Excitatory Amino Acids Display Compartmental Disparity Between Plasma and Synovial Fluid in Clinical Arthropathies

Terry A. McNearney
University of Texas Medical Branch

Karin N. Westlund
University of Kentucky, kwhigh2@uky.edu

Follow this and additional works at: https://uknowledge.uky.edu/physiology_facpub

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Repository Citation

This Article is brought to you for free and open access by the Physiology at UKnowledge. It has been accepted for inclusion in Physiology Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Excitatory Amino Acids Display Compartmental Disparity Between Plasma and Synovial Fluid in Clinical Arthropathies

Notes/Citation Information
Published in *International Journal of Clinical and Experimental Pathology*, v. 6, no. 3, p. 492-497.

Once the paper is published, the copyright will be released by the publisher under the "Creative Commons Attribution Non-Commercial License", enabling the unrestricted non-commercial use, distribution, and reproduction of the published article in any medium, provided that the original work is properly cited.

This article is available at UKnowledge: https://uknowledge.uky.edu/physiology_facpub/35
Excitatory amino acids display compartmental disparity between plasma and synovial fluid in clinical arthropathies

Terry A McNearney1,2,3*, Karin N Westlund4

Departments of 1Neuroscience and Cell Biology, 2Internal Medicine, 3Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX; 4Department of Physiology, University of Kentucky Medical Center, Lexington, KY. *Dr. McNearney is currently employed at Eli Lilly and Co, Indianapolis, IN.

Received November 28, 2012; Accepted December 26, 2012; Epub February 15, 2013; Published March 1, 2013

Abstract: Background: Previous studies have demonstrated elevated levels of excitatory amino acids (EAA) glutamate (Glu) and aspartate (Asp) in the synovial fluid (SF) of patients with active arthritis. The source of SF EAA concentrations are thought in large part to be secondary to passive diffusion from the plasma across synovial membranes and less so, reflective of local synovial pathology. Objective: This descriptive report assesses the hypothesis that the SF EAA levels reflect inflammatory processes of the joint and are not dependent on plasma levels. Methods: Simultaneously drawn plasma and SF samples were obtained from 14 recently deceased cadavers and 10 patients with active arthritis. Plasma and SF EAA and other amino acid (AA) levels were determined by HPLC. SF: Plasma compartment concentration ratios were calculated to assess if SF EAA levels were similar to plasma levels. Results: In the cadavers with no antemortem arthritis, the mean SF: Plasma ratios for Glu and Asp were 4-5-fold lower than the mean ratios seen for 9 other AAs, showing specific discrepancies of EAA levels between plasma and synovial fluid. In 9 patients with active arthritis, the SF: Plasma concentration ratios were higher in samples derived from inflammatory arthropathies. Conclusions: Clinical samples demonstrated distinct, independent compartmental EAA concentrations between blood and joint compartments in support that local arthritic processes rather than plasma influence SF EAA concentrations. The SF EAA levels, whether from local cell production, local neurogenic sources, and/or transport-gradient mechanisms, parallel local pathology in the joint compartment and thus serve as surrogate biomarkers of local inflammatory processes.

Keywords: Glutamate, aspartate, synovial fluid, arthritis, biomarker, neurotransmitter

Introduction

Previous studies have demonstrated elevated levels of excitatory amino acids (EAA) and other neurotransmitters in synovial fluid (SF) extracted from patients with active arthritic conditions [1-3] [McNearney TA, Goel N, Lisse JL, Speegle D, Cao S and Westlund KN. Neurotransmitter excitatory amino acids in synovial fluids demonstrate distinct temporal fluctuations in active arthritis, submitted]. Additional studies have reported elevated plasma amino acid (AA) levels in patients with rheumatoid arthritis compared to normal controls [4]. The source(s) of increased SF EAA levels is not known but possibilities include local cell production, neurogenic exudation, or passive diffusion from the blood or plasma across synovial membranes. The concentration elevations of SF EAA in symptomatic arthropathies and their reported association with SF RANTES, and MIP1-alpha concentrations promotes the hypothesis that local inflammatory joint processes rather than passive diffusion from plasma determines SF EAA concentrations [5]. To assess this, simultaneously drawn plasma and synovial fluids from the knees of 14 recently deceased cadavers and 9 patients with active arthritis were obtained and measured for EAA and other AA levels to assess the compartmental SF: Plasma concentration ratios. Disparate ratios between these compartments would support the concept that EAA and other AA levels are primarily determined by local inflammatory arthritic pro-
EAA compartmental differences reflect arthritis

