Defaults and head marking: maximal inheritance, minimal overriding

Andrew Hippisley
University of Kentucky
outline

1. Network Morphology fundamentals
2. Derivation and default inheritance
3. Derivational relatedness
4. Canonical derivation and inheritance
 • Russian expressive morphology, non-canonical
5. Headed derivatives
6. Defaults and the canonical
1. Network Morphology fundamentals
Network Morphology fundamentals

Knowledge representation

- word structure facts distributed over a network of nodes
- nodes linked by inheritance
- inheritance by default
- inheritance can be from more than one node
Network Morphology fundamentals

Theoretical
- lexeme as minimal sign
 - lexical entries are lexemes ‘filled in’
- inferential-realizational
 - features expressed as an attribute path, word form as value
- centrality of the paradigm
 - lexical entry’s theorems
- autonomous morphology
 - orthogonal hierarchies, multiple inheritance
- regularity as degree
 - *default* inheritance
2. Derivation and default inheritance
derivation and default inheritance
derivation and default inheritance

LEXEME

Verb

Čitatél

pisatel "writer"
xranitel "custodian"
grabitel "thief"
derivation and default inheritance
derivation and default inheritance
derivation and default inheritance

\[[[x_x y_y]_Y \]
\[[[x_v er]_N \] \quad \text{'one who V's'}
\[[[bak_v er]_N \]
\[[bake_v]_V \]

Construction Morphology
(Booij 2005:124)

Also:
Riehemann (1998)
Kriger&Nerbonne (1993)
Deo (2007)
inflection and derivation

<table>
<thead>
<tr>
<th></th>
<th>inflection</th>
<th>derivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>build versions of a lexeme</td>
<td>build new lexeme</td>
</tr>
<tr>
<td>2</td>
<td>determined by syntax</td>
<td>not determined by syntax</td>
</tr>
<tr>
<td>3</td>
<td>obligatory</td>
<td>not obligatory</td>
</tr>
<tr>
<td>4</td>
<td>fully productive</td>
<td>not fully productive</td>
</tr>
<tr>
<td>5</td>
<td>transparent</td>
<td>not always transparent</td>
</tr>
<tr>
<td>6</td>
<td>all base features inherited</td>
<td>some base features overridden</td>
</tr>
<tr>
<td>7</td>
<td>after derivational exponent</td>
<td>before inflectional exponent</td>
</tr>
</tbody>
</table>
inflection and derivation

<table>
<thead>
<tr>
<th></th>
<th>build versions of a lexeme</th>
<th>build new lexeme</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>determined by syntax</td>
<td>not determined by syntax</td>
</tr>
<tr>
<td>2</td>
<td>obligatory</td>
<td>not obligatory</td>
</tr>
<tr>
<td>3</td>
<td>fully productive</td>
<td>not fully productive</td>
</tr>
<tr>
<td>4</td>
<td>transparent</td>
<td>not always transparent</td>
</tr>
<tr>
<td>5</td>
<td>all base features inherited</td>
<td>some base features overridden</td>
</tr>
<tr>
<td>6</td>
<td>after derivational exponent</td>
<td>before inflectional exponent</td>
</tr>
</tbody>
</table>
inflection and derivation

<table>
<thead>
<tr>
<th></th>
<th>inflection</th>
<th>derivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>build versions of a lexeme</td>
<td>build new lexeme</td>
</tr>
<tr>
<td>2</td>
<td>determined by syntax</td>
<td>not determined by syntax</td>
</tr>
<tr>
<td>3</td>
<td>obligatory</td>
<td>not obligatory</td>
</tr>
<tr>
<td>4</td>
<td>fully productive</td>
<td>not fully productive</td>
</tr>
<tr>
<td>5</td>
<td>transparent</td>
<td>not always transparent</td>
</tr>
<tr>
<td>6</td>
<td>all base features inherited</td>
<td>some base features overridden</td>
</tr>
<tr>
<td>7</td>
<td>after derivational exponent</td>
<td>before inflectional exponent</td>
</tr>
</tbody>
</table>
inflection and derivation

| 6 | all base features inherited $ maximal$ inheritance defaults | Some base features inherited $ non-maximal$ inheritance overrides |
inflection and derivation

some base features inherited

non-maximal inheritance

overrides: morphosyntactic features
3. Derivational relatedness
derivational relatedness

