Method Utilizing the Tobacco Phylloplanin Promoter for Expression of Nucleic Acids as Gene Products Directed to Aerial Surfaces of Plants

George J. Wagner  
*University of Kentucky, gwagner@uky.edu*

Ryan W. Shepard  
*University of Kentucky*

Click here to let us know how access to this document benefits you.

Follow this and additional works at: [https://uknowledge.uky.edu/pss_patents](https://uknowledge.uky.edu/pss_patents)

Part of the [Plant Sciences Commons](https://uknowledge.uky.edu/pss_patents)

Recommended Citation

[https://uknowledge.uky.edu/pss_patents/32](https://uknowledge.uky.edu/pss_patents/32)
**ABSTRACT**

A method and system is provided for generating excreted gene products in a plant which includes generating a nucleic acid fusion construct comprising a phylloplalin promoter and a selected non-phylloplalin nucleic acid sequence whose transcription product is to be expressed and delivered to an aerial surface of a plant. The method includes transforming plant cells with the nucleic acid fusion construct and allowing the plant cells to express the non-phylloplalin nucleic acid sequence transcription product which is then excreted from the plant cells to the aerial surfaces.

9 Claims, 14 Drawing Sheets
Fig. 1 B
(a) Water Control

(b) LWW

(c) LWW + ProtK

Fig. 2 A
Fig. 2 B
Fig. 3
Fig. 4
Fig. 5 A
Fig. 5 B
Fig. 7C

SGT
Glands

"Pores"
-1157  cccattccac  tatgaacctc  coggaatcct  attctgacta  tgctgatcaag  tcataatgaa
-1097  gctgcacata  gcttcataat  cgc1aaacga  cgtgcctagtt  cicaaaacga  cctgcggggg
-1037  tctgctacatt  aagaggtgatt  aaccttcgtgt  ataccttggtc  aagttttctta  taacaatttc
-977   ggcaccaacct  agtaaagatg  gaaatagttg  aatggccagtc  acaaaaattt  acacggaaat
-917   gatactgatc  taacttcacac  aaggttaggca  cgctactaga  caattccccca  taacaacaat
-857   gcctgaagac  tcacacagata  tgaaaaaatca  atccctacta  tcaccggtgga  gttgttaagct
-797   ttagaagatc  ttcacacactt  tttagggcact  aagatcactc  caccaacatt  tcaagagaat
-737   cactggcact  gccaaaaagc  ccctgctacat  gtatgtgaat  ttggttagtt  atctaaagttt
-677   eattatttcac  ttagtattct  ttacatttgg  ttccccccctt  ctaggtctcg  cagcgaacta
-617   gattgaattgg  attggtccac  tctattatta  cagagaataa  ataaattttt  tatggtacta
-557   ggccacacta  attgcaactct  caacaaagta  ttaatttctag  ccttcctgggt  acttccatacc
-497   tatgaataatg  ataattttat  ttaaaaaaatt  agatgtacat  ggaatatata  acctatgaaat
-437   attaaatata  atatataaata  gaaaaaataat  tttaagttca  cctttaagat  atccgggttat
-377   tacatgacca  aacacaatatt  gtttatcaaa  tactttcaaa  agaatggtgc  aacgttgaat
-317   tatatttttcct  caaagtgacat  tatgaattac  tatggttgaata  atacactttt  caaatgacta
-257   aatgttagaga  agtcagagat  gggctttcttt  tgaattttaa  agttttgtagc  aattgtatgt
-197   agttatagtg  agggatgcca  ccaacgtctc  atatagcaat  acacaagttg  gttagcgtat
-137   ttagaattttc  aattacttca  ttcaaatata  cagcgaatag  caattaatac  cacttttaca
-77    acagatagat  tagggggtttt  aaaatttctaa  ccaatgatat  ttatctaaaa  ttgatgtcgac
-17    caacaaacctta  attgagcaac  acaattttctt  acagcaataa  ctatcacaata  taacacattac

FIG. 8

METHOD UTILIZING THE TOBACCO PHYLLOPLANIN PROMOTER FOR EXPRESSION OF NUCLEIC ACIDS AS GENE PRODUCTS DIRECTED TO AERIAL-surfaces of PLANTS

CROSS REFERENCE TO RELATED APPLICATIONS

This patent claims priority to U.S. Provisional Application Ser. No. 60/777,383, filed Feb. 28, 2006, herein incorporated by reference.

FIELD OF THE INVENTION

The present invention relates to a method and system for delivering protein and protein products to plant surfaces and, in particular, a method and system for delivering protein products to plant surfaces using specific promoter sequences.

BACKGROUND OF THE INVENTION

In plants, surface protection is an innate defensive strategy in which microbes are directly inhibited at their first point of host contact, usually at the boundary between the host and the external environment. While studies of chemical-based leaf surface protection in plants have focused on secreted secondary metabolites, e.g., glandular trichome exudates, animal studies have focused on secreted surface proteins deployed at host/pathogen interfaces such as skin or intestinal epithelium, as reported by Gallo and Hutten (1998); and Schroeder (1999), both herein incorporated by reference.

Fungi and fungi-like, e.g., oomycete, pathogens are the major causes of plant disease, resulting in annual crop losses of ~20% worldwide, forcing extensive control by synthetic fungicides. Many of these organisms reproduce via airborne spores and transiently exploit the plant leaf surface, or phylloplane, as a starting point for host ingress. Spores of the oomycete pathogen *Peronospora tabacina*, the causal agent of blue mold disease on several *Nicotiana* species, germinate on the leaf surface by forming a germination tube, and then penetrate the plant epidermal layer with an “infection peg.” For successful phylloplane germination to occur, spores must tolerate pre-formed biochemicals present on the leaf surface.

While some surface biochemicals are presumed to leach passively from the leaf interior, e.g., sugars, others are selectively biosynthesized by specialized epidermal cells for delivery to the phylloplane. Trichomes are simple or glanded epidermal appendages that occur on most plants. Glandular secreting trichomes are found on ~30% of vascular plants, and they produce surface-accumulated exudates that usually contain hydrophobic isoprenoids and phenylpropanoids, the latter including flavonoids, phenolics, tannins, quinones, etc. In Solanaceae plants, amphipathic sugar esters are also commonly found in glandular trichome exudates. Such compounds have been associated with insect resistance in many plants, and pest resistance is often correlated with glandular trichome density. Two well-studied cases of glandular trichome-based insect resistance are found in the plant family Solanaceae. Sugar esters produced by tall glandular trichomes (TGTSIs) of primitive tomato and potato species, and the diterpenoid cambratriene-ol produced by tobacco TGTSIs, have been shown to inhibit aphid infestation. Antimicrobial activities of trichome exude compounds, particularly monoterpenoids and sesquiterpenoids, have also been reported, but are less-studied than insect resistance.

In plants, the aerial surface is referred to as the phylloplane. In a region of the phylloplane referred to as the phyllosphere, a habitat is epitomized by specialized interactions between host plants and microorganisms, both pathogenic and epiphytic. Other regions of the phyllosphere may include epidermal cell wall spaces, the spaces inside guard cell and hydathode stomata, and leaf inner air space.

In *Nicotiana tabacum*, phylloplane structures include guard cells, hydathodes, simple trichomes, glandular secreting trichomes with their exudates, other epidermal cells, and the cuticle. Glandular secreting trichomes, guard cells and cuticular components have been studied, and their roles in pathogen and insect interactions have been reviewed. Recent attention has been given to molecular aspects of simple trichome differentiation and development in *Arabidopsis* and cotton, and the apparent roles of simple trichomes in microbial disease resistance, as affected by physical impedance to disease transmitting insects and water shedding, are documented in the literature. In contrast, the structure and function(s) of hydathodes are poorly understood, even though guttation, secretion of primarily, but not exclusively, water at the leaf surface, has been observed in many species.

The best studied tissue for secretion of antimicrobial components to the epidermal surface is the glandular secreting trichome. Perhaps 30% of vascular plants possess exudating glandular trichomes. Depending on the species, varying amounts of various biochemicals, often lipophytic, often terpenes, are produced, secreted, and accumulated by this specialized tissue type. A common form of glanded trichome is the deltoid type, having an aggregate of one or more specialized gland tip cells attached to a stalk to aerial plant surfaces. Secreting trichome glands of this type produce and secrete exudate into the space outside gland cells, enclosed by a cuticle surrounding the gland. Exudate chemicals may escape this containment via pores referred to as striae in the cuticle, and run down the stalk onto the epidermal surface where they are thought to primarily serve the plant as anti-insect or antimicrobial defense agents, as described in Wagner, G. J., Wang, E., Shepherd, R. W. (2004) “New approaches for studying and exploiting an old protuberance, the plant trichome.” *Annals of Botany* 93: 3-11, herein incorporated by reference. Insects walking on the surface may disrupt the cuticle and become immobilized by viscous exudates, or poisoned. Airborne spores or moisture-facilitated motile spores or bacteria reaching the plant surface may contact trichome exudate that has been distributed on the surface. Thus, trichome exudation has been viewed as a first line of defense against pests and pathogens. Glandular trichome exudates may contain a wide variety of chemicals, many of which are terpenoids. Other exudate constituents are flavonoids, phenolics, and sugar esters. The amount of accumulated trichome exudate can vary widely with species and growth conditions. Hydathodes, like glandular secreting trichomes, are secreting structures that are positioned to deliver biochemicals to the leaf surface.

It has long been recognized that when the soil is moist and the air is cool and humid, leaves of many plants, particularly young leaves, will bear small liquid droplets at the leaf margin or distributed on the entire surface. This moisture is often mistaken for dew, but is generally thought to be guttated water, with some solute, presumed to be primarily inorganic salts. Hydathodes may be specialized single cells at leaf margins or stalked multicellular structures as found throughout the surface, often along veins and at vein junctures, on tobacco leaves. The most important feature of hydathodes that sets them apart from simple and glandular trichomes is their intimate connection to the xylem. The hydathode “gland” consists of very loose parenchyma cells located at the
end of one more small veins. This tissue is called the epithem. In most hydathodes the epithem is surrounded by a layer of tight fitting cells called the sheath, which consists of cells that have eutinized, endodermis like, adjacent walls. It has been said that there is always at least one stoma, called a water pore, in hydathode sheaths. These pores are often larger than guard cell stoma and it is generally thought that in hydathodes of most plants, the pore cannot be closed, as described in Mauseth, J. D. (1988) Plant Anatomy, The Benjamin/Cummings Publishing Co., Inc., Chapter 9, pp. 141-166, herein incorporated by reference. A possible function of hydathodes in young leaves with immature and non-functioning stomata and poorly developed vascular tissues is to facilitate acquisition of an ample supply of mineral nutrients for rapid growth by removing xylem transported nutrients into the hydathode sheath cells while allowing the water to exit through the pore. Transfer cells with plasmalemma and cell wall ingrowths that are characteristic of cells engaged in massive solute membrane transport are found in hydathode sheath cells.