Figure 1. A: SF: Plasma ratios of 12 amino acid concentrations (µM) determined by HPLC derived from 14 cadavers. SF: Plasma ratios are shown as mean values +/- standard error. EAA: glutamate (Glu); aspartate (Asp) and glutamine (Gln). Other amino acids include serine (Ser); glycine (Gly); arginine (Arg); citrulline (Ctn); threonine (Thr); alanine (Ala); tyrosine (Tyr); taurine (Tau) and asparagine (Asn). *: p<0.01 comparing the mean Glu SF: Plasma ratio to non EAA amino acids. **: p<0.01 comparing the mean Asp SF: Plasma ratio to non EAA amino acids. These data support compartmental differences for EAA relative to other AA. B: SF: Plasma ratios of amino acid concentrations (µM) of plasma and knee SF determined by HPLC derived from a patient with active Reiter’s syndrome. SF: Plasma ratios are shown as mean values +/- standard error. In a patient with active inflammatory synovitis, the mean SF: Plasma ratios for EAA were much higher compared to the ratios of other amino acids. *: p<0.01 comparing the mean Glu SF: Plasma ratio to non EAA amino acids. **: p<0.01 comparing the mean Asp SF: Plasma ratio to non EAA amino acids.

cesses and are independent of the plasma concentrations.

Materials and methods

Informed consent

All clinical samples collected and medical record reviews were under approved protocols by the University of Texas Medical Branch Institutional Review Board (IRB) with appropriately authorized informed consent.

Cadavers

Autopsy specimens were considered acceptable for study if samples were harvested within 24 hours after witnessed death. Written consent was obtained from the family or authorized persons for fluid harvest, medical record review, and physical examination before plasma and synovial fluids were harvested, per IRB protocol. Cadaveric samples (N=14) were available for which there was no clinical or antemortem history of active arthritis at the time of death. Blood was obtained by venipuncture or cardiac puncture, as routinely obtained for autopsy cases in tubes with EDTA. Synovial fluids were obtained by introduction of a 16-gauge needle below the patella and aspiration of the joint fluid. In nonedematous or nonarthritic conditions, the synovial fluid harvest was usually between 0.5-2.0 ml of viscous, clear, or pale yellow fluid. In patients with peripheral (generalized) edema or antemortem arthritic conditions, it was possible to harvest larger volumes (5-8 ml) of fluid from the knee joints.

Patients

After written consent was obtained, SF from the active arthritic knee was obtained at the time of diagnostic or therapeutic arthrocentesis. Venipuncture was performed simultaneously. Sample processing has been previously described [3]. The arthritic conditions were diagnosed by faculty members of the University Rheumatology division based on diagnostic criteria [6]. These included: rheumatoid arthritis, acute gout, acute Reiter’s syndrome, osteoarthritis, pseudogout and sympathetic effusion in a patient with catastrophic antiphospholipid antibody syndrome (APAS).

High pressure liquid chromatography (HPLC), experimental standards and quality control

The protocols, standards and internal controls for HPLC determination have been previously described [3].
EAA compartmental differences reflect arthritis

Quantities (in µM) from HPLC are presented as the mean SF: Plasma EAA concentration ratios or mean SF: Plasma AA concentration ratios. The neurotransmitter EAA’s measured were glutamate (Glu) and aspartate (Asp). Other AAs measured included serine (Ser) and glycine (Gly), as neurotransmitter inhibitory amino acids (IAA) and AA used as metabolic controls: glutamine (Gln), arginine (Arg), threonine (Thr), alanine (Ala), taurine (Tau), tyrosine (Tyr) and asparagine (Asn).