Č´ ITAT´

phon level
root = /č´ it-/
stem 2 = /č´ ita-/
sem level
‘read’

syn level
syn cat = V
args = 2 (NP_NP)

Č´ ITATEL´

phon level
-
/č´ ita-tel´/
sem level
‘person who reads’

syn level
syn cat = N
derivational relatedness

Č´ITAT´

phon level
root = /č´it-/
stem 2 = /č´ita-/
sem level
‘read’

syn level
syn cat = V
args = 2 (NP_NP)

Č´ITATEL´

phon level
-
/č´ita-tel´/
sem level
‘person who reads’

syn level
syn cat = N
derivational relatedness

Č´ ITAT´

phon level
root = /č´ it-/
stem 2 = /č´ ita-/

sem level
‘read’

syn level
syn cat = V
args = 2 (NP_NP)

Č´ ITATEL´

phon level
-
/č´ ita-tel´/

sem level
‘person who reads’

syn level
syn cat = N
derivational relatedness

\[\text{Č´ ITAT´} \quad \text{Č´ ITATEL´} \]

\[\text{mor level} \quad \text{>} \quad \text{mor level} \]

\[\text{Class V_1} \quad \text{Class N_1} \]
derivational relatedness

Č´ITAT´

mor level > mor level
Class V_1 Class N_1
derivational relatedness

ř `ITAT` ř `ITATEL`

\textit{mor level} \text{Class V}_1 \text{> mor level} \text{Class N}_1

\textit{Principle of the morpholexically coherent lexicon} (Spencer 2005)
i.e. correspondence among syntactic, semantic and morphological properties
WFR

Base tel´ WFR

Derivative

phon level
/x/

sem level
X ‘person who Xes’

syn
V syn cat = N
Lexeme Formation Template
(Construction Morphology)

Base \(\text{tel} \) \(\text{'LFT} \)

Derivative

\textit{phon level}

\(/x/ \)

\(/x + \text{tel}' / \)

\textit{sem level}

\(\text{X} \)

\(\text{‘person who Xes'} \)

\textit{syn}

\(\text{V} \)

\(\text{syn cat} = \text{N} \)
relatedness and inheritance
relatedness and inheritance

<table>
<thead>
<tr>
<th>lexemic level</th>
<th>inheritance source</th>
<th>base</th>
<th>LFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>syntactic</td>
<td>!✔!</td>
<td>✓</td>
<td>✔</td>
</tr>
<tr>
<td>semantic</td>
<td>!✔!</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>phonological</td>
<td>!✔!</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>morphological</td>
<td>x</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

čitat → čitatel
formal analysis

Č´itat´:
<> == VERB
<gloss> == read
<conjugation_class> == V_I:<mor>
<root all> == č´it
<stem 2> == <root all> a
<valence> == 2.

Č´itatel´:
<> == LFT_TEL
;base> == “Č´itat´::<>".

formal analysis

Č´itat´:
<> == VERB
<gloss> == read
<conjugation_class> == V_I:<mor>
<root all> == č´it
<stem 2> == <root all> a
<valence> == 2.

Č´itatel´:
<> == LFT_TEL
;base> == “Č´itat´::<>".
formal analysis

Č´itat´:
<> == VERB
<gloss> == read
<conjugation_class> == V_I:<mor>
<root all> == č´it
<stem 2> == <root all> a
<valence> == 2.