Much of what is known about the structure and function of hydathodes comes from the older literature and, while very important, it is largely descriptive and does not elucidate details about cell-level mechanisms of hydathode function. For example, the diversity of solutes that may be present in guttation water is not known, or how they are delivered to it, or if guttation is restricted to young leaves. Several recent studies using sensitive, cell-selective detection methods, such as promoter-GUS localization, show distinct chitinase gene expression in hydathodes, as well as several other tissues. Similarly, intensive production of auxin in developing leaf hydathodes was correlated with vascular differentiation using a fusion of a highly active synthetic auxin response element with GUS. Also, using GUS fusions with arabidopsis purine transporter genes, evidence was obtained that these transporters may be involved in retrieval from vascular fluid of nucleobases and derivatives in hydathodes, presumably to prevent their loss by guttation. Using energy-dispersive X-ray analysis, it was recently shown that in tobacco plants exposed to very high Cd, hydathodes, called short trichomes, and also glandular trichomes, secrete Cd to the extent that Cd-containing crystals form on the external surfaces of these structures. Guttation fluid of barley, Hordeum vulgare, seedlings was recently shown to contain pathogenesis-related proteins, which, it was suggested, may inhibit motile bacteria entering the plant through open hydathode water pores. As in many grasses, leaf tips of barley seedlings have hydathodes with large water pores.

SUMMARY OF THE INVENTION

The present invention relates to a system for delivering protein and protein products to a plant surface using a phylloplamin promoter, in conjunction with a nucleic acid gene sequence, whose product one wishes to be excreted by a plant. The phylloplamin promoter provides for surface-localized proteins to be generated when the promoter is fused with the desired gene.

The present invention, in one form, relates to a method for generating excreted gene products in a plant. The method includes generating a nucleic acid fusion construct comprising a phylloplamin promoter and a selected non-phylloplamin nucleic acid sequence whose transcription product is to be expressed and delivered to an aerial surface of a plant. Plant cells are transfected using the nucleic acid fusion construct and the plant cells are allowed to express the non-phylloplamin nucleic acid sequence transcription product which is excreted from the plant cells. In one form, the phylloplamin promoter is from tobacco and has the nucleic acid sequence of SEQ ID NO:1, as shown in FIG. 8.


The present invention, in another form thereof, relates to an isolated nucleic acid sequence comprising a nucleic acid fusion construct comprising a phylloplamin promoter and a selected non-phylloplamin nucleic acid sequence. The selected non-phylloplamin nucleic acid sequence may encode an amino acid sequence selected from the group consisting of a pharmaceutical, cosmeceutical, and a nutriceutical agent.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1A is a 40x magnification of T1 1068 phylloplane with tall glandular secreting trichomes (TGSTs) and short glandular trichome (SGTs) identified.

FIG. 1B is a Coomassie blue-stained SDS-PAGE of T1 1068-derived samples, in which phylloplamins I-IV are identified, and loaded volumes of LWW (lane d) and sterile-grown plant LWW (lane e) represent 25 cm² leaf surface area, and Mwt (lane a) denotes protein standards; and

FIG. 1C is a silver-stained SDS-PAGE of LWWs from field-grown T1 1068 (lane b; 10 cm²), G. max (lane c; 30 cm²), and H. annua (lane d; 6 cm²), where Mwt (lane a) denotes protein standards.

FIG. 2A comprises panels (a)-(c), depicting P. tabacina spore germination assay (Pt), Coomassie blue-stained SDS-PAGE gel blot (sds), and protein gel blot with a 1:10,000 dilution of phylloplamin antiserum (aw), wherein panel (a) is a gel water plus spores; panel (b) is a gel T1 1068 LWW (diluted to 100 ng/µl total protein) plus spores; and panel (c) is a gel T1 1068 LWW (100 ng/µl total protein) digested with proteinase K (ProtK) plus spores, where the arrow marks residual, soluble proteinase K; and

FIG. 2B comprises panels (a) and (b) for P. tabacina leaf infection assay of cv Petite Havana, where panel (a) is a Photograph of water plus spores (10⁵ spores/ml), a sporulating lesion is indicated with the arrow; and panel (b) is a Photograph of T1 1068 LWW (diluted to 50 ng/µl) plus spores (10⁵ spores/ml).

FIG. 3 is a plot depicting inhibition of P. tabacina spore germination (open circles) and leaf infection (closed squares) by T-phylloplamins in LWW, where, for both assays, results of a single experiment represent three separate experiments conducted.
FIG. 4 is the nucleotide (SEQ ID NO:19) and predicted amino acid sequence (SEQ ID NO:20) of T-Phylloplanin cDNA with nucleotide numbered on the right and start and stop codons underlined, and the signal sequence in boldfaced segments corresponding to peptides aa-N1, aa-T1, aa-T2, aa-T3, aa-T4, and aa-P1 marked by lines above the amino acid sequence and labeled.

FIG. 5A is the amino acid sequence of T-Phylloplanin aligned against sequences giving significant BLAST similarity scores, using the CLUSTALW algorithm of DNASTAR Lasergene software, where amino acids conserved between any six sequences are indicated in reverse contrast; and FIG. 5B is an unrooted phylogenetic tree showing evolutionary relationships between the sequences in FIG. 5A with bootstrap values >50% given on the respective branches, where the first two letters of the acronyms indicate the species (Br. Brassica rapa; Ha. Helianthus annuus; At. Arabidopsis thaliana; Nt. Nicotiana tabacum; Gm. Glycine max; Pt. Populus tremuloides; Le. Lycopersicon esculentum; Os. Orzya sativa; St. Stevia rebaudiana; Am. Anthriscus majus; Sr. Stevia rebaudiana), where the GenBank accession numbers of the sequences follow the species identifiers, and tissue localizations of ESTs and cDNAs are indicated beneath the acronyms.

FIGS. 6A-6D depict Coomassie blue-stained SDS-PAGE western blots with 1:10,000 T-phyloplanin antiserum (w), and P. tabacina spore germination assays (Pt), where FIG. 6A is E. coli expressed MBP-PhylIP (M-P; 160 ng/µl total protein) treated with Factor-Xa, an arrow indicates released T-PhylIP; FIG. 6B is E. coli expressed MBP-T-PhylIP (160 ng/µl total protein) treated with Factor-Xa and Proteinase-K (ProK), where the volume used was equivalent to that of FIG. 6A; FIG. 6C is E. coli expressed MBP (M; 200 ng/µl total protein) treated with Factor-Xa; and FIG. 6D is E. coli expressed MBP (200 ng/µl total protein) treated with Factor-Xa and ProK, where the volume used was equivalent to that used in the experiment of FIG. 6C.

FIG. 7A is a magnification of a 5-bruno-4-chloro-3-indolyl-ß-glucuronic acid-stained plant leaf from TI 1068 with GUS under the control of the T-phyloplanin promoter, where TGSt is indicated; FIG. 7B is X-gluc stained SGT on TI 1068 plantlet expressing GUS under control of T-phyloplanin promoter, where surface structures are indicated; and FIG. 7C is fluorescent magnification/detection of TI 1068 plantlet with GFP under control of T-phyloplanin promoter, where GFP was present only in SGT gland cells, and arrows indicate constrictions between gland cells that we speculate may be pores to release protein to the leaf surface.

FIG. 8 depicts the promoter sequence of the gene Phylloplanin (SEQ ID NO:1), having a putative TATA box (~33 to ~30) and a putative CAAT box (~47 to ~43) bold-faced, where the phylloplanin transcription start site (+1) is indicated bold-faced and underlined, the phylloplanin start codon (4(8) is underlined, and a portion of the phylloplanin amino acid sequence (SEQ ID NO:18) is indicated.

DETAILED DESCRIPTION

The generation of excreted gene products using a phyloplanin promoter to express and deliver the desired product to a plant’s aerial surface was developed from studying gene promoter sequences from plants, such as tobacco, where the expression of genes in plants is controlled by a number of regulatory components, including nucleic acid and protein elements, and where the initiation is controlled by a region commonly referred to as a “promoter,” which lies upstream (9) of the protein in the coating region. The phylloplanin gene promoter has previously been isolated and sequenced from the surface of plant leaves, and was further found to essentially control the production of proteins known as phylloplanins in plants, as described in U.S. patent application Ser. No. 11/304,528, hereina incorporated by reference.

The promoter sequence of the gene phylloplanin is provided in FIG. 8. The phylloplanin promoter drives the secretion of gene products to leaf aerial surfaces. As used throughout this disclosure, the surface-localized proteins referred to as tobacco phylloplanins are generated in nature from the novelty-phyloplanin promoter from N. tabacum.


As discussed in further detail below, evidence that the phylloplanin can be used to drive plant aerial secretion of desired gene products is provided by experiments using the T-phyloplanin promoter, fused with reporter genes beta-galactosidase and green fluorescent protein, in which biosynthesis was directed only in apical-tip cell clusters of short, procumbent glandular trichomes. Accordingly, the reporter gene studies provide evidence for a method and system for directing protein excretion to a plant’s aerial surfaces, thus allowing one to use the T-phyloplanin to drive the excretion of desired protein products to plant aerial surfaces.

The following non-limiting experiments are included to provide additional understanding and evidence which supports the present invention, but in no way limits its scope.

Referring now to FIGS. 1A-1C, SDS-PAGE analyses of leaf water wash (LWW) from greenhouse-grown TI 1068 leaves indicated the presence of four bands with molecular masses of 16 (l), 19 (II), 21 (III), and 25 (IV) kDa (FIG. 1B, lane d), collectively termed T-phyloplanins. T-Phylloplanins in LWW were relatively pure and abundant, compared to proteins present in leaf epidermal cells (FIG. 1B, lane b) or leaf extracellular fluid (FIG. 1B, lane c), providing evidence of selective deployment on the phylloplane. Sterile-grown TI 1068 LWW contained T-phyloplanins (FIG. 1B, lane e), indicating these proteins were not formed by leaf surface microbes and were not induced by pathogen attack. From measurements of the protein concentration in LWW (BCA assay), an estimate was made that the phylloplane of greenhouse-grown TI 1068 leaves contains 100-200 ng protein/ square-cm leaf surface. Field-grown TI 1068 LWW also contained T-phyloplanins, indicating that leaf surface proteins

DISTRIBUTED DESCRIPTION

The...
are present under natural conditions (FIG. 1C, lane b), and T-phylloplanins were renewed after washing (data not shown). N. tabacum cultivars T112 and T1406 that lack TGSTs or secretion, respectively, produce substantial T-phylloplanins (data not shown), so dieterpe/near ester producing TGSTs are not the site of T-phylloplanin biosynthesis. Field-grown soybean and sunflower LWWs contained varying amounts of phyloplanins (FIG. 1C, lanes c-d), as did greenhouse-grown corn, tomato, soybean, and potato (data not shown), but these proteins were not further characterized. LWW of frozen T1 1068 leaves that were cold-brushed to completely remove TGSTs and SGTs contained a similar amount of T-phylloplanins per unit surface area to that found in LWW of undisturbed leaves, indicating that T-phylloplanins are not restricted to SGTs but are rather generally dispersed on the leaf surface. T-Phylloplanins inhibit Peronospora tabacina Spore Germination and Leaf Infection

P. tabacina is an oomycete pathogen that reproduces via airborne spores, and initial host contact and spore deposition commences at the phylloplane. LWW from greenhouse-grown T1 1068 plants inhibited P. tabacina spore germination (FIG. 2A, panel b; LD_{50} 15-20 ng/mL [50 spores/mL]), as did LWW from sterile-grown plants (data not shown). Protein digestion by immobilized Proteinase K relieved inhibition of spore germination (FIG. 2A, panel c), indicating that proteins were necessary for inhibition. Spore germination was not affected by water incubated with immobilized Proteinase K (data not shown). Also, once spore germination was initiated, addition of LWW (100 ng/mL total protein) immediately arrested germination tube growth and development (data not shown). Using GC, the levels of residual exudate diterpenes found in LWW (data not shown) were <5% of the LD_{50} reported to inhibit P. tabacina germination, and nicotine was unable to be detected in LWW (data not shown).

