry ethanol (40 mL) was added ethylenediamine (0.50 mL, 5.75 mmol) slowly at room temperature. The resulting solution was stirred at reflux temperature for 6 h. The solution was allowed to cool to room temperature after which a solid separated out. The solid was washed with ethanol (3x5 mL) then ether (3x10 mL) and dried in vacuo to give a yellow solid (5.4375 g, 97%) in >95% purity based on ¹H NMR spectroscopy.

Preparation of **CAER-C₃I**

A 100-mL round-bottom flask was charged with H₂L₁ (5.011 g, 6.68 mmol) and ZnCl₂ (1.3630 g, 10.8 mmol), and EtOH (40 mL) was added to make a slurry. 2 equiv. of Et₃N (2.0 mL, 14 mmol) was added and the mixture was heated at reflux for 3 hours. The mixture was cooled to room temperature and a pale yellow solid was collected via filtration (4.6390 g, 85%) in >95% purity based on ¹H NMR spectroscopy.

Example 4

Preparation of H₂L₄

A 50 mL round bottom flask was charged with 2 equiv. 4-formyl-3-hydroxybenzoic acid (0.2471 g, 1.49 mmol) and dissolved in EtOH followed by addition of 1 equiv. ethylenediamine (50 µL, 0.75 mmol). The mixture was heated at reflux for 2 hr. The reaction mixture was cooled to room temp. and a yellow powder was collected via filtration (247.3 mg, 93%) in >95% purity based on ¹H NMR spectroscopy.

Preparation of CAER-C₃P* **

A 100-mL round-bottom flask was charged with H₂L₄ (0.06980 g, 0.196 mmol) and ZnCl₂ (0.0433 g, 0.318 mmol), and EtOH was added to make a slurry. 2 equiv. of Et₃N (58 µL, 0.417 mmol) was added and the mixture was heated at reflux for 3 hours. The mixture was cooled to room temperature and a pale yellow solid was collected via filtration (66.7, 81%) in >95% purity based on ¹H NMR spectroscopy.

**Preparation of H₂LP* **

A 100-mL round-bottom flask was charged with 5-chloromethyl-2-hydroxybenzaldehyde (10.3327 g, 60.4 mmol) and dissolved in ethyl acetate (40 mL) and triethylphosphite (11.5 mL, 67 mmol) was added. The mixture was heated at reflux (80° C.) for 3 hours. The mixture was cooled to room temperature and the solvent removed under reduced pressure to give triethoxy(3-formyl-4-hydroxybenzyl)phosphonium chloride as a viscous oil which was used without further purification. The viscous oil (10.003 g, 30 mmol) was dissolved in ethanol (40 mL) and ethylenediamine (1.2 mL, 18 mmol) was added slowly. The mixture was heated at reflux (80° C.) for 3 hours. The mixture was cooled to room temperature and the solvent was removed under reduced pressure to give a thick, yellow, oily substance. The oil was washed with ether (3x10 mL). The ether was evaporated slowly over 24 hours to produce a thick, colorless, viscous oil (4.8832 g, 89%) in >90% purity based on ¹H NMR spectroscopy.

Preparation of CAER-C₅₂

A 100-mL round-bottom flask was charged with 3,4-diaminobenzoic acid (2.0067 g, 13.2 mmol) and dissolved in EtOH. 2 equiv. salicylaldehyde (2.8 mL, 26.3 mmol) was added and the reaction mixture was heated at reflux for 2 hr, at which point an orange solid had formed. The mixture was cooled to room temp, and the orange solid was collected via filtration (1.8274, 38%). The orange filtrate was stored at 8° C. for 15 hours and a second crop of orange solids was collected via filtration (2.3211 g, 48%), for a combined 86% yield in >95% purity based on ¹H NMR spectroscopy.
Preparation of CAER-C5z

A 100-mL round-bottom flask was charged with H2L5 (0.4921 g, 1.37 mmol) and ZnCl2 (0.3224 g, 2.37 mmol), and EtOH was added to make a slurry. 2 equiv. of Et3N (390 μL, 2.8 mmol) was added and the mixture was heated at reflux for 3 hours. The mixture was cooled to room temperature and a dark brown solid was collected via filtration (0.5613, 97%) in >95% purity based on 1H NMR spectroscopy.

Example 6

Preparation of CAER-C11

A 100-mL round-bottom flask was charged with H2L1 (3.023 g, 4.04 mmol) and CoCl2·(H2O)6 (1.0641 g, 4.44 mmol), and EtOH (40 mL) was added to make a slurry. 2 equiv. of Et3N (1.2 mL, 8.63 mmol) was added and the mixture was heated at reflux for 3 hours. The mixture was cooled to room temperature and a pale yellow/orange solid was collected via filtration (2.8 mmol) and ZnCl2 (0.4921 g, 93%) in >95% purity based on 1H NMR spectroscopy.