Č´itatel´:
<> == LFT_TEL´
;base> == Č´itat´:<>

<base gloss> == Č´itat´:<base gloss>”
<base stem 2> == Č´itat´:<base stem 2>”
Conversion

<table>
<thead>
<tr>
<th>Lexemic Level</th>
<th>Inheritance Source</th>
<th>base</th>
<th>LFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntactic</td>
<td>x</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Semantic</td>
<td>! ✓ ✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Phonological</td>
<td>! ✓ ✓</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Morphological</td>
<td>x</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Examples:
- `dobro` ‘good deed’
- `dobryj` ‘kind’
Transposition

<table>
<thead>
<tr>
<th>Lexemic Level</th>
<th>Inheritance Source</th>
<th>Base</th>
<th>LFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntactic</td>
<td></td>
<td>✗</td>
<td>✔</td>
</tr>
<tr>
<td>Semantic</td>
<td>✔</td>
<td></td>
<td>✗</td>
</tr>
<tr>
<td>Phonological</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Morphological</td>
<td>✗</td>
<td>✔</td>
<td></td>
</tr>
</tbody>
</table>

Lexeme
- **Verb**
 - Pobel´it
 - LFT
- **Pobelka**
 - Pobelit´ ‘whitewash’
 - Pobelka ‘whitewashing’
4. Canonical derivation & inheritance
canonical derivation & inheritance

- derivative is maximally distinct from base while maintaining some connection with base
canonical derivation & inheritance

- derivative is maximally distinct from base while maintaining some connection with base
- some formal connection with base keeps the relation morphological
canonical derivation & inheritance

- derivative is maximally distinct from base while maintaining some connection with base
- some formal connection with base keeps the relation morphological
- in an inheritance framework, canonical derivation is maximal inheritance from the LFT node
non-canonical derivation

- towards maximal inheritance from Base, minimal inheritance from LFT
non-canonical derivation

- towards maximal inheritance from Base, minimal inheritance from LFT
- inheritance of Base’s morphosyntactic features
non-canonical derivation

- towards maximal inheritance from Base, minimal inheritance from LFT
- inheritance of Base’s morphosyntactic features
- category preserving derivation
non-canonical derivation

<table>
<thead>
<tr>
<th>lexemic level</th>
<th>inheritance source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>base</td>
</tr>
<tr>
<td>syntactic</td>
<td>✓</td>
</tr>
<tr>
<td>semantic</td>
<td>! ✓ ✓</td>
</tr>
<tr>
<td>phonological</td>
<td>! ✓ ✓</td>
</tr>
<tr>
<td>morphological</td>
<td>x</td>
</tr>
</tbody>
</table>
category preserving derivation

<table>
<thead>
<tr>
<th>lexemic level</th>
<th>inheritance source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>base</td>
</tr>
<tr>
<td>syntactic</td>
<td>✓</td>
</tr>
<tr>
<td>semantic</td>
<td>! ✓ ✓</td>
</tr>
<tr>
<td>phonological</td>
<td>! ✓ ✓</td>
</tr>
<tr>
<td>morphological</td>
<td>x</td>
</tr>
</tbody>
</table>

Dom
LFT
Dom´išče
category preserving derivation

gromadn-yj ryž-ij dom-išč-e
huge-SG.M rust-SG.M house(M)-AUG-SG(IV)
‘The huge red-rust house’ (Chekov, Svetlaja ličnost´)

- Class I → masculine, e.g. dom
- Class II → feminine
- Class III → feminine
- Class IV → neuter
category preserving derivation

s godoval-ym brat-išk-oj
with year-SG.M.INS brother(M)-PEJ-SG.INS(II)
‘with your one-year-old brother’

- Class I → masculine, e.g. brat
- Class II → feminine
- Class III → feminine
- Class IV → neuter
Russian expressive morphology

dom ‘house’, *topor* ‘axe’, *kniga* ‘book’, *šinel‘* ‘coat’

<table>
<thead>
<tr>
<th>Base</th>
<th>DIM</th>
<th>AUG</th>
<th>PEJ</th>
<th>AFFECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>dom</td>
<td>domik</td>
<td>domišče</td>
<td>domiško</td>
<td>-</td>
</tr>
<tr>
<td>topor</td>
<td>toporik</td>
<td>toporišče</td>
<td>toporiško</td>
<td>toporčik</td>
</tr>
<tr>
<td>kniga</td>
<td>knižka</td>
<td>knižišča</td>
<td>-</td>
<td>knižočka</td>
</tr>
<tr>
<td>šinel‘</td>
<td>šinelka</td>
<td>-</td>
<td>šineliška</td>
<td>šineločka</td>
</tr>
</tbody>
</table>