Intact N. tabacum Petite Havana SR1 plants, considered susceptible to P. tabacina, were infected by applying spores (50 spores/mL in 4 µL water) to the leaf surface. After 5 days, sporulating lesions developed at sites of application (FIG. 2B, panel a). T-phylloplanins in T1 1068 LWW, when mixed with spores at total protein concentrations of 50 ng/mL or higher, inhibited leaf infection by P. tabacina (FIG. 2B, panel b). At 25 ng/mL total protein, 75% inhibition was observed, and no inhibition with treatments below 12.5 ng/mL total protein (data not shown). Similar results were observed in three independent experiments and in identical experiments using the susceptible cultivar KY 14 (data not shown).

Referring now to FIG. 3, the graph shows the inhibitory effect of T-phylloplanin LWW on P. tabacina spore germination and leaf infection. LWWs of Petite Havana and KY 14 contain less phylloplanins I-IV than T1 1068, and unlike T1 1068 they produce low trichome exudate (data not shown). Based on these results, it is believed that other surface chemicals (e.g., surface lipids or TGST trichome exudate components) may influence or accentuate phyloplanin activity, dispersion, or longevity, by acting as additives or as solubilizing agents. Thus a combination of T-phylloplanins and high TGST exudates may provide maximal inhibition of spore germination. It is difficult to estimate the role of a single component such as T-phylloplanins in blue mold susceptibility or resistance, outside the experimental conditions used here, but we propose that T-phylloplanins are a key component.

Isolation of the Novel T-Phylloplanin Gene

N. tabacum T-phylloplanins I, II, III, and IV share an identical N-terminal amino acid sequence (Table).

<table>
<thead>
<tr>
<th>Method</th>
<th>Peak T-phyllo-</th>
<th>Amino Acid Sequence</th>
<th>SEQ ID</th>
<th>NOs.</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-terminus</td>
<td>N/A I</td>
<td>ILVPTLVST</td>
<td>SEQ ID</td>
<td>NO-21</td>
<td>aa-N1</td>
</tr>
<tr>
<td>N/A II</td>
<td>ILVPTLVSTIHSGLVFCSV</td>
<td></td>
<td>SEQ ID</td>
<td>NO-22</td>
<td>aa-N1</td>
</tr>
<tr>
<td>N/A III</td>
<td>ILVPTLVSTIHSGLVFCSV</td>
<td></td>
<td>SEQ ID</td>
<td>NO-23</td>
<td>aa-N1</td>
</tr>
<tr>
<td>N/A IV</td>
<td>ILVPTLVSTIHSGLVFCSV (major)</td>
<td></td>
<td>SEQ ID</td>
<td>NO-24</td>
<td>aa-N1</td>
</tr>
<tr>
<td>Trypsin</td>
<td>36.2 I</td>
<td>ASVQR</td>
<td>SEQ ID</td>
<td>aa-T1</td>
<td>NO-25</td>
</tr>
<tr>
<td>59.8 I</td>
<td>ILNLNL (major)</td>
<td></td>
<td>SEQ ID</td>
<td>NO-26</td>
<td>aa-T1</td>
</tr>
<tr>
<td>56.7 III</td>
<td>LVATPLSTCXTLXSVG</td>
<td></td>
<td>SEQ ID</td>
<td>NO-27</td>
<td>aa-T3</td>
</tr>
<tr>
<td>58.7 III</td>
<td>ILNLNL (major)</td>
<td></td>
<td>SEQ ID</td>
<td>NO-28</td>
<td>aa-T3</td>
</tr>
<tr>
<td>Pepsin</td>
<td>35 I, II, III, IV</td>
<td></td>
<td>SEQ ID</td>
<td>aa-P1</td>
<td>NO-31</td>
</tr>
</tbody>
</table>

Amino acid sequences recovered from T-phylloplanin N-terminal analyses, trypsin digestion, and pepsin digestion. N/A, not applicable.

Internal amino acid sequences were elucidated from peptides generated by trypsin digestion of T-Phylloplanins II and IV, and pepsin digestion of total LWW (Table). Degenerate, deoxynosine-containing primers were synthesized and used in RT-PCR with cDNA generated from N. tabacum total leaf RNA as a template, and a 332 base pair fragment was amplified. RLM-RACE was used to recover a full-length, novel N. tabacum T-Phylloplanin cDNA sequence (SEQ ID NO-9) (FIG. 4: Accession AJ705384) of 666 base pair in length, encoding a hydrophobic, basic (50% hydrophobicity, estimated pl 9.3, Vector NTI) 15.4 kDa protein containing 150 amino acids. Based on the N-terminus recovered from the mature T-Phylloplanin (Ile-24) the first 23 amino acids comprise a signal sequence that targets the protein to the secretory pathway. The molecular mass of the mature protein is estimated to be ~13 kDa. A protein of this mass was not recovered from the leaf surface but, instead, four apparent bands of higher molecular masses were recovered. While differences in amino acid composition may account for differences in migration, the molecular masses of native T-Phylloplanins I-IV could be increased due to the occurrence of covalent adducts with cuticular lipids, or trichome exudate diterpenes or sugar esters. These covalent adducts would be retained in SDS-PAGE, and they could serve to increase phyloplanin solubility in TGST exudate (diterpenes and sugar esters) and aid in phyloplanin dispersion on the leaf surface. Amphipathic sugar esters (~24% of T1 1068 weight) are known to solubilize largely hydrophobic diterpenes (~73%) of TGST exudate. Highly hydrophobic, basic, saposin-like proteins of animals (see below) also display dynamic migration in SDS-PAGE (Curstedt et al., 1987), which provides evidence that T-phylloplanins may behave similarly.

BLAST searches conducted in accordance with Altschul et al. (1990) with the T-Phylloplanin gene sequence against the non-redundant and EST GenBank databases yielded several significant hits from Nicotiana sequences, including an AFLP fragment from N. tabacum (GenBank accession number AJ538724) and several EST sequences from N. tabacum and N. sylvestris. BLAST searches also indicated that homolo-
An unrooted phylogenetic tree is provided in FIG. 5B, to show evolutionary relationships between these sequences and to indicate the tissue localizations of ESTs. The tree indicates that T-phyllloplanin groups with similar sequences from other solanaceous plants that also bear glandular secreting trichomes, and it is intriguing that the S. tuberosum gene is expressed in floral tissue which may bear trichomes. Similar sequences from the monocots O. sativa and H. vulgare also form a distinct group in the phylogenetic tree, with the gene from H. vulgare being expressed in root tissue. The genomic structure of gene T-Phyllloplanin was elucidated from N. tabacum genomic DNA using a Genomewalker kit. The gene contains two exons (1.175 bp; 2.278 bp) that are separated by a 508 bp intron (data not shown).

E. coli-expressed T-Phyllloplanin Inhibits Peronospora tabacina

A 10.5 kDa portion of the T-Phyllloplanin gene (T-PhyIIP) was expressed in E. coli as a fusion protein with MBP. Soluble fusion protein (MBP-T-PhyIIP) was purified on an amylose column, cut with the protease Factor Xa to release T-PhyIIP, and desalted on a 3 kDa centrifugal filter. Both MBP-T-PhyIIP and T-PhyIIP reacted with the phyllloplanin-specific antibody, as shown in FIGS. 6A-6D. The sample containing T-PhyIIP inhibited P. tabacina spor germination at total protein concentrations greater than 160 ng/mL (FIG. 6A). Protease digestion relieved T-PhyIIP inhibition of spor germination (FIG. 6B). A control sample containing MBP alone, produced by an empty pMal-c2x vector and treated exactly as the T-PhyIIP sample, had no effect on spor germination (FIG. 6C), nor did protease-treated MBP (FIG. 6D), at total protein concentrations <500 ng/mL. No inhibition of spor germination was observed with MBP-T-PhyIIP fusion protein not treated with Factor Xa (data not shown). Based on the data, the released T-PhyIIP is responsible for the observed inhibition, and since it is evident (FIG. 6A, SDS gel) that released-T-PhyIIP is a minor component of the sample (≤10% total protein), the inhibitory concentration of T-PhyIIP is considered <60 ng/mL. T-PhyIIP was lost when purification from MBP and Factor Xa was attempted (data not shown).

In leaf infection assays performed with KY 14 plants, T-PhyIIP did not totally inhibit infection, but it greatly reduced necrotic leaf damage. MBP and uncut MBP-T-PhyIIP fusion samples allowed successful infections (data not shown). The lack of total inhibition with T-PhyIIP may be due to insufficient protein concentration, the absence of another interacting protein, or alternatively, speculated-adducts with lipids or trichome exudate components are essential for a native-protein like response.

The T-Phyllloplanin Promoter Region Directs Expression in Small Glandular Trichomes

1.8 kb of genomic DNA sequence upstream from the T-Phyllloplanin transcription start site was elucidated. A 1.1 kb region of this DNA, as well as the 5'UTR and the T-Phyllloplanin signal sequence, was fused in-frame with the reporter genes β-glucuronidase (GUS) and Green Fluorescent Protein (GFP) and introduced into TI 1068 plants using Agrobacterium mediated transformation. GUS and GFP were expressed only in SGTs (FIGS. 7A-7C), indicating activity of a SGT-specific promoter. There was no evidence that GUS or GFP exit the SGTs. This is not surprising in that these reporter proteins are water soluble. TI 1068 SGTs are uniformly distributed over the leaf surface and protrude over surrounding epidermal cells (FIG. 7A). The data provides evidence that T-phyllloplanins are biosynthesized locally in SGTs and are secreted to the leaf surface where, because of their hydrophobicity and basicity, T-phyllloplanins dissolve in TGST exudate and are dispersed widely on the leaf surface during exudate flow. Certain animal saposins are also highly hydrophobic and basic, are secreted by epithelial cells, and operate as components of innate immunity at the pulmonary air/water interface.