Statistics

Each sample had three determinations. Data are presented as average values +/- SE. Analyses of concentrations were determined by Mann-Whitney U tests. A p value <0.05 was considered significant. Average SF: Plasma concentration ratios were also determined and plotted with positive values showing higher values in the joint and negative values showing higher values in the plasma (blood).

Results

Mean SF: plasma EAA concentration ratios demonstrate significant compartmental disparity

Figure 1A depicts the mean SF: Plasma concentration ratios of the EAA and other AA from 14 cadavers without evidence of active ante-mortem arthritis. The mean SF: Plasma concentration ratios for 14 cadaveric samples were <1 for all EAA and other AA, However, the mean SF: Plasma concentration ratio disparity for Glu was much greater compared to the other AA (Glu: -22.15-fold, p<0.01 compared to all other AA except Asp). The mean Asp SF: Plasma concentration ratios were much greater for other AA except Tau, (Asp: -17.16-fold p<0.01 all non EAA except Tau; Asp vs. Tau p= 0.059). The mean SF: Plasma concentration ratios of other AA’s were much less disparate and are as follows: Gln: -1.61; Ser: -3.96; Gly: -2.11; Arg: -0.68; Ctn: -2.13; Thr: -1.92; Ala: -2.69; Tau: -1.57; Tyr: -5.71 and Asn: -1.93. Nonarthritic cadaver SF Glu and Asp levels were in close agreement with previously report ed baseline levels [3]. For all cadavers with no ante-mortem arthritis, mean SF Glu concentrations ranged from 0.28 - 26.26 µM and mean Asp concentrations ranged from 0 - 11.93 µM. From the plasma samples, mean plasma Glu concentrations ranged from 9.48 - 80.50 µM and mean plasma Asp concentration ranged from 0 - 73.36 µM among the cadavers.

Figure 1B depicts the mean EAA and other AA SF: Plasma concentration ratios from samples derived from a patient with acute Reiter’s syndrome. The mean SF: Plasma concentration ratio for Glu: 7.50±0.18-fold, p<0.01 compared to all AA except Asp. The mean Asp SF: Plasma concentration ratios for Asp: 4.49±0.39-fold p<0.01, compared to other AA except Glu. The samples from the patient with acute Reiter’s syndrome with symptomatic synovitis demonstrates that higher SF EAA concentrations reflect the intense inflammatory pathology of the joint compartment relative to the plasma concentrations (blood compartment) in this systemic illness.

Figure 2 demonstrates mean SF: Plasma EAA concentration ratios of 9 patients with active arthritis or synovial effusion who underwent simultaneous blood draws and arthrocenteses. Patient 1 had Reiter’s syndrome (RS); patients 2 and 3 had rheumatoid arthritis (RA); patients 4 and 5 had acute gout; patients 6 and 7 had osteoarthritis; patient 8 had pseudogout (PG) and patient 9 had a sympathetic synovial effusion from complications of antiphospholipid antibody syndrome (APAS). Patients 1-5 generally had mean SF: Plasma EAA concentration ratios >1, reflecting higher SF EAA concentrations in the joint compartment. Patients 6-9 had arthritic conditions with mean SF: Plasma ratios <1, reflecting lower inflammatory arthritic activity, relative to any systemic processes. Patients 8 and 9 had severe systemic illnesses (acute bacterial pneumonia and catastrophic APAS, respectively) which resulted in significantly higher concentrations of plasma EAA and other AA. Thus, these patients had lower mean SF: Plasma ratios (<1), as inordinately higher plasma EAA levels reflected severe systemic illnesses. To serve as templates, the far right of the graph depicts SF: Plasma concentration ratios from cadaveric samples from a RA patient who had active synovitis at the time death (+) and from a patient who had no ante-mortem history of active arthritis (-).