Based on Stankiewicz (1968)
category preserving derivation

expressive morphology is an example of category preserving derivation (Stump 1991, 1993, 2001: ch 4)
5. Headed derivatives
head derivatives

- The product of a category preserving rule of word formation is a *headed* expression (when PFM goes derivational)
 - endocentric compounds
 - [tooth [brush]\textsubscript{HEAD}]
 - output of expressive derivation rule
 - [[dom]\textsubscript{HEAD} ik]
 - head&Modifier / subsective semantics
headed derivatives

- base features persist
 - semantics
 - (important) morphosyntactic features
headed derivatives

- base features persist
 - semantics
 - (important) morphosyntactic features

- a property of a category preserving word formation rule is transparency (Stump 2001: 99)
 - rule allows base features to persist (PFM)
 - Network Morphology: base features are non-canonically inherited by the derivative lexical entry
headed derivatives

- base features persist
 - semantics
 - (important) morphosyntactic features

- a property of a category preserving word formation rule is *transparency* (Stump 2001: 99)
 - rule allows base features to persist (PFM)
 - Network Morphology: base features are non-canonically *inherited* by the derivative lexical entry
 - šineliška (fem), bratiška (masc)
 - Breton *bag* ‘boat’ → *bagig* ‘little boat’; *bihan* ‘small’ → *bihanig* ‘a little too small’ (Stump 2001: 100)
headed derivatives

- category changing rules yield unheaded expressions
 - [čitatel ’]
 - (important) features from the base are overridden (inheritance from the LFT)
 - that’s canonical derivation
head marking: maximal base inheritance

- headed compounds
 - head is always inflected (Stump 2010)
 - outlive/outlived [out [live-d]]
 - understand/understood [under [stood_{PST}]]
 - mothers-in-law [[mother-s] in law]
 - grandstand/grandstanded [grandstand]_{V-ed}
 - $V \rightarrow N \rightarrow \text{compound}_N \rightarrow V$ conversion
head marking: maximal base inheritance

- headed derivatives
 - inflecting the head is an option
 - *bratiška* [[brat] išk]-a edge marking
 - *Shughni, East Iranian ‘little baby goats’*
 - *guǰbucenik* [[guǰbuc-en]_{PL} ik] head marking
head marking: maximal base inheritance

▪ headed derivatives

gudbufćenik [[gudbufć-en]_{PL} ik] head marking

cost wam gudbufć-en - ik=en dis mayżunf-idi
appear.PST her.OBL babygoat-PL-DIM =3.PL very hungry-INTENS
ČThe dear little kids appeared very hungry to herŌ
head marking: maximal base inheritance

- for headed expressions, as well as a rule of exponence you need a rule of composition (Stump 2010): does the head inflect or the whole expression?
head marking: maximal base inheritance

Head Application Principle (Stump 2005: 67)

Where stem d arises from stem b through the application of a word-word rule r, then for each cell $<b,\sigma>$ in b’s paradigm, if $<b,\sigma>$ has realization x, then the corresponding cell $<d,\sigma>$ in d’s paradigm has realization $r(x)$.
Head Application Principle (Stump 2005: 67)

Where stem d arises from stem b through the application of a word-word rule r, then for each cell $<b, \sigma>$ in b’s paradigm, if $<b, \sigma>$ has realization x, then the corresponding cell $<d, \sigma>$ in d’s paradigm has realization $r(x)$.

- stem b cell $<\text{gu} \text{j} \text{buc}, \{\text{NUM:PL}\}>$ is realized as $\text{gu} \text{j} \text{bucen}$
- stem d is $\text{gu} \text{j} \text{bucik}$ through rule r
- stem d cell $<\text{gu} \text{j} \text{bucik}, \{\text{NUM:PL}\}>$ realized as $\text{gu} \text{j} \text{bucenik}$, i.e. $<\text{gu} \text{j} \text{buc}, \{\text{NUM:PL}\}>$ ik
category preserving derivation