Ultrastructural studies defined the subcellular structures of N. tabacum cv. Xanthi SGTs and TGSTs. Glands of procumbent SGTs were observed to have about four cells separated by large, specifically-oriented intracellular spaces that contained substantial OsO4 stained material. The nature of the accumulated substance was not defined, but it is believed that this substance is T-phyllloplanins, since the pattern of intracellular space disposition observed is strikingly similar to that which we have observed here using the T-phyllloplanin-promoter-GFP construct (FIG. 7C). All tobacco examined but one, smooth leaf N. glauca, produce phyllloplanins. The data provides evidence that T-phyllloplanins are produced in SGT gland cells, and that they are secreted to gland extracellular spaces, and then transferred outside the glands through constrictions at termini of intracellular spaces forming “secretory pores” (arrows, FIG. 7C) of unknown structure.

The majority of plant pathogens are fungi. When airborne spores land on a leaf surface, germination is the initial step leading to host colonization. It is hypothesized that by rapidly inhibiting spor germination at the leaf surface, preformed plant proteins may suppress pathogen infection before induced defenses become functional, in a manner analogous to secreted surface proteins of animals. This hypothesis is supported by the observations that surface-accumulated Nt tabacum T-phyllloplanins and E. coli-expressed T-PhyIIP inhibit P. tabacina spor germination in vitro and limit leaf infection in situ. The hypothesis is also supported by the observation that the T-phyllloplanin promoter directs reporter gene expression specifically in SGTs, and T-phyllloplanins are retained on leaves from which trichomes were completely removed by brushing of frozen tissue.

The aforementioned observations provide evidence that T-phyllloplanins are secreted to and broadly dispersed on the leaf surface. Three observations link the gene T-Phyllloplanin to T-phyllloplanin proteins collected from the leaf surface. First, amino acid sequences recovered from leaf surface T-phyllloplanins I-IV are present in the predicted protein sequence from T-phyllloplanin, representing 54% of the mature protein open reading frame. Secondly, there is a functional link between the gene and the proteins by replicating LWW blue mold inhibition with E. coli-expressed T-PhyIIP. The T-phyllloplanin promoter is a third, critical link between the gene and surface disposed T-phyllloplanins, and implicates SGTs as the sites of T-phyllloplanin biosynthesis and delivery to the surface.

Secreted phyllloplanins, e.g., T-phyllloplanins, represent a novel leaf surface defense system in tobaccos, and perhaps generally in the plant kingdom, wherein protein biosynthesis in a specific trichome type allows deposition and dispersion of phyllloplanins on leaf aerial surfaces to deter pathogen establishment. Further, from the collected data, the T-phyllloplanin promoter can be used to direct protein products to plant aerial surfaces.
Methods

Biological material and growth conditions. Greenhouse plants (Nicotiana tabacum L. tobacco introduction, (T) 1068, T1 1112, T1 1406; cultivars KY 14 and Petite Havana SR1 [hereafter referred to by T1 number or cultivar name]) were germinated and grown in soil under natural light at 22-24°C, with weekly fertilization (20-20-20, N-P-K). Plants were transplanted into 15-cm pots and treated with the insecticide Marathon (Olympic Horticultural Products, Mainland, Pa.) at 3-4 wk post-emergence. Field plants (T1 1068, Glycine max, Heliantus annus) were grown at a farm near Lexington, Ky. during the 2002 growing season.

To grow sterile T1 1068 plants, seeds were immersed in 10% (v/v) sodium hypochlorite for 10 min, rinsed briefly in 70% (v/v) ethanol, washed 4 times in sterile water, and germinated on Murashige-Skoog (MS) medium (Murashige and Skoog, 1962) containing B5 vitamins (100 mg/L myo-inositol, 10 mg/L thiamine-HCl, and 1 mg/L each pyridoxine-HCl and nicotinic acid) in a 22°C growth chamber under fluorescent illumination (light/dark 16/8 h daily). Individual plants were transferred to PlantCons (ICN Biomedicals, Aurora, Ohio) containing MS agar at 3 weeks post-emergence.

E. coli strain ER2508 (New England Biolabs, Beverly, Mass.) was stored and propagated as described by the supplier. Speros of Peronospora tabacina (isolate KY-79) were harvested from sporulating lesions on KY 14 plants as described (Reuveni et al., 1986).

Phylopllan collection and SDS-PAGE. Water-soluble phylopllan components were collected in LWVs from mature, fully-expanded leaves of all greenhouse-grown and field-grown plants by washing freshly-detached leaves in 200 mL nanopure water for 15 s (NANOpure water system D4751, Barnstead-Thermolyne, Dubuque, Iowa). Cut petioles or cut leaf surfaces were not exposed to wash solutions.

LWVs were filtered (No. 1 filter paper, WHATMAN, Clifton, N.J.), lyophilized to dryness, reseeded in 3 mL sterile water, and centrifuged at 12,000 x g for 5 min at 21°C. The supernatants were filtered (13 mm/0.45-μm syringe filter, Corning Glass Works, Corning, N.Y.) to exclude bacteria and fungi.

Proteins were separated by SDS/12%-glycine-PAGE (Laemmli, 1970) or SDS/15%-tricine-PAGE (Judd, 1994) using a MINI PROTEAN II electrophoresis system (BIO-RAD Hercules, Calif.), according to the manufacturer’s instructions, and visualized with Coomassie blue or silver staining.

Protein concentration was estimated using the bicinchoninic acid assay (Pierce Chemical, Rockford, Ill.) with BSA as a standard. Leaf surface areas were estimated by tracing leaves onto uniform-weight paper and weighing the cutouts.

Collection of epidermal peels and extracellular fluid (EF). Epidermal peels were prepared from greenhouse-grown T1 1068 plants as described (Kandara et al., 1990), pulverized with liquid N2, and proteins were analyzed by SDS-PAGE. EF was collected using a vacuum infiltration method (Terry and Bonner, 1980) and analyzed by SDS-PAGE.

GC analysis. Trichome exudate was collected from greenhouse-grown T1 1068 by immersing unwashed leaves for 15 s in 200 mL acetonitrile. The wash solutions were filtered (No. 1 filter paper, Whatman), dried, and trichome exudate was resuspended in 5 mL acetonitrile and quantified by GC (flame ionization detection) as trimethylsil derivative prepared in dimethylformamide, as previously described (Wang et al., 2001). To determine the amounts of trichome exudate biochemicals occurring in LWW, volumes equivalent to 200 cm² leaf surface areas were transferred to glass GC vials and dried in a vacuum oven (37°C) overnight. Trichome exudate biochemicals were extracted at 21°C with methylene chloride, dried, solubilized, derivatized, and analyzed by GC. The amount of residual trichome exudate biochemicals in LWW was assessed relative to total trichome exudate on an equivalent surface area basis.

T-Phylopllan an sequencing. Proteins in greenhouse-grown T1 1068 LWW were separated by SDS-PAGE, transferred to polyvinylidifluoride (IMMOBLON — PSQ, Millipore, Bedford, Mass.) using a MINI PROTEAN II electroblot apparatus (BIO-RAD), and visualized with Coomassie blue. T-Phylopllan bands were subjected to N-terminal sequencing using automated Edman degradation (Matsuda, 1987) at the University of Kentucky Macromolecular Structure Analysis Facility (Lexington, Ky.). To recover internal amino acid sequence information, LWW from greenhouse-grown T1 1068 was separated by SDS-PAGE, stained with Coomassie blue, and 21 kDa and 19 kDa bands were excised and digested with trypsin. Total proteins in T1 1068 LWW were also digested with pepsin. Resulting tryptic or peptic peptides were separated by reversed-phase HPLC (Aguapure RP-300 7 μm particle size, octyl reversed-phase column; Applied Biosystems, San Jose, Calif.), manually collected based on absorbance at 214 nm, and samples were reduced in volume under vacuum to 50 μL. Amino acid sequence analyses of tryptic peptides were performed as above. For peptic peptides, similar analyses were performed at The Protein Facility of Iowa State University (Ames, Iowa).

Degenerate RT-PCR, RLM-RAEC, and Elucidation of Genomic Structure. Total RNA was extracted from T1 1068 leaf tissue (100 mg fresh weight [FW]) with an RNEasy kit (Qiagen, Chatsworth, Calif.), and cDNA was synthesized from 5 μg total RNA using an Omniscript RT kit (Qiagen). PCR was performed using PCR master mix (Promega, Madison, Wis.) containing 3 μL cDNA template and 4 μM of each primer in a 50 μL volume. Successful amplification of a PCR product occurred with the primers 5'-ACWTTNGTNTGNCACWATATYTCNGGGNCTGTTTITC-3' (SEQ ID NO:2) and 5'-AAARGCNCTGNGGNNCNARCCNYCCTAAT-3' (SEQ ID NO:3) where N=inosine, W=A or T, Y=C or T, and R=A or G. Amplification was for 46 cycles using the following thermal profile: 95°C for 45 s, 50°C for 45 s, 72°C for 1 min, followed by a final 4 min extension at 72°C. The PCR product was size-fractionated by electrophoresis in a 1% (w/v) agarose gel, extracted using a QIAEX II kit (QIAGEN), cloned into a pGem-T vector (Promega), and sequenced.

For RNA ligase mediated rapid amplification of cDNA ends (RLM-RAEC), total RNA was extracted from T1 1068 leaf tissue, as above. A GENERACER kit (Invitrogen, Grand Island, N.Y.) containing SUPERScript III was used to generate cDNAs, according to the manufacturer’s instructions. Successful amplification of a 3'RAEC product occurred with the GENERACER 3'Primer and the gene-specific primer 5'-CTCACTCTCCCCAAGTTTTCTTACGATGATGAC-3' (SEQ ID NO:4). Successful amplification of a 5'RAEC product occurred with the GeneRacer 5'Primer and the gene-specific primer 5'-GGCAAGAAAGTTAATAGCTGATGACCA-3' (SEQ ID NO:5). PCR cycling parameters were according to the GENERACER protocol.