Example 7

Preparation of CAER-C3P

A 100-mL round-bottom flask was charged with H2L3 (5.002 g, 5.63 mmol) and ZnCl2 (1.3630 g, 10 mmol), and EtOH (40 mL) was added to make a slurry. 2 equiv. of Et3N (1.75 mL, 12 mmmol) was added and the mixture was heated at reflux for 3 hours. The mixture was cooled to room temperature and a pale yellow solid was collected via filtration (4.9790 g, 93%) in >95% purity based on 1H NMR spectroscopy.

Catalyst Testing in Concentrated Primary Amines: Breakthrough Method

A schematic of the apparatus used is shown in FIG. 2. Briefly, 0.85 L/min feed gas containing ~13% CO2 mixed with N2 is firstly saturated with water in the first impinger and then bubbled through 15 mL of testing solvent in the second impinger. Both the saturator and bubbler are immersed in a water bath at 40° C. The gas effluent is dried through an ice condenser and a Drierite tube before it is analyzed for CO2 concentration using a dual-beam NDIR online CO2 analyzer (Model 510, HORIBA, Ltd.). Data of CO2 outlet concentration with respect to time is continuously recorded through a LABVIEW® package with 1 second interval. A line that bypasses the saturator and the bubbler is set up for inlet CO2 concentration determination. Before each experiment, the alkalinity of the testing solvent is precisely determined through acid-base titration.

The difference of inlet and outlet CO2 concentration represents the absorbed amount of CO2 at a particular time. The integration of the concentration difference represents the CO2 loading as expressed.

\[
\text{CO}_2 \text{ Loading (mol CO}_2/\text{kg solution)} = \frac{\int (C_{in} - C_{out}(t))dt}{m_{sol}} \quad \text{Eq 1}
\]

where \(C_{in} \) is the CO2 feed gas rate in mol/s, \(C_{out} \) is the CO2 effluent rate in mol/s, \(t \) is the time in seconds, and \(m_{sol} \) is the mass of solution in kg. The CO2 loading at \(C_{out} = C_{eq} \) is the equilibrium CO2 capacity at 13% CO2 and 40° C. With the alkalinity (mol N/kg of solution) of the solution known, the CO2 loading can also be written as

\[
\alpha = \frac{\text{CO}_2 \text{ Loading (mol CO}_2/\text{kg solution})}{\text{Alkalinity (mol N/kg solution)}} \quad \text{Eq 2}
\]

In addition, the absorption rate can be described by the derivative of CO2 loading with respect to time:

\[
\text{Absorption rate (mol CO}_2/\text{kg solution/s)} = \frac{d\text{CO}_2 \text{ Loading}}{dt} \quad \text{Eq 3}
\]

As illustrated in FIGS. 3 and 4, the current catalyst compounds improve the removal rate of a 30 wt% MEA acid gas scrubbing solvent.

Catalyst Testing in Concentrated Primary Amines: WWC Method

The wetted wall column (WWC) is used to determine mass transfer of CO2 into a process absorption solvent. The WWC apparatus is illustrated in FIG. 5. The improved overall mass transfer resulting from the use of two catalysts is illustrated in FIG. 6.

In each test, solvent is loaded to a mol CO2/mol N level of approximately 0.1 with CO2 by sparging the solution reservoir with a concentrated CO2/N2 mixture. The initially loaded solution is then circulating through the wetted wall column and a pre-heater which heats the solution to the desired temperature. Once the solution is thermally stable, a simulated flue gas stream (CO2 balanced with N2) saturated with water flows into the wetted wall column. In the wetted wall column, liquid flows downwards on the outside surface on an annular tube while CO2 gas stream flows upwards around the annular tube. CO2 absorption from the gas phase into the liquid takes...
place along the tube’s wall. Gas effluent from the WWC is dried and analyzed by an infrared CO₂ analyzer for CO₂ concentration determination. CO₂ inlet concentration is analyzed by directing the gas stream to bypass the WWC. A liquid sample downstream of the WWC is collected at each solution carbon loading and tested for total liquid CO₂ loading, viscosity, density, and pH measurements. Liquid film thickness is calculated by Eq. 1. The bulk solution is then loaded with more CO₂ and the data collection cycle is repeated.

\[\delta = \sqrt{\frac{3\mu Q_{\text{in}}}{\rho g W}} \]

Eq. 1

in which \(\mu \) is the viscosity, \(Q_{\text{in}} \) is the liquid flow rate, \(\rho \) is the density of liquid, and \(W \) is the circumference of the column.