<table>
<thead>
<tr>
<th>lexemic level</th>
<th>inheritance source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>base</td>
</tr>
<tr>
<td>syntactic</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>semantic</td>
<td>! ✓!*</td>
</tr>
<tr>
<td>phonological</td>
<td>! ✓!*</td>
</tr>
<tr>
<td>morphological</td>
<td>x ✓</td>
</tr>
</tbody>
</table>
maximal Base inheritance

<table>
<thead>
<tr>
<th>lexemic level</th>
<th>inheritance source</th>
<th>base</th>
<th>WFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>syntactic</td>
<td>✔</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>semantic</td>
<td>✗ ✔ ✔ ✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>phonological</td>
<td>✗ ✔ ✔ ✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>morphological</td>
<td>✔</td>
<td>✗</td>
<td></td>
</tr>
</tbody>
</table>
formal analysis

1. LFT_DIMINUTIVE:
 <> ==
 LFT_HEAD_MARKING
 feature>== small
 == ik.

2. LFT_HEAD_MARKING:
 <> ==
 LFT_CAT_PRESERV
 "<base mor>"""<deriv aff>"
formal analysis

1. LFT_DIMINUTIVE:
 \(<> == \)
 LFT_HEAD_MARKING
 feature\(==\) small
 \(==\) ik.

2. LFT_HEAD_MARKING:
 \(<> == \)
 LFT_CAT_PRESERV
 \("<\text{base} \text{mor}>"""\)<der aff>"

 \(<\text{mor pl}> == "<base mor pl>" "<der aff>""
formal analysis

1. LFT CAT PRESERV:

\[\langle \rangle \equiv \text{LEXEME} \]

\[\langle \text{"<base syn>"} \rangle \equiv \langle \text{syn} \rangle \equiv \text{<gloss>} \equiv \Lambda x[\langle \text{"<sem feature>"} \rangle (x) \& \langle \text{"<base gloss>"} \rangle (x)] \]

\[\ldots \]
formal analysis

Theorems of Guǰbucik

Guǰbucik:<syn cat> = n.
Guǰbucik:<gloss> = small baby_goat.
Guǰbucik:<sem feature> = small.
Guǰbucik:<mor sg> = guǰbuc ik.
Guǰbucik:<mor pl> = guǰbuc en ik.
finding head marking
finding head marking

- Greg’s Sanskrit example
 - o car ‘act’, abhicar [abhi [car]]
 - o 3sg present indicative [abhi [car-ati]]
 - but why not [abhi [car]]-ati ?
 - o 3sg imperfect a-carat, abhy-a-carat, [abhi [a-car-at]]
finding head marking

- PFM Principles:
 - if head is marked in one cell, it’s marked in all cells (PFM’s Paradigm Uniformity Generalization)
 - coderivatives are either all head marking or not, i.e. head marking stipulated in the rule (PFM’s Coderivative Uniformity Generalization)
Russian prefixation
Russian prefixation

- Nouns
 - pod-gruppa ‘sub-group’, ne-znanie ‘ignorance’

- Adjectives
 - ne-gramotnyj ‘illiterate’, bez-opasnyj ‘dangerous’, pre-dobryj ‘overly kind’

- Verbs
 - za-govorit´ ‘begin to speak’, pere-delat´ ‘alter’, pere-pisat´ ‘to rewrite’, prij-ti ‘come’
Russian prefixation

- **Verbs**
 - *za-govorit* ‘begin to speak’, *pere-delat* ‘alter’, *pere-pisat* ‘to rewrite’, *prij-ti* ‘come’
Russian prefixation

- Verbs

 o za-govorit´ ‘begin to speak’, pere-delat´ ‘alter’, pere-pisat´ ‘to rewrite’, prij-ti ‘come’

<table>
<thead>
<tr>
<th>V_II</th>
<th>V_I</th>
<th>V_III</th>
</tr>
</thead>
<tbody>
<tr>
<td>govorju</td>
<td>delaju</td>
<td>pišu</td>
</tr>
<tr>
<td>govoriš´</td>
<td>delaeš´</td>
<td>pišeš´</td>
</tr>
<tr>
<td>zagovorju</td>
<td>peredelaju</td>
<td>perepišu</td>
</tr>
<tr>
<td>zagovoriš´</td>
<td>peredelaješ´</td>
<td>perepišeš´</td>
</tr>
</tbody>
</table>
Russian prefixation