T-Phylopllan genomic structure was elucidated using a GENOME WALKER kit (Clontech, Palo Alto, Calif.), according to the manufacturer’s protocol, using genomic DNA isolated from T1 1068 leaf tissue (100 mg FW) with a DNEASY plant kit (QIAGEN). Primary PCR reactions were performed with a sense outer adaptor primer AP1, provided in the kit, and the antisense T-Phylopllan-specific primer (5'-
TGGAACMGTTATGGCAATGCGAGCCGGG-3') (SEQ ID NO:6). Primary PCR cycling parameters were 7 cycles of 25 s at 94°C, and 3 min at 72°C, followed by 32 cycles of 25 s at 94°C, and 3 min at 67°C, with a final extension of 7 min at 72°C. Products of primary PCR were diluted 1:25 and 1 µL was used in nested PCR reactions with a sense inner adaptor primer (AP2), provided in the kit, and a nested antisense T-Phyloplalin-specific primer (5’-GGGTTGGCAGAT-TGAATGCAGCAAAAGGAAA-3’) (SEQ ID NO:7). Nested PCR cycling parameters were 5 cycles of 25 s at 94°C, and 3 min at 72°C, followed by 20 cycles of 25 s at 94°C, and 3 min at 67°C, with a final extension of 7 min at 72°C. Amplified PCR products were amplified, size fractionated by gel electrophoresis, gel-extracted, cloned into pGem-T, and sequenced.

Expression vector construction and fusion protein purification. To overexpress the T-Phyloplalin gene in E. coli, a 10.3 kDa portion of the coding sequence (His33-Gly142, termed PhylIP) and the full-length mature protein coding sequence (Ile24-Asn150) were amplified incorporating XbaI and PstI restriction sites (PhylIP-sense: 5’-AGCT TCTAGACTATTCCGGAAGTTTTT (SEQ ID NO:8); PhylIP-antisense: 5’-AGCT CTCGAGTATCCGGAAGTTTTT (SEQ ID NO:9); Full-sense: 5’-AGCT TCTAGAACATTCCCACAACACT-3’ (SEQ ID NO:10); Full-antisense: 5’-AGCT CTCGAGATATCCTGTTAAAGA-3’ (SEQ ID NO:11); restriction sites underlined). The PCR products were digested with XbaI and PstI and cloned into the pMal-c2X expression vector (New England Biolabs) to create a translation fusion between the gene insert and maltE (which encodes Maltose Binding Protein [MBP]). Protein expression was induced at 0.5 OD600 by the addition of 0.1 mM isopropyl-beta-D-thiogalactoside. Cells were harvested and resuspended in column binding buffer (20 mM Tris-HCl, pH 7.4, 200 mM NaCl, 1 mM EDTA) containing 1 mg/mL lysozyme. Cell lysate was centrifuged at 10,000g for 10 min and the resulting supernatant was collected. Fusion protein was purified using amylose-mediated column chromatography (New England Biolabs) according to the manufacturer's instructions and examined by SDS-PAGE. Fractions containing purified fusion protein were pooled and concentrated to ~1 mg/mL using a 3 kDa centrifugal filter (MICROSEPT 3K, OMEGA Pall Laboratories, Ft. Myers, Fla.). Factor Xa (New England Biolabs) was added and samples were incubated for 48 h at 21°C. Salts and buffer components were removed using a 3 kDa centrifugal filter, and protein concentration was adjusted to 1 mg/mL with the addition of sterile water.

T-Phyloplalin antibody and western blots. TI 1068 L8W was separated by SDS-PAGE and stained with Coomassie Blue. Phyloplalin III was excised and used to generate a rabbit polyclonal antibody (Strategic Biosolutions, Newark, Del.). Immunodetection was performed using a 1:10,000 dilution of phyloplalin antisera and a 1:10,000 dilution of horseshard peroxidase-coupled anti-rabbit secondary antibody (Sigma, St. Louis, Mo.).

Protease treatment. Insoluble Proteinase K (ProTK) affixed to acrylic beads (100 mg; P0803, Sigma) was placed into mini-spin filters (732-6027, BIO-RAD). The filters containing beads were placed into empty 1.5 mL Eppendorf tubes, and the filters were washed with sterile water (700 µL; 2600g for 1 min). The flow-through was discarded, and washing was repeated five times. The spin filters were transferred to empty 1.5 mL Eppendorf tubes. Samples were added to filters containing protease beads and incubated at 37°C for 4 h, with periodic inversion to mix. The tubes were then centrifuged at 2600xg for 10 min, and the flow-through from each was collected and analyzed by SDS-PAGE or used in blue mold assays.

Peronospora tabacina spore germination and leaf infection assays. Freshly-collected P. tabacina spores were mixed with various concentrations of TI 1068 L8W, ProTK-treated TI 1068 L8W, or water incubated with ProTK, and germinated for 16 h in dark, humidified chambers as water drops (4 µL drops; 50 spores/µL) on microscope slides. The spores were then inspected visually at 100x magnification for germination. The absence of a germination tube after 16 h indicated inhibition. Similar experiments were performed with T-PhylIP, MBP, ProTK-treated T-PhylIP, and ProTK-treated MBP. To assess the immediacy of germination tube arrest by L8W, spores were observed after 3 h.

For the leaf infection assay, 6-wk-old, greenhouse-grown Petite Havana SR1 plants were pre-conditioned by incubation in a 21°C, growth room (14 h light) for 5 days. Dilution series (1, 5, 12.5, 25, 50, 75, 100 ng protein/µL) of TI 1068 L8W were prepared and mixed with freshly-collected P. tabacina spores immediately before inoculation. For each L8W dilution, 8-10 drops (4 µL drops; 100 spores/µL) were applied to one leaf of pre-conditioned plants. Plants were placed in dark, humidified chambers for 16 h to provide optimal conditions for infection, and then returned to the growth room. Treated leaves were excised 5 days after inoculation, placed in dark, humid chambers for 16 h, and then inspected for sporulation. The formation of P. tabacina sporulating lesions indicated successful leaf infection.

Elucidation of T-Phyloplalin promoter sequence and activity. Genomic DNA was isolated from TI 1068 leaf tissue (100 mg FW) using a DNEASY plant mini kit (QIAGEN). The DNA sequence upstream of the T-Phyloplalin gene was recovered using a GENOMEWALKER kit (Clontech), according to the manufacturer’s protocol. Briefly, ~4 µg genomic DNA was digested to completion (36 h) in four separate reactions with restriction enzymes that generated blunt ends (Dra I, EcoR V, Pvu II, Stu II). The resulting ‘libraries’ were purified by phenol/chloroform extraction and precipitation. Digested genomic DNA in each library were then ligated to G5GenomeWalker Adaptor molecules and purified again. A primary PCR reaction for each library was performed with a sense outer adaptor primer AP1, provided in the kit, and the antisense T-Phyloplalin-specific primer (5’-TGGAACAGATGCGAATGCAGCAGCCGGG-3’) (SEQ ID NO:6). Primary PCR cycling parameters were seven cycles of 25 s at 94°C and 3 min at 72°C, followed by 32 cycles of 25 s at 94°C and 3 min at 67°C, with a final extension of 7 min at 72°C. Products of primary PCR were diluted 1:25 and 1 µL was used in nested PCR reactions with a sense inner adaptor primer AP2, provided in the kit, and a nested antisense T-Phyloplalin-specific primer (5’-GGGTTGGCAGAT-TGAATGCAGCAAAAGGAAA-3’) (SEQ ID NO:7). Nested PCR cycling parameters were five cycles of 25 s at 94°C and 3 min at 72°C, followed by 20 cycles of 25 s at 94°C and 3 min at 67°C, with a final...
extension of 7 min at 67°C. A 1.8 kB product was amplified from the Stu II-based library, and gel-extracted, cloned into pGem-T, and sequenced.

PCR using a T-Phyloplanin promoter-specific sense primer (5'-TGCTCCACACTGAAGCCAA-3') (SEQ ID NO:12) and a T-Phyloplanin-specific antisense primer with an Xba I cut site (5'-AGCT CTAGATGTGAGGAAGAAT-3' (SEQ ID NO:13); Xba I site underlined) was then used to amplify the region of N. tabacum genomic DNA that included the first 25 aa of the T-phyloplanin protein (which included the signal sequence), the 5' UTR, and a further 1.1 kb upstream. The PCR product was then cut with Xba I and HinD III (at a restriction site endogenous to the promoter) and cloned into the HinD III/Xba I-sites of PBMC (kindly provided by D. Falcone). 5'-AGCT 5'-AGCT TCTAGA GTTCA GATCGTCT GCAAGAACCCCA-3' (SEQ ID NO:14); GUS-antisense: 5'-AGCT TCTAGA GTTCA GATCGTCT GCAAGAACCCCA-3' (SEQ ID NO:15); sGFP-sense: 5'-AGCT TCTAGA GTTCA GATCGTCT GCAAGAACCCCA-3' (SEQ ID NO:16); sGFP-antisense: 5'-AGCT TCTAGA GTTCA GATCGTCT GCAAGAACCCCA-3' (SEQ ID NO:17); restriction sites underlined). The PCR products were gel-extracted, cut with Xba I and Hox I, and ligated between Xba I/Xho I sites in the polylinker of pBI-PhyloProm to create in-frame fusions with the T-Phyloplanin start codon and signal sequence. These constructs were transformed into Agrobacterium tumefaciens GV3101 by triparental mating, and introduced into Ti T1068 using the leaf disc method (Horsch et al., 1985). Kanamycin-resistant plantlets were derived from kanamycin-resistant callus tissue and transferred to soil. Leaf discs from pBI-PhyloProm:GUS explants were stained for GUS activity by incubation with 0.1% X-gluc (Jefferson, 1987) and photographed. Leaf discs from pBI-PhyloProm:sGFP explants were magnified and photographed using a Zeiss Axioscope-2 imaging system.

Bioinformatic analysis. Homologous open reading frames of selected cDNA or EST sequences giving significant (e-value cutoff 1e-04) BLASTn, BLASTp, and tBLASTx (Altschul et al., 1990) scores against T-Phyloplanin nucleotide and amino acid sequences were first analyzed for the presence of signal peptides using TargetP. A multiple alignment of protein sequences with the predicted signal peptides removed was performed using the CLUSTALW algorithm (DNASTAR Lasergene software, Madison, Wis.). An unrooted phylogenetic tree was constructed using the maximum parsimony algorithm PROTPARS in the PHYLIP version 3.63 software package (Felsenstein, 2004), and tree robustness was estimated with 1000 bootstrap data sets. The tree was displayed with the TREEVIEW version 3.2 software (Page, 1996).

Sequence data from this article have been deposited with the EMBL/GenBank data libraries under accession number AY705384.

REFERENCES
Throughout this document the following references have been cited and are incorporated herein:


SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 45
<210> SEQ ID NO 1
<211> LENGTH: 1249
<212> TYPE: DNA
<213> ORGANISM: Nicotiana tabacum

<220> FEATURE:
<223> OTHER INFORMATION: primer
<220> FEATURE:
<223> OTHER INFORMATION: y = c or t
<220> FEATURE:
<223> OTHER INFORMATION: r = a or g
<220> FEATURE:
<223> OTHER INFORMATION: n = Inosine
<220> FEATURE:

<400> SEQUENCE: 2
acwntngnt cnacwcvatat ytcnnggnctn gtytttttg

<210> SEQ ID NO 3
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: primer
<220> FEATURE:
<223> OTHER INFORMATION: misc_feature
<222> LOCATION: [1]..[32]
<223> OTHER INFORMATION: i = inosine

<400> SEQUENCE: 3

aaraanccng tnggnognar nocncacytat

<210> SEQ ID NO 4
<211> LENGTH: 31
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: primer

<400> SEQUENCE: 4

tcagtoccc aagtttttcc taatgcata c
g

<210> SEQ ID NO 5
<211> LENGTH: 29
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: primer

<400> SEQUENCE: 5

ggccaagaa gtttaatagc tgatgcata

<210> SEQ ID NO 6
<211> LENGTH: 29
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: primer

<400> SEQUENCE: 6

tggaacaagt atggcaaatg cacgoggg
g

<210> SEQ ID NO 7
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: primer

<400> SEQUENCE: 7

gggggttgcg attaagcag ccacaagga a

<210> SEQ ID NO 8
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: primer

<400> SEQUENCE: 8

agcttctaga catatttgg ggctggtttt g
<210> SEQ ID NO 9
<211> LENGTH: 31
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: primer

<400> SEQUENCE: 9
agctctgca tgtagca ggtg ggcgcgggc c

<210> SEQ ID NO 10
<211> LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: primer

<400> SEQUENCE: 10
agcttctaga atacctgttc caacact

<210> SEQ ID NO 11
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: primer

<400> SEQUENCE: 11
agctctgca gtagcctgtg ttaaga

<210> SEQ ID NO 12
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: primer

<400> SEQUENCE: 12
tgtcctcacc cttagaatca cca

<210> SEQ ID NO 13
<211> LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: primer

<400> SEQUENCE: 13
agcttctaga tgggacac agtatgg

<210> SEQ ID NO 14
<211> LENGTH: 34
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: primer

<400> SEQUENCE: 14
agcttctaga atgtacgtc ctgtagaac cccca

<210> SEQ ID NO 15
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 15
agctctgcag tcattgtttg cctcctgtct 30

<210> SEQ ID NO 16
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: primer

<400> SEQUENCE: 16
agctttcaga atggtgagca agggcgagga 30

<210> SEQ ID NO 17
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: primer

<400> SEQUENCE: 17
agctctgcag gttttaacttg tacaagctgt 30

<210> SEQ ID NO 18
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Nicotiana tabacum

<400> SEQUENCE: 18
Met Ala Ser Ala Lys Ile Phe Leu Ile Phe Leu Leu Ala Ala Leu
1  5  10  15

<210> SEQ ID NO 19
<211> LENGTH: 666
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: T-Phylloplanin cDNA

<400> SEQUENCE: 19
aacacaattd tctcagcaca taactataac atataacaat aactgccaatg gttccagcaa  60
aaatccccct gatccccccc ttgctgcat tactgcaac cccgccctgca tttgctac 120
attgctcaca acttgttcca acacataaa gttgcctgtg tttttgcaag cttgacgaa 180
attagctgt caataaggg ctacgccccc aagtttcccc taatctacta gttgaatatc 240
ggtgctggac aacasaagtg atatacaatt caataacatg gattctcggg gctttcttc 300
tggtcgctga taatttctcc atgctaatc gcaatctag gttgctcact caacataca 360
cattgtacgc gacgcttacac ttcgcggggt gttgcggcgc atcctttgaga ttgtgtaata 420
ttcctttg agtcgctaac ggttttatta gatggtttt acgtctact atgttttatac 480
ttactttgaa tctcaatgg atatgacggt actagctggc ttggtttttt aaattttact 540	tactgtctg cagtttccc accttttctc ccctgctgcc actgcaagaa taagactgt 600
tgtttccccat agttgataaaa gttgcaactca tattttggag cttaaaaaaaa aaaaaaaa 660

<210> SEQ ID NO 20
<211> LENGTH: 150
<212> TYPE: PRT
<213> ORGANISM: Artificial
FEATURE: OTHER INFORMATION: predicted amino acid sequence of T-phylloplanin cDNA

SEQUENCE: 20
Met Ala Ser Ala Lys Ile Phe Leu Ile Phe Leu Leu Ala Ala Leu Ile
1 5 10 15
Ala Thr Pro Ala Ala Phe Ala Ile Leu Val Pro Thr Leu Val Ser Thr
20 25 30
His Ile Ser Gly Leu Val Phe Cys Ser Val Asn Gly Asn Leu Asp Val
35 40 45
Ile Asn Gly Leu Ser Pro Gln Val Phe Pro Asn Ala Ser Val Gln Leu
50 55 60
Arg Cys Gly Ala Thr Asn Val Ile Ser Ser Thr Ile Thr Asn Gly Ser
65 70 75 80
Gly Ala Phe Ser Leu Ala Val Thr Phe Pro Leu Leu Asn Cys Asn
85 90 95
Leu Val Val Ala Thr Pro Leu Ser Thr Cys Asn Ala Thr Leu Gln Ser
100 105 110
Val Gly Arg Leu Ala Ser Leu Arg Leu Val Asn Ile Thr Leu Gly
115 120 125
Ser Gly Thr Gly Leu Ile Arg Val Gly Leu Ala Pro Thr Gly Phe Ile
130 135 140
Leu Asn Leu Asn Ile Asn
145 150

SEQ ID NO 21
LENGTH: 9
TYPE: PRT
ORGANISM: Nicotiana tabacum

SEQUENCE: 21
Ile Leu Val Pro Thr Leu Val Ser Thr
1 5

SEQ ID NO 22
LENGTH: 19
TYPE: PRT
ORGANISM: ILVPTLYSTHISGLVPCSV

SEQUENCE: 22
Ile Leu Val Pro Thr Leu Val Ser Thr His Ile Ser Gly Leu Val Phe
1 5 10 15
Cys Ser Val

SEQ ID NO 23
LENGTH: 19
TYPE: PRT
ORGANISM: Nicotiana tabacum

SEQUENCE: 23
Ile Leu Val Pro Thr Leu Val Ser Thr His Ile Ser Gly Leu Val Phe
1 5 10 15
Cys Ser Val

SEQ ID NO 24
LENGTH: 19
TYPE: PRT
ORGANISM: Nicotiana tabacum
ILE Leu Val Pro Thr Leu Val Ser Thr His Ile Ser Gly Leu Val Phe
1  5  10  15

Cys Ser Val

<210> SEQ ID NO 25
<211> LENGTH: 6
<212> TYPE: PRT
<213> ORGANISM: Nicotiana tabacum

<400> SEQUENCE: 25

Ala Ser Val Gln Leu Arg
1  5

<210> SEQ ID NO 26
<211> LENGTH: 6
<212> TYPE: PRT
<213> ORGANISM: Nicotiana tabacum

<400> SEQUENCE: 26

ILE Leu Asn Leu Asn Ile
1  5

<210> SEQ ID NO 27
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Nicotiana tabacum

<400> SEQUENCE: 27

Cys Gly Ala Thr Asn Val Ile Ser Ser Thr Ile Thr
1  5  10

<210> SEQ ID NO 28
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Nicotiana tabacum

<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: [11]..[11]
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid

<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: [15]..[15]
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid

<400> SEQUENCE: 28

Leu Val Val Ala Thr Pro Leu Ser Thr Cys Xaa Ala Thr Leu Xaa Ser
1  5  10  15

Val Gly

<210> SEQ ID NO 29
<211> LENGTH: 6
<212> TYPE: PRT
<213> ORGANISM: Nicotiana tabacum

<400> SEQUENCE: 29

ILE Leu Asn Leu Asn Ile
1  5

<210> SEQ ID NO 30
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Nicotiana tabacum

<220> FEATURE:
<221> NAME/KEY: misc_feature
Cys Gly Ala Thr Xaa Val Xaa Ser Ser Thr Ile Thr
1      5     10

<400> SEQUENCE: 31
Ile Arg Val Gly Leu Ala Pro Thr Gly
1      5

<400> SEQUENCE: 32
Ile Leu Val Pro Thr Leu Val Ser Thr His Ile Ser Gly Leu Val Phe
1      5    10  15
Cys Ser Val Asn Gly Asn Leu Arg Val Ile Asn Gly Leu Ser Pro Gln
20     25   30
Val Phe Pro Asn Ala Ser Val Gln Leu Arg Cys Gly Ala Thr Asn Val
35     40   45
Ile Ser Ser Thr Ile Thr Asn Gly Ser Gly Ala Phe Ser Leu Ala Val
50     55   60
Asn Thr Phe Pro Leu Leu Asn Cys Asn Leu Val Ala Thr Pro Leu
65     70   75  80
Ser Thr Cys Asn Ala Thr Leu Gln Ser Val Gly Arg Leu Ala Ser Ser
85     90   95
Leu Arg Leu Val Asn Ile Thr Leu Gly Ser Gly Thr Gly Leu Ile Arg
100    105  110
Val Gly Leu Ala Pro Thr Gly Phe Ile Leu Asn Leu Asn Ile Asn
115    120  125

<400> SEQUENCE: 33
Gln Ile Leu Pro Pro Pro Ile Leu Pro Pro Thr Ile Ile Arg Pro Pro
1      5   10  15
Pro Ile Leu Pro Pro Ile Val Leu Pro Pro Pro Ile Val Leu Asn Pro
20     25   30
Val Leu Asn Val Thr Gly Ile Val Ser Cys Ser Val Asn Ala Thr Val
35     40   45
Asn Thr Thr Ala Pro Pro Phe Pro Asn Ala Gln Val Gln Leu Arg
50     55   60
Cys Gly Gly Leu Val Gly Ala Ala Thr Thr Asn Gln Ser Gly Ala
65     70   75  80
Phe Asn Ile Val Val Asn Pro Phe Leu Ser Thr Val Ala Asn Leu Leu

Ser Cys Arg Val Val Val Thr Thr Pro Leu Ala Thr Cys Asn Val Thr
Leon Pro Ser Thr Gly Thr Leu Gln Ala Pro Leu Gln Ile Val Gly Asn
Ile Leu Asn Ile Leu Phe Ala Ile Pro Gly Gin Phe Leu Tyr Leu Gln
Val
145

<210> SEQ ID NO 34
<211> LENGTH: 142
<212> TYPE: PRT
<213> ORGANISM: Nicotiana sp.

<400> SEQUENCE: 34

Gln Leu Gly Gly Leu Gly Gly Leu Gly Gly Leu Gly Met Leu Leu
1 5 10 15
Gly Gly Leu Thr Asn Ile Phe Asn Ile Gin Gly Leu Leu Met Cys Ser
20 25 30
Val Thr Gly Thr Val Thr Asn Ala Thr Ala Val Pro Pro Phe
35 40 45
Pro Asn Ala Gly Ile Val Phe Gln Cys Thr Gly Gin Asn Val Ser Ser
50 55 60
Thr Thr Thr Asn Ala Asn Gly Val Phe Ser Ile Pro Thr Ile Gly Leu
65 70 75 80
Pro Phe Ser Pro Ser Thr Leu Ser Ser Gly Cys Arg Leu Val Val
85 90 95
Thr Thr Pro Leu Thr Ala Cys Val Ser Leu Pro Ala Ala Gly Leu
100 105 110
Leu Met Ala Pro Leu Ser Leu Val Gly Thr Ala Asp Gly Leu
115 120 125
Asn Ile Phe Ser Leu Val Pro Ser Ala Phe Gly Leu Val Gly
130 135 140

<210> SEQ ID NO 35
<211> LENGTH: 132
<212> TYPE: PRT
<213> ORGANISM: Nicotiana sp.

<400> SEQUENCE: 35

Val Leu Ile Ala Ala Gln Ala Asp Glu Ala Gin Gly Leu Pro Pro Ile
1 5 10 15
Thr Ala Ala Val Asn Ile Ser Gly Ile Val Thr Cys Ser Val Asn Gly
20 25 30
Ser Ala Asn Ala Pro Pro Phe Ala Asn Ala Leu Val Glu Leu Ser Cys
35 40 45
Gly Gly Asn Val Ile Ala Ser Ala Val Thr Asn Ala Gln Gly Val Phe
50 55 60
Asn Ile Thr Val Asn Pro Leu Arg Val Thr Leu Asn Leu Leu Ser
65 70 75 80
Ser Cys Arg Ile Ile Val Ala Thr Pro Leu Ser Asn Cys Asn Ala Thr
85 90 95
Leu Pro Thr Ala Gly Thr Leu Gln Ser Ala Leu Gin Val Ala Gly Thr
100 105 110
Phe Ile Arg Gly Ile Leu Asn Asn Val Asn Leu Val Pro Ile Arg Phe
Arg Leu Val Val

115
120
125

<210> SEQ ID NO 36
<211> LENGTH: 153
<212> TYPE: PRT
<213> ORGANISM: Nicotiana sp.

<400> SEQUENCE: 36

1      5      10     15
Leu Val Gly Leu Gly Leu Val Gly Leu Val Gly Leu Val Gly Gly Ile
20     25     30
Leu Asn Leu Val Asn Leu Gly Val Val Phe Cys Ser Leu Asn Gly
35     40     45
Ala Pro Ser Gly Thr Ser Thr Pro Ala Phe Ala Asn Ala Gly Val Glu
50     55     60
Leu Gln Cys Gly Arg Gln Asn Arg Val Ser Thr Ala Thr Thr Asn
65     70     75     80
Ala Ala Gly Leu Phe Ser Leu Pro Thr Asp Ser Ile Gln Met Leu Leu
85     90     95
Ser Thr Leu Leu Ser Asp Cys Arg Val Val Val Thr Pro Leu Ser
100    105    110
Thr Cys Asn Ala Asn Leu Pro Ser Val Gly Asn Leu Val Ser Arg Leu
115    120    125
Ala Met Ile Gly Asn Ser Thr Gly Leu Leu Asn Ile Ile Ser Ile
130    135
Ile Pro Ala Gly Phe Gly Leu Leu Asn
145
150

<210> SEQ ID NO 37
<211> LENGTH: 128
<212> TYPE: PRT
<213> ORGANISM: Nicotiana sp.

<400> SEQUENCE: 37

Gln Ser Gly Leu Gly Gly Ile Asn Val Pro Ile Asn Gly Gly Val Leu
1      5      10     15
Phe Cys Thr Ile Asn Gly Ala Pro Leu Asn Gly Thr Pro Ala Pro Ala
20     25     30
Phe Ala Asn Ala Val Val Gln Leu Gln Cys Gly Asn Leu Asn Arg Val
35     40     45
Val Ala Glu Thr Ile Thr Asn Ile Ala Gly Leu Phe Thr Phe Ser Thr
50     55     60
Asn Gly Ile Gln Ile Ser Leu Pro Thr Leu Asn Asp Cys Arg Ile
65     70     75     80
Val Val Pro Thr Pro Arg Ser Ser Cys Asp Ala Thr Leu Pro Ser Thr
85     90     95
Gly Gln Leu Ile Ser Gln Leu Asn Leu Val Gly Ser Ile Val Ser Gly
100    105    110
Leu Leu Asn Ile Val Ala Ile Leu Pro Thr Gly Phe Ile Pro Thr Ile
115    120    125

<210> SEQ ID NO 38
<211> LENGTH: 124
<212> TYPE: PRT
ORGANISM: Nicotiana sp.

<table>
<thead>
<tr>
<th></th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala</td>
<td>Val</td>
<td>Val</td>
</tr>
<tr>
<td>Pro</td>
<td>Pro</td>
<td>Ala</td>
</tr>
<tr>
<td>Ala</td>
<td>Gln</td>
<td>Pro</td>
</tr>
<tr>
<td>Pro</td>
<td>Arg</td>
<td>Ile</td>
</tr>
<tr>
<td>Gly</td>
<td>Gin</td>
<td>Ala</td>
</tr>
<tr>
<td>Asp</td>
<td>Val</td>
<td>Val</td>
</tr>
<tr>
<td>Met</td>
<td>Gly</td>
<td>Val</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gly</td>
<td>Val</td>
<td>Pro</td>
<td>Cys</td>
</tr>
<tr>
<td>Tyr</td>
<td>Asn</td>
<td>Asn</td>
<td>Gly</td>
</tr>
<tr>
<td>Thr</td>
<td>Ser</td>
<td>Met</td>
<td>Lys</td>
</tr>
<tr>
<td>Ser</td>
<td>Gly</td>
<td>Ser</td>
<td>Ala</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro</td>
<td>Gly</td>
<td>Phe</td>
<td>Pro</td>
</tr>
<tr>
<td>Gin</td>
<td>Ala</td>
<td>Val</td>
<td>Val</td>
</tr>
<tr>
<td>Leu</td>
<td>Gin</td>
<td>Cys</td>
<td>Ala</td>
</tr>
<tr>
<td>Gly</td>
<td>Asp</td>
<td>Ala</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>40</td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Val</td>
<td>Ala</td>
<td>Ala</td>
<td>Val</td>
</tr>
<tr>
<td>Ala</td>
<td>Ala</td>
<td>Ala</td>
<td>Ser</td>
</tr>
<tr>
<td>Ser</td>
<td>Ala</td>
<td>Thr</td>
<td>Thr</td>
</tr>
<tr>
<td>Asp</td>
<td>Gly</td>
<td>Lys</td>
<td>Gly</td>
</tr>
<tr>
<td>Trp</td>
<td>50</td>
<td>55</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>65</th>
<th>70</th>
<th>75</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phe</td>
<td>Arg</td>
<td>Met</td>
<td>Ala</td>
<td>Met</td>
</tr>
<tr>
<td>Ala</td>
<td>Met</td>
<td>Thr</td>
<td>Thr</td>
<td>Ala</td>
</tr>
<tr>
<td>Ala</td>
<td>Leu</td>
<td>Ser</td>
<td>Ser</td>
<td>Val</td>
</tr>
<tr>
<td>Ala</td>
<td>Ser</td>
<td>65</td>
<td>70</td>
<td>75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>90</th>
<th>95</th>
<th>100</th>
<th>105</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gly</td>
<td>Cys</td>
<td>Ser</td>
<td>Leu</td>
<td>Val</td>
<td>Thr</td>
</tr>
<tr>
<td>Val</td>
<td>Thr</td>
<td>Pro</td>
<td>Leu</td>
<td>Ala</td>
<td>Thr</td>
</tr>
<tr>
<td>Cys</td>
<td>Asp</td>
<td>Ala</td>
<td>90</td>
<td>95</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>105</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leu</td>
<td>Pro</td>
<td>Ala</td>
</tr>
<tr>
<td>Thr</td>
<td>Gly</td>
<td>Thr</td>
</tr>
<tr>
<td>Leu</td>
<td>Gin</td>
<td>Ser</td>
</tr>
<tr>
<td>Gly</td>
<td>Leu</td>
<td>Arg</td>
</tr>
<tr>
<td>Leu</td>
<td>Val</td>
<td>Ser</td>
</tr>
<tr>
<td>100</td>
<td>105</td>
<td>110</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Met</td>
<td>Val</td>
</tr>
<tr>
<td>Phe</td>
<td>Phe</td>
</tr>
<tr>
<td>Pro</td>
<td>Arg</td>
</tr>
<tr>
<td>Gly</td>
<td>Phe</td>
</tr>
<tr>
<td>Ser</td>
<td>Tyr</td>
</tr>
<tr>
<td>Val</td>
<td>Val</td>
</tr>
</tbody>
</table>

SEQ ID NO 39
LENGTH: 118
TYPE: PRO
ORGANISM: Nicotiana sp.

<table>
<thead>
<tr>
<th></th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lys</td>
<td>Leu</td>
</tr>
<tr>
<td>Gly</td>
<td>Arg</td>
</tr>
<tr>
<td>Leu</td>
<td>Val</td>
</tr>
<tr>
<td>Val</td>
<td>Val</td>
</tr>
<tr>
<td>Pro</td>
<td>Val</td>
</tr>
<tr>
<td>Cys</td>
<td>Asn</td>
</tr>
<tr>
<td>Thr</td>
<td>Gly</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ser</td>
<td>Leu</td>
<td>Ile</td>
<td>Asp</td>
</tr>
<tr>
<td>Ala</td>
<td>Thr</td>
<td>Ser</td>
<td>Pro</td>
</tr>
<tr>
<td>Ala</td>
<td>Phe</td>
<td>Pro</td>
<td>Asn</td>
</tr>
<tr>
<td>Ala</td>
<td>Asp</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glu</td>
<td>Leu</td>
<td>Arg</td>
<td></td>
</tr>
<tr>
<td>Cys</td>
<td>Ala</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Leu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Ala</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Ala</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Thr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>Ser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>40</td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asn</td>
<td>Gly</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>Ala</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Met</td>
<td>Glu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Asp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Thr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Ala</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Met</td>
<td>50</td>
<td>55</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>65</th>
<th>70</th>
<th>75</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leu</td>
<td>Ile</td>
<td>Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cys</td>
<td>Leu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Val</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>Pro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Ile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Cys</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>70</td>
<td>75</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>85</th>
<th>90</th>
<th>95</th>
<th>100</th>
<th>105</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asp</td>
<td>Ala</td>
<td>Asn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Pro</td>
<td>Ala</td>
<td>Ala</td>
<td>Ala</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Ser</td>
<td>Leu</td>
<td>Val</td>
<td>Ser</td>
<td>Thr</td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>Leu</td>
<td>Gin</td>
<td>Gly</td>
<td>85</td>
<td>90</td>
<td>95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>100</th>
<th>105</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro</td>
<td>Leu</td>
<td>Thr</td>
<td>Leu</td>
</tr>
<tr>
<td>Gly</td>
<td>Leu</td>
<td>Gly</td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Phe</td>
<td>Arg</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Phe</td>
<td>Pro</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Gly</td>
<td>100</td>
<td>105</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phe</td>
<td>Ser</td>
</tr>
<tr>
<td>Phe</td>
<td>His</td>
</tr>
<tr>
<td>Ala</td>
<td>His</td>
</tr>
</tbody>
</table>

SEQ ID NO 40
LENGTH: 132
TYPE: PRO
ORGANISM: Nicotiana sp.