The overall mass transfer coefficient at the operating condition can be calculated from Eq. 2.

\[K_G = \frac{N_{CO_2}}{\Delta P_{CO_2}} \]

Eq. 2

in which \(N_{CO_2} \) is the flux of CO₂, \(K_G \) is the overall mass transfer coefficient, \(\Delta P_{CO_2} \) is the log mean of driving force which is defined by

\[\Delta P_{CO_2} = \left(\frac{P_{CO_2}^{\text{in}} - P_{CO_2}^{\text{out}}}{P_{CO_2}^{\text{in}} - P_{CO_2}^{*}} \right) \]

Eq. 3

in which \(P_{CO_2}^{\text{in}} \) and \(P_{CO_2}^{\text{out}} \) represent the CO₂ partial pressure at the inlet and outlet of the wetted wall column, and \(P_{CO_2}^{*} \) is the equilibrium partial pressure of CO₂. The \(P_{CO_2}^{*} \) is obtained by making the flux \(N_{CO_2} \) to be zero at zero driving force and solving the 2 equations simultaneously using a trial-and-error routine in MATLAB®.

The foregoing has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the embodiments to the precise form disclosed. Obvious modifications and variations are possible in light of the above teachings. All such modifications and variations are within the scope of the appended claims when interpreted in accordance with the breadth to which they are fairly, legally and equitably entitled.

What is claimed:

1. A catalyst compound having a chemical formula:

 ![Chemical Structure]

 where M=Co, Zn
 R—any alkyl.

2. A method of increasing overall mass transfer rate of acid gas scrubbing solvents, comprising:

 adding the catalyst compound of claim 1 to a fluid stream including an acid gas and an acid gas scrubbing solvent.

3. The method of claim 1 wherein said acid gas scrubbing solvent includes an amine.

4. The method of claim 1 wherein said acid gas scrubbing solvent includes a mixture of a primary or secondary amine and a tertiary amine.

5. The method of claim 1 wherein said acid gas scrubbing solvent includes a material selected from a group consisting of monoethanolamine (MEA), 1-aminoo-2-propanol (1A2P), 3-aminoo-1-propanol, 2-aminoo-1-propanol, 2-aminoo-1-butanol, 1-aminoo-2-butanol, 3-aminoo-2-butanol, 2-(alkylamino)ethanol (MAE), diglycolamine, morpholine, piperazine (PZ), 1-methylpiperazine (NMP), 2-methylpiperazine, hydroxy piperidine, hydroxyalkylpiperazine, 2-piperidinoethanol, N-aminooethylpiperazine (AEP), aminoo propylmorpholine, 4-aminopiperidine, 3-aminopiperidine, 2-aminoo-piperidine, diethanolamine, 2-aminoo-2-methyl-1-propanol (AMP), diethanolamine (DEA), diisopropanolamine (DIPA), glycine, alanine, \(\beta \)-alanine, sarcosine, isopropanolamine, benzylamine, methylidethanolamine (MDEA), triethanolamine (TEA), alkanol carbonate, N,N,N,N'-tetraalkylthiolethanolamine, N,N,N,N'-tetraalkyl-1,8-naphthalenediamine, N,N,N,N'-tetraalkylbenzylamine, N,N,N,N'-tetraalkyl-1,4-dialkylpiperazine, N,N,N,N'-tetraalkyl-1,6-hexanedi amine, N,N,N,N'-tetraalkyl-1,5-pentanedi amine, N,N,N,N'-tetraalkyl-1,4-butanedi amine, N,N,N,N'-tetraalkyl-1,3-propanedi amine, N,N,N,N'-tetraalkyl-1,2-ethanedi amine, N,N,N,N'-tetraalkyl(2-hydroxyethyl)ethanedi amine, N,N,N,N'-penta alkylid ethylene triamine, N,N,N,N'-penta alkylid propy lam inet里mine, N,N,N,N'-penta alkylbenzylamine, N,N,N,N'-penta alkylcyclohexylamine, N,N,N,N'-tetraalkylb is(aminomethyl)ether, N,N,N,N'-dimethyl-2-aminoethoxyethanol, where alkyl represents any methyl, ethyl, propyl, butyl isomer, and mixtures thereof.

6. The method of claim 1 wherein said catalyst compound is provided at a concentration of between about 0.05 mM and about 100 mM.

* * *