- **Verbs**
 - *o prij-ti* ‘come’
 - o *idu, idēš ‘; šla* (past feminine singular)
 - o *pridu, pridēš ‘; prišla* (past feminine singular)
Russian prefixation

- **Verbs**

 o *prij-ti* ‘come’

 o *idu, idëš´; šla* (past feminine singular)

 o *pridu, pridëš´; prišla* (past feminine singular)

- Derived forms maintain inflectional class of the base, as well as idiosyncracies, e.g. suppletion

 o *zagovoriš´ [za [govor-iš´]]* head marking
Russian prefixation

- an extension of the Coderivative Uniformity Generalization:
 ‘all prefix-based category preserving derivation in Russian results in a head marked expression’
Formal analysis

- an extension of the Coderivative Uniformity Generalization:
 ‘all prefix-based category preserving derivation in Russian results in a head marked expression’

LFT_HEAD_MARKING:
< > == LFT_CAT_PRESERV
< mor > == "deriv aff" "base mor"
< stem > == PREFIXATION.

PREFIXATION:
< stem > == "deriv aff" "base stem"."
Formal analysis

неграмотный ‘illiterate’
Formal analysis

\textit{negramotnyj} ‘illiterate’

1 \textsc{Lft_Cat_Preserv}: \\
\%<> == NOUN \quad \%\text{too restrictive} \\
<> == LEXEME \\
<\text{syn}> == “<base syn>” \\
<\text{gloss}> == \lambda x \left["<\text{sem feature}>"(x) \& \\
\qquad "<base gloss>"(x) \right] \\
<\text{stem}> == \text{SUFFIXATION}.

2 \textsc{Lft_Head_Marking}: \\
<> == \textsc{Lft_Cat_Preserv} \\
<\text{mor}> == "<\text{deriv aff}>" "<base mor>" \\
<\text{stem}> == \text{PREFIXATION}.

3 \textsc{Lft_Neg_Adj}: \\
<> == \textsc{Lft_Head_Marking} \\
<\text{deriv aff}> == ne \\
<\text{sem feature}> == \neg.
6. Defaults and the canonical
defaults and the canonical

inflection vs derivation

1. build versions of a lexeme build new lexeme

Canonical derivation

Lexeme 1 \rightarrow Lexeme 2

maximally distinct, while staying morphologically connected
defaults and the canonical

Canonical derivation

Lexeme 1 \rightarrow \text{Lexeme 2}

maximally distinct, while staying morphologically connected

From Base

minimal inheritance

maximal overriding

From LFT

maximal inheritance
defaults and the canonical

Least canonical derivation

Lexeme 1 \(
ightarrow\) Lexeme 2

minimally distinct, while staying morphologically connected

From Base
maximal inheritance
minimal overriding

From LFT
minimal inheritance
defaults and the canonical

Least canonical derivation

Lexeme 1 \(\rightarrow\) Lexeme 2

minimally distinct, while staying morphologically connected
And therefore most like inflection

Lexeme_\(\alpha\)

1 syn word_\(\alpha\)
2 syn word_\(\alpha\)

From Base
maximal inheritance
no overriding

From LFT
no inheritance
defaults and the canonical

defaults versus default situations
defaults and the canonical

defaults versus default situations
 - defaults characterize system-driven generalization, A dominating B implies B gets everything A has unless overridden; hierarchical wrt non-default
defaults and the canonical

defaults versus default situations

- defaults characterize system-driven generalization, A dominating B implies B gets everything A has unless overridden; hierarchical wrt non-default
- default situations depend on perspective; characterize canonicity; non-hierchical wrt non-default situation
defaults and the canonical

defaults versus default situations

- defaults characterize system-driven generalization, A dominating B implies B gets everything A has unless overriden; hierarchical wrt non-default

- default situations depend on perspective; characterize canonicity; non-hierchical wrt non-default situation

 - Canonical: default situation may mean overriding the default

 - Non-canonical: overriding the default situation may mean inheriting the default