<table>
<thead>
<tr>
<th></th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gin</td>
<td>Leu</td>
</tr>
<tr>
<td>Gly</td>
<td>Gly</td>
</tr>
<tr>
<td>Leu</td>
<td>Leu</td>
</tr>
<tr>
<td>Gly</td>
<td>Leu</td>
</tr>
<tr>
<td>Gly</td>
<td>Pro</td>
</tr>
<tr>
<td>Ile</td>
<td>Ser</td>
</tr>
<tr>
<td>Ile</td>
<td>Asp</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gly</td>
<td>Val</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>Cys</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Asn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Lys</td>
<td>Ile</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Asp</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Asn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>20</td>
<td>25</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala</td>
<td>Thr</td>
<td>Thr</td>
<td>Pro</td>
</tr>
<tr>
<td>Pro</td>
<td>Ile</td>
<td>Phe</td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Asn</td>
<td>Ala</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Val</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>Gin</td>
<td>Leu</td>
<td>Arg</td>
<td></td>
</tr>
<tr>
<td>Cys</td>
<td>Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>40</td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala</td>
<td>Gly</td>
<td>Asn</td>
<td>Val</td>
</tr>
<tr>
<td>Val</td>
<td>Ser</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Thr</td>
<td>Thr</td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>Gly</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Ala</td>
<td>Phe</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>55</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>
Ser Leu Val Leu Asn Pro Val Gln Asn Ile Leu Ser Ser Leu Leu Ser
65  70  75  80
Asn Cys Asn Ile Val Val Thr Pro Leu Ser Thr Cys Asn Ala Ser
95  90  95
Leu Pro Ser Val Gly Val Leu Gln Ala Pro Leu Gln Ile Val Gly Arg
100 105 110
Thr Thr Gly Gly Leu Val Asn Leu Val Thr Gly Val Phe Gln Leu Ile
115 120 125
Pro Leu Leu Asn
130

<210> SEQ ID NO 41
<211> LENGTH: 133
<212> TYPE: PRT
<213> ORGANISM: Nicotiana sp.

<400> SEQUENCE: 41
Gln Leu Gly Gly Leu Leu Gly Leu Leu Ala Pro Thr Ser Ile Glu
1  5  10  15
Gly Val Leu Phe Cys Ser Leu Asn Gly Lys Ile Asp Val Leu Asn Gly
20 25 30
 Ala Thr Thr Pro Ile Phe Pro Asp Ala Ser Val Gln Leu Arg Cys Gly
35 40 45
 Ala Gly Asn Val Val Ser Thr Thr Thr Ser Gly Ser Gly Ala Phe
50 55 60
 Ser Leu Val Thr Ser Pro Val Gln Ser Leu Ser Ser Leu Leu Ser
65 70 75 80
 Asp Cys Asn Ile Val Val Thr Pro Leu Ser Thr Cys Asn Ala Thr
85 90 95
Leu Pro Ser Val Gly Val Leu Gln Ala Pro Leu Gln Ile Val Gly Lys
100 105 110
Thr Ala Gly Gly Gly Leu Leu Asn Ile Val Lys Leu Val Thr Gly Ala
115 120 125
Phe Gln Leu Ile Asn
130

<210> SEQ ID NO 42
<211> LENGTH: 115
<212> TYPE: PRT
<213> ORGANISM: Nicotiana sp.

<400> SEQUENCE: 42
Cys Thr Pro Ann Gly Asn Ile Gly Val Asn Gly Thr Ser Thr Pro Val
1  5  10  15
Phe Pro Asn Ala Ala Val Gln Leu Gln Cys Gly Gly Thr Val Val Ser
20 25 30
Thr Thr Thr Thr Asn Gly Leu Gly Gln Phe Ser Met Leu Leu Asp Pro
35 40 45
Leu Asn Phe Val Leu Ser Thr Leu Val Ser Gly Cys Arg Leu Ala Val
50 55 60
Thr Thr Pro Leu Ala Thr Cys Asn Ala Ser Leu Pro Ser Ala Gly Gly
65 70 75 80
 Leu Ile Ser Thr Leu Gln Phe Val Gly Ser Thr Val Leu Gly Leu Leu
85 90 95
Asn Val Gly Ann Ile Ile Pro Ser Gly Phe Asn Phe Ser Ala Asn Met
100 105 110
Asn Leu Asn
115

<210> SEQ ID NO 43
<211> LENGTH: 138
<212> TYPE: PRT
<213> ORGANISM: Nicotiana sp.

<400> SEQUENCE: 43

Ala Pro Val Ala Glu Ala Gln Leu Gly Leu Ile Gly Leu Gly Leu Ile Gly Leu Ile Gly
1  5  10  15
Leu Ile Arg Ile Gln Gly Thr Leu Phe Cys Thr Ala Asp Gly Asn Ile
20 25 30
Gly Ala Asn Gly Thr Ala Thr Pro Val Phe Pro Asn Ala Leu Val Gln
35 40 45
Leu Gln Cys Gly Gly Asn Val Ser Thr Ser Thr Thr Thr Ser Thr Asn Gly Ser
50 55 60
Gly Met Phe Ser Ile Leu Leu Asp Pro Leu Ser Tyr Ile Leu Ser Ser
65 70 75 80
Ile Leu Ser Asp Cys Asn Leu Lys Val Asp Thr Pro Leu Ile Ser Cys
95 99 95
Asn Ser Ser Leu Pro Ala Val Gly Leu Leu Ser Pro Leu Arg Phe
100 105 110
Ile Gly Asn Thr Ala Leu Gly Ala Val Leu Ser Val Ala Asn Ile Ile
115 120 125
Pro Ala Gly Phe Arg Phe Val Pro Ser Asn
130 135

<210> SEQ ID NO 44
<211> LENGTH: 132
<212> TYPE: PRT
<213> ORGANISM: Nicotiana sp.

<400> SEQUENCE: 44

Gln Leu Gly Ile Leu Ser Gly Leu Leu Gly Ser Val Ser Asn Ile Gln
1  5  10  15
Gly Thr Val Phe Cys Thr Ser Lys Asp Asn Met Gly Val Lys Gly Ala
20 25 30
Ser Val Pro Val Phe Pro Asn Ala Gln Val Cin Val Leu Val Cys Gly Gly
35 40 45
Lys Glu Leu Ser Asn Ala Lys Thr Asn Arg Gly Thr Phe Ser Met
50 55 60
Met Met Asp Pro Leu Leu Leu Asp Leu Ala Ser Leu Ser Gly Cys
65 70 75 80
Asn Leu Val Ala Thr Pro Leu Ser Asn Cys Asn Ala Lys Leu Pro
85 90 95
Ser Thr Gly Leu Ile Ser Thr Leu Asn Phe Ala Gly Ile Thr Ser
100 105 110
Val Gly Thr Gln Thr Met Ala Asn Ile Ile Pro Ser Gly Phe His Phe
115 120 125
Leu Pro Ser Ile
130

<210> SEQ ID NO 45
<211> LENGTH: 118
<212> TYPE: PRT
<213> ORGANISM: Nicotiana sp.
The invention claimed is:
1. A method for generating excreted gene products in a plant, said method comprising:
   generating a nucleic acid fusion construct comprising a
   phylloplalin promoter having the nucleic acid sequence of SEQ ID NO:1 and a selected non-phylloplalin
   nucleic acid sequence whose transcription product is to be expressed and delivered to an aerial surface of a plant;
   transfecting plant cells with the nucleic acid fusion construct resulting in plant cells stably transformed; and
   allowing the plant cells to regenerate into a whole plant such that cells at the aerial surface are transgenic
   and express a transcription product of the non-phylloplalin nucleic acid sequence, which product is excreted from
   the plant cells.
2. The method of claim 1, further comprising collecting the
   transcription product from the aerial surface of the plant.
3. The method of claim 1, wherein the transcription product
   confers pest resistance to the plant.
4. The method of claim 1, wherein the transcription product
   confers disease resistance to the plant.
5. The method of claim 1, wherein the transcription product
   confers improved stress resistance to the plant.
6. The method of claim 3, wherein the transcription product
   confers fungal resistance to the plant.
7. The method of claim 1, wherein the plant cells are from
   a plant species selected from the group consisting of Medicago sp., Trifolium sp., Ulmus sp., Pyrus malus, Prunus
   armeniaca, Cynara acolymus, Asparagus officinale, Hordeum sp., Galium sp., Beta vulgaris, Prunus serotina, Vigna
   sinensis, Nyssa sylvatica, Quercus sp., Artocarpus altilis, Brassica sp., Andropogon scoparius, Fagopyrum sagittatum,
   Manihot esculenta, Apium graveolens, Agropyron sefiorum, Cornus florida, Phaseolus sp., Triticum sp., Oenothera
   caespitosa, Caryya sp., Lactuca sp., Impatiens sp., Helianthus sp., Ledum decumbens, Astragalus patersonii, Setaria italica,
   Vaccinium myrtillus, Avena sativa, Petroselinum crispum, Pastinaca sativa, Pisum sp., Prunus sp., Pyrus communis,
   Musa paradisiaca, Astragalus preussii, Raphanus sativus, Secale cereale, Sassafras albidum, Atriplex confertifolia,
   Tillandsia usneoides, Spinacia oleracea, Liquidambar styraciflua, Linaria triphylla, Liriodendron tulipfera, Vicia sp.,
   Citrullus vulgaris, Mellilotus sp., Salix sp., Rhus copallina, Nicotiana sp., Vitis sp., Datura sp., Medicago sp.,
   Lycopersicon sp., Solarum sp., Capsicum sp., Cucumis sp., Fragaria sp., Petunia sp., Geranium sp., Coleus sp.,
   Stevia sp., Oriza sat., Nepeta sat., Zea mays, Glycine max, and Arabidopsis thaliana.
8. An isolated nucleic acid sequence comprising a nucleic
   acid fusion construct comprising the phylloplalin promoter
   of SEQ ID NO:1 operably linked to a selected non-phylloplalin
   nucleic acid sequence.
9. The isolated nucleic acid sequence of claim 8, wherein
   the non-phylloplalin nucleic acid sequence encodes an
   amino acid sequence which is one of a pharmaceutical, com-
   meceutical, or nutriceutical agent.

* * * * *