Table 1 demonstrates...
EAA compartmental differences reflect arthritis

Discussion

This descriptive study is the first to assess the relative compartmental concentrations of amino acids between plasma and synovial fluid and indicates a clinical compartmental relevance to increased SF Glu and Asp concentrations in patients with active arthritis. The sources of elevated SF Glu and Asp concentrations in active arthritis are unknown, but likely candidates include plasma, local production from synoviocytes or osteocytes in the joint capsule or local secretion from nerve fibers. One might expect that SF Glu and Asp would be in full equilibrium with the plasma, based on size, as small physiologic molecules are usually in full equilibrium between plasma and synovial fluid [7]. However, the samples from the cadavers with no antemortem arthritis had significantly decreased EAA SF: Plasma concentration ratios compared to nine other AA. The significantly greater compartmental ratio differences of SF Glu and Asp indicate that plasma is not the sole or even major source of SF EAA. Higher SF: Plasma concentration ratios in one cadaver with antemortem arthritis and several patients with active inflammatory arthritic processes also support the hypothesis that SF EAA concentrations reflect local physiologic processes in the joint. High AA concentrations obtained in several cadaver plasma samples might be explained by antemortem systemic inflammatory conditions or possibly reflect post-mortem hemolysis and cytolysis. However, the mean plasma concentrations of cadavers with no active antemortem infectious or inflammatory conditions are in close agreement to the plasma levels obtained from 15 normal healthy controls (Data not shown). Moreover, SF samples with no antemortem arthritis are in close agreement to baseline levels obtained in healthy rats (Data not shown).

The SF: Plasma EAA ratio discrepancies might also reflect the necessity of energy dependent glutamate transporter proteins in peripheral

Table 1. Summary of patient diagnoses, age and cell counts

<table>
<thead>
<tr>
<th>Patient #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosis</td>
<td>RS</td>
<td>RA</td>
<td>RA</td>
<td>Gout</td>
<td>Gout</td>
<td>OA</td>
<td>OA</td>
<td>PG</td>
<td>APAS</td>
</tr>
<tr>
<td>Age, yrs</td>
<td>37</td>
<td>73</td>
<td>29</td>
<td>63</td>
<td>67</td>
<td>54</td>
<td>41</td>
<td>79</td>
<td>27</td>
</tr>
<tr>
<td>PI WBC #</td>
<td>10</td>
<td>8.0</td>
<td>6.9</td>
<td>13.6</td>
<td>6.5</td>
<td>NA</td>
<td>8.6</td>
<td>8.1</td>
<td>6.3</td>
</tr>
<tr>
<td>SF WBC #</td>
<td>44.0</td>
<td>6.0</td>
<td>31.0</td>
<td>19.2</td>
<td>31.0</td>
<td>NA</td>
<td>280</td>
<td>0.33</td>
<td>0.123</td>
</tr>
<tr>
<td>SF Lym #</td>
<td>3.15</td>
<td>0.24</td>
<td>1.5</td>
<td>NA</td>
<td>0.3</td>
<td>NA</td>
<td>002</td>
<td>0.04</td>
<td>0.006</td>
</tr>
</tbody>
</table>

Intracell. Crystals --- --- --- ++ UA ++ UA --- --- ++ CPPD ---

Diagnosis: RS: Reiters syndrome, RA: rheumatoid arthritis, SLE: systemic lupus erythematosus; OA: osteoarthritis, PG: pseudogout, APAS: antiphospholipid antibody syndrome; Age: in years; PI WBC #: plasma white blood cell count, /mm^3x1000; SF WBC #: synovial fluid white blood cell count /mm^3x1000; SF Lym. #: synovial fluid lymphocyte count /mm^3x1000. Intracell. Crystals: intracellular crystals in SF, UA: uric acid crystals, CPPD: intracellular calcium pyrophosphate dihydrate; ND: not done.
tissues, including bone, cartilage and synovium [8-10]. Sodium or potassium dependent Glu and Asp transport proteins may play role in the maintenance of SF EAA concentrations in the normal joint. In the CNS, high affinity glutamate/aspartate carrier proteins are capable of transporting the neurotransmitters against several thousand fold concentration gradients using the sodium, potassium electrochemical gradient as a driving force, under control conditions [11]. Persistent depolarization of nerves reverses the function of the Glu transporter pumps, however, resulting in a dumping of amino acids [12, 13]. Microdialysis uptake of inflammatory perturbations may also induce local synovium-based carrier proteins to inappropriately allow an increased influx of normally excluded substances from the plasma, including Glu and Asp. Alternatively, the Glu and Asp may require additional mechanisms to migrate through the SF, and its accumulation points to a failure of normal exclusion physiology during joint inflammation. In addition to EAA sources from the plasma, SF Glu and Asp concentrations are secondary to local production by resident cells in the joint capsule [14, 15].

A more likely source may be the stimulated release from the primary afferent nerve terminals supplying the joint, as is thought for substance P release into the joint [16]. Substance P has been demonstrated to have SF: Plasma ratios of 2-fold in an inflammatory arthropathy [17]. The SF EAA values derived from normal rat suggest that the low values might be physiologic in the absence of active arthritis and are elevated in inflamed joints [18, 19]. Previous studies have demonstrated increased Glu immunoreactivity in the median articular nerve supplying inflamed joints of monkeys [20]. Thus, it is reasonable to assume that glutamate might also be released into the joint by nerve fibers. In a k/c induced arthritis model in rats, the expected increase in SF Glu was abrogated with pretreatment with intra-articular lidocaine, which decreases neurotransmitter release from peripheral nerves [18]. Local glutamate and aspartate can bind and activate peripheral receptors on local osteocytes, chondrocytes and synoviocytes to enhance or perpetuate local inflammation and pathologies [15, 19, 21-25]. In a previous study, our group demonstrated a correlation between SF EAA levels and SF RANTES, MIP1-alpha and IL-8 levels [5]. In the same study, SF WBC counts significantly correlated to SF IL-8 levels but not to EAA levels.

The disparity of EAA levels between body compartments in this study demonstrates a spectrum of host pathologic processes and supports a physiologic relevance of the EAA levels and their regulation in the joint. Taken together, SF EAA elevations reflect the dynamics of joint inflammation and pain. Further studies might identify SF EAA concentrations as novel direct or surrogate biomarkers that reflect local pathologic arthritic processes.

Conflict of interest

There are no financial disclosures or conflicts of interest with the authors.

Acknowledgments

This work was supported by NIH NS 32778: Central Control of Arthritis and Arthritic Pain (KW), NIH NS 32118, Central Control of Arthritis and Pain, (TAM, KNW), and Charles A. Dana Foundation, Clinical Hypotheses in Neuroimmunology, (TAM, KNW).

We are indebted to Dr. Sparks Veasey III and the staff of UTMB Autopsy Services for their excellent support in coordinating the harvesting of matched samples for this project.

Address correspondence to: Dr. Terry A McNearney, Senior Medical Advisor, Neuroscience/Pain, Eli Lilly and Co. Lilly Corporate Center, Indianapolis, IN 46240, USA. Office phone: 317-655-0972; Office fax: 317-277-6896; Blackberry: 317-440-1690; E-mail: tmcneam@utmb.edu

References

EAA compartmental differences reflect arthritis

[22] Gu Y, Genever PG, Skerry TM and Publicover SJ. The NMDA type glutamate receptors expressed by primary rat osteoblasts have the same electrophysiological characteristics as neuronal receptors. Calcif Tissue Intl 2002; 70: 194-